ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
Revision: 1761
Committed: Fri Jun 22 20:01:37 2012 UTC (12 years, 10 months ago) by gezelter
Original Path: branches/development/src/parallel/ForceMatrixDecomposition.cpp
File size: 51543 byte(s)
Log Message:
fixes for fluctuating charges

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42 #include "parallel/ForceMatrixDecomposition.hpp"
43 #include "math/SquareMatrix3.hpp"
44 #include "nonbonded/NonBondedInteraction.hpp"
45 #include "brains/SnapshotManager.hpp"
46 #include "brains/PairList.hpp"
47
48 using namespace std;
49 namespace OpenMD {
50
51 ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52
53 // In a parallel computation, row and colum scans must visit all
54 // surrounding cells (not just the 14 upper triangular blocks that
55 // are used when the processor can see all pairs)
56 #ifdef IS_MPI
57 cellOffsets_.clear();
58 cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59 cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60 cellOffsets_.push_back( Vector3i( 1,-1,-1) );
61 cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62 cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63 cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64 cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65 cellOffsets_.push_back( Vector3i( 0, 1,-1) );
66 cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68 cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69 cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 cellOffsets_.push_back( Vector3i(-1, 0, 0) );
71 cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72 cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73 cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74 cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75 cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76 cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77 cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78 cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81 cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82 cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83 cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84 cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 #endif
86 }
87
88
89 /**
90 * distributeInitialData is essentially a copy of the older fortran
91 * SimulationSetup
92 */
93 void ForceMatrixDecomposition::distributeInitialData() {
94 snap_ = sman_->getCurrentSnapshot();
95 storageLayout_ = sman_->getStorageLayout();
96 ff_ = info_->getForceField();
97 nLocal_ = snap_->getNumberOfAtoms();
98
99 nGroups_ = info_->getNLocalCutoffGroups();
100 // gather the information for atomtype IDs (atids):
101 idents = info_->getIdentArray();
102 AtomLocalToGlobal = info_->getGlobalAtomIndices();
103 cgLocalToGlobal = info_->getGlobalGroupIndices();
104 vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
105
106 massFactors = info_->getMassFactors();
107
108 PairList* excludes = info_->getExcludedInteractions();
109 PairList* oneTwo = info_->getOneTwoInteractions();
110 PairList* oneThree = info_->getOneThreeInteractions();
111 PairList* oneFour = info_->getOneFourInteractions();
112
113 if (needVelocities_)
114 snap_->cgData.setStorageLayout(DataStorage::dslPosition |
115 DataStorage::dslVelocity);
116 else
117 snap_->cgData.setStorageLayout(DataStorage::dslPosition);
118
119 #ifdef IS_MPI
120
121 MPI::Intracomm row = rowComm.getComm();
122 MPI::Intracomm col = colComm.getComm();
123
124 AtomPlanIntRow = new Plan<int>(row, nLocal_);
125 AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
126 AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
127 AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
128 AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
129
130 AtomPlanIntColumn = new Plan<int>(col, nLocal_);
131 AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
132 AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
133 AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
134 AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
135
136 cgPlanIntRow = new Plan<int>(row, nGroups_);
137 cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
138 cgPlanIntColumn = new Plan<int>(col, nGroups_);
139 cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
140
141 nAtomsInRow_ = AtomPlanIntRow->getSize();
142 nAtomsInCol_ = AtomPlanIntColumn->getSize();
143 nGroupsInRow_ = cgPlanIntRow->getSize();
144 nGroupsInCol_ = cgPlanIntColumn->getSize();
145
146 // Modify the data storage objects with the correct layouts and sizes:
147 atomRowData.resize(nAtomsInRow_);
148 atomRowData.setStorageLayout(storageLayout_);
149 atomColData.resize(nAtomsInCol_);
150 atomColData.setStorageLayout(storageLayout_);
151 cgRowData.resize(nGroupsInRow_);
152 cgRowData.setStorageLayout(DataStorage::dslPosition);
153 cgColData.resize(nGroupsInCol_);
154 if (needVelocities_)
155 // we only need column velocities if we need them.
156 cgColData.setStorageLayout(DataStorage::dslPosition |
157 DataStorage::dslVelocity);
158 else
159 cgColData.setStorageLayout(DataStorage::dslPosition);
160
161 identsRow.resize(nAtomsInRow_);
162 identsCol.resize(nAtomsInCol_);
163
164 AtomPlanIntRow->gather(idents, identsRow);
165 AtomPlanIntColumn->gather(idents, identsCol);
166
167 // allocate memory for the parallel objects
168 atypesRow.resize(nAtomsInRow_);
169 atypesCol.resize(nAtomsInCol_);
170
171 for (int i = 0; i < nAtomsInRow_; i++)
172 atypesRow[i] = ff_->getAtomType(identsRow[i]);
173 for (int i = 0; i < nAtomsInCol_; i++)
174 atypesCol[i] = ff_->getAtomType(identsCol[i]);
175
176 pot_row.resize(nAtomsInRow_);
177 pot_col.resize(nAtomsInCol_);
178
179 expot_row.resize(nAtomsInRow_);
180 expot_col.resize(nAtomsInCol_);
181
182 AtomRowToGlobal.resize(nAtomsInRow_);
183 AtomColToGlobal.resize(nAtomsInCol_);
184 AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
185 AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
186
187 cgRowToGlobal.resize(nGroupsInRow_);
188 cgColToGlobal.resize(nGroupsInCol_);
189 cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
190 cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
191
192 massFactorsRow.resize(nAtomsInRow_);
193 massFactorsCol.resize(nAtomsInCol_);
194 AtomPlanRealRow->gather(massFactors, massFactorsRow);
195 AtomPlanRealColumn->gather(massFactors, massFactorsCol);
196
197 groupListRow_.clear();
198 groupListRow_.resize(nGroupsInRow_);
199 for (int i = 0; i < nGroupsInRow_; i++) {
200 int gid = cgRowToGlobal[i];
201 for (int j = 0; j < nAtomsInRow_; j++) {
202 int aid = AtomRowToGlobal[j];
203 if (globalGroupMembership[aid] == gid)
204 groupListRow_[i].push_back(j);
205 }
206 }
207
208 groupListCol_.clear();
209 groupListCol_.resize(nGroupsInCol_);
210 for (int i = 0; i < nGroupsInCol_; i++) {
211 int gid = cgColToGlobal[i];
212 for (int j = 0; j < nAtomsInCol_; j++) {
213 int aid = AtomColToGlobal[j];
214 if (globalGroupMembership[aid] == gid)
215 groupListCol_[i].push_back(j);
216 }
217 }
218
219 excludesForAtom.clear();
220 excludesForAtom.resize(nAtomsInRow_);
221 toposForAtom.clear();
222 toposForAtom.resize(nAtomsInRow_);
223 topoDist.clear();
224 topoDist.resize(nAtomsInRow_);
225 for (int i = 0; i < nAtomsInRow_; i++) {
226 int iglob = AtomRowToGlobal[i];
227
228 for (int j = 0; j < nAtomsInCol_; j++) {
229 int jglob = AtomColToGlobal[j];
230
231 if (excludes->hasPair(iglob, jglob))
232 excludesForAtom[i].push_back(j);
233
234 if (oneTwo->hasPair(iglob, jglob)) {
235 toposForAtom[i].push_back(j);
236 topoDist[i].push_back(1);
237 } else {
238 if (oneThree->hasPair(iglob, jglob)) {
239 toposForAtom[i].push_back(j);
240 topoDist[i].push_back(2);
241 } else {
242 if (oneFour->hasPair(iglob, jglob)) {
243 toposForAtom[i].push_back(j);
244 topoDist[i].push_back(3);
245 }
246 }
247 }
248 }
249 }
250
251 #else
252 excludesForAtom.clear();
253 excludesForAtom.resize(nLocal_);
254 toposForAtom.clear();
255 toposForAtom.resize(nLocal_);
256 topoDist.clear();
257 topoDist.resize(nLocal_);
258
259 for (int i = 0; i < nLocal_; i++) {
260 int iglob = AtomLocalToGlobal[i];
261
262 for (int j = 0; j < nLocal_; j++) {
263 int jglob = AtomLocalToGlobal[j];
264
265 if (excludes->hasPair(iglob, jglob))
266 excludesForAtom[i].push_back(j);
267
268 if (oneTwo->hasPair(iglob, jglob)) {
269 toposForAtom[i].push_back(j);
270 topoDist[i].push_back(1);
271 } else {
272 if (oneThree->hasPair(iglob, jglob)) {
273 toposForAtom[i].push_back(j);
274 topoDist[i].push_back(2);
275 } else {
276 if (oneFour->hasPair(iglob, jglob)) {
277 toposForAtom[i].push_back(j);
278 topoDist[i].push_back(3);
279 }
280 }
281 }
282 }
283 }
284 #endif
285
286 // allocate memory for the parallel objects
287 atypesLocal.resize(nLocal_);
288
289 for (int i = 0; i < nLocal_; i++)
290 atypesLocal[i] = ff_->getAtomType(idents[i]);
291
292 groupList_.clear();
293 groupList_.resize(nGroups_);
294 for (int i = 0; i < nGroups_; i++) {
295 int gid = cgLocalToGlobal[i];
296 for (int j = 0; j < nLocal_; j++) {
297 int aid = AtomLocalToGlobal[j];
298 if (globalGroupMembership[aid] == gid) {
299 groupList_[i].push_back(j);
300 }
301 }
302 }
303
304
305 createGtypeCutoffMap();
306
307 }
308
309 void ForceMatrixDecomposition::createGtypeCutoffMap() {
310
311 RealType tol = 1e-6;
312 largestRcut_ = 0.0;
313 RealType rc;
314 int atid;
315 set<AtomType*> atypes = info_->getSimulatedAtomTypes();
316
317 map<int, RealType> atypeCutoff;
318
319 for (set<AtomType*>::iterator at = atypes.begin();
320 at != atypes.end(); ++at){
321 atid = (*at)->getIdent();
322 if (userChoseCutoff_)
323 atypeCutoff[atid] = userCutoff_;
324 else
325 atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
326 }
327
328 vector<RealType> gTypeCutoffs;
329 // first we do a single loop over the cutoff groups to find the
330 // largest cutoff for any atypes present in this group.
331 #ifdef IS_MPI
332 vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
333 groupRowToGtype.resize(nGroupsInRow_);
334 for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
335 vector<int> atomListRow = getAtomsInGroupRow(cg1);
336 for (vector<int>::iterator ia = atomListRow.begin();
337 ia != atomListRow.end(); ++ia) {
338 int atom1 = (*ia);
339 atid = identsRow[atom1];
340 if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
341 groupCutoffRow[cg1] = atypeCutoff[atid];
342 }
343 }
344
345 bool gTypeFound = false;
346 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
347 if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
348 groupRowToGtype[cg1] = gt;
349 gTypeFound = true;
350 }
351 }
352 if (!gTypeFound) {
353 gTypeCutoffs.push_back( groupCutoffRow[cg1] );
354 groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
355 }
356
357 }
358 vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
359 groupColToGtype.resize(nGroupsInCol_);
360 for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
361 vector<int> atomListCol = getAtomsInGroupColumn(cg2);
362 for (vector<int>::iterator jb = atomListCol.begin();
363 jb != atomListCol.end(); ++jb) {
364 int atom2 = (*jb);
365 atid = identsCol[atom2];
366 if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
367 groupCutoffCol[cg2] = atypeCutoff[atid];
368 }
369 }
370 bool gTypeFound = false;
371 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
372 if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
373 groupColToGtype[cg2] = gt;
374 gTypeFound = true;
375 }
376 }
377 if (!gTypeFound) {
378 gTypeCutoffs.push_back( groupCutoffCol[cg2] );
379 groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
380 }
381 }
382 #else
383
384 vector<RealType> groupCutoff(nGroups_, 0.0);
385 groupToGtype.resize(nGroups_);
386 for (int cg1 = 0; cg1 < nGroups_; cg1++) {
387 groupCutoff[cg1] = 0.0;
388 vector<int> atomList = getAtomsInGroupRow(cg1);
389 for (vector<int>::iterator ia = atomList.begin();
390 ia != atomList.end(); ++ia) {
391 int atom1 = (*ia);
392 atid = idents[atom1];
393 if (atypeCutoff[atid] > groupCutoff[cg1])
394 groupCutoff[cg1] = atypeCutoff[atid];
395 }
396
397 bool gTypeFound = false;
398 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
399 if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
400 groupToGtype[cg1] = gt;
401 gTypeFound = true;
402 }
403 }
404 if (!gTypeFound) {
405 gTypeCutoffs.push_back( groupCutoff[cg1] );
406 groupToGtype[cg1] = gTypeCutoffs.size() - 1;
407 }
408 }
409 #endif
410
411 // Now we find the maximum group cutoff value present in the simulation
412
413 RealType groupMax = *max_element(gTypeCutoffs.begin(),
414 gTypeCutoffs.end());
415
416 #ifdef IS_MPI
417 MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
418 MPI::MAX);
419 #endif
420
421 RealType tradRcut = groupMax;
422
423 for (int i = 0; i < gTypeCutoffs.size(); i++) {
424 for (int j = 0; j < gTypeCutoffs.size(); j++) {
425 RealType thisRcut;
426 switch(cutoffPolicy_) {
427 case TRADITIONAL:
428 thisRcut = tradRcut;
429 break;
430 case MIX:
431 thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
432 break;
433 case MAX:
434 thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
435 break;
436 default:
437 sprintf(painCave.errMsg,
438 "ForceMatrixDecomposition::createGtypeCutoffMap "
439 "hit an unknown cutoff policy!\n");
440 painCave.severity = OPENMD_ERROR;
441 painCave.isFatal = 1;
442 simError();
443 break;
444 }
445
446 pair<int,int> key = make_pair(i,j);
447 gTypeCutoffMap[key].first = thisRcut;
448 if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
449 gTypeCutoffMap[key].second = thisRcut*thisRcut;
450 gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
451 // sanity check
452
453 if (userChoseCutoff_) {
454 if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
455 sprintf(painCave.errMsg,
456 "ForceMatrixDecomposition::createGtypeCutoffMap "
457 "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
458 painCave.severity = OPENMD_ERROR;
459 painCave.isFatal = 1;
460 simError();
461 }
462 }
463 }
464 }
465 }
466
467 groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
468 int i, j;
469 #ifdef IS_MPI
470 i = groupRowToGtype[cg1];
471 j = groupColToGtype[cg2];
472 #else
473 i = groupToGtype[cg1];
474 j = groupToGtype[cg2];
475 #endif
476 return gTypeCutoffMap[make_pair(i,j)];
477 }
478
479 int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
480 for (int j = 0; j < toposForAtom[atom1].size(); j++) {
481 if (toposForAtom[atom1][j] == atom2)
482 return topoDist[atom1][j];
483 }
484 return 0;
485 }
486
487 void ForceMatrixDecomposition::zeroWorkArrays() {
488 pairwisePot = 0.0;
489 embeddingPot = 0.0;
490 excludedPot = 0.0;
491 excludedSelfPot = 0.0;
492
493 #ifdef IS_MPI
494 if (storageLayout_ & DataStorage::dslForce) {
495 fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
496 fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
497 }
498
499 if (storageLayout_ & DataStorage::dslTorque) {
500 fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
501 fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
502 }
503
504 fill(pot_row.begin(), pot_row.end(),
505 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
506
507 fill(pot_col.begin(), pot_col.end(),
508 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
509
510 fill(expot_row.begin(), expot_row.end(),
511 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
512
513 fill(expot_col.begin(), expot_col.end(),
514 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
515
516 if (storageLayout_ & DataStorage::dslParticlePot) {
517 fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
518 0.0);
519 fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
520 0.0);
521 }
522
523 if (storageLayout_ & DataStorage::dslDensity) {
524 fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
525 fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
526 }
527
528 if (storageLayout_ & DataStorage::dslFunctional) {
529 fill(atomRowData.functional.begin(), atomRowData.functional.end(),
530 0.0);
531 fill(atomColData.functional.begin(), atomColData.functional.end(),
532 0.0);
533 }
534
535 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
536 fill(atomRowData.functionalDerivative.begin(),
537 atomRowData.functionalDerivative.end(), 0.0);
538 fill(atomColData.functionalDerivative.begin(),
539 atomColData.functionalDerivative.end(), 0.0);
540 }
541
542 if (storageLayout_ & DataStorage::dslSkippedCharge) {
543 fill(atomRowData.skippedCharge.begin(),
544 atomRowData.skippedCharge.end(), 0.0);
545 fill(atomColData.skippedCharge.begin(),
546 atomColData.skippedCharge.end(), 0.0);
547 }
548
549 if (storageLayout_ & DataStorage::dslFlucQForce) {
550 fill(atomRowData.flucQFrc.begin(),
551 atomRowData.flucQFrc.end(), 0.0);
552 fill(atomColData.flucQFrc.begin(),
553 atomColData.flucQFrc.end(), 0.0);
554 }
555
556 if (storageLayout_ & DataStorage::dslElectricField) {
557 fill(atomRowData.electricField.begin(),
558 atomRowData.electricField.end(), V3Zero);
559 fill(atomColData.electricField.begin(),
560 atomColData.electricField.end(), V3Zero);
561 }
562
563 if (storageLayout_ & DataStorage::dslFlucQForce) {
564 fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(),
565 0.0);
566 fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(),
567 0.0);
568 }
569
570 #endif
571 // even in parallel, we need to zero out the local arrays:
572
573 if (storageLayout_ & DataStorage::dslParticlePot) {
574 fill(snap_->atomData.particlePot.begin(),
575 snap_->atomData.particlePot.end(), 0.0);
576 }
577
578 if (storageLayout_ & DataStorage::dslDensity) {
579 fill(snap_->atomData.density.begin(),
580 snap_->atomData.density.end(), 0.0);
581 }
582
583 if (storageLayout_ & DataStorage::dslFunctional) {
584 fill(snap_->atomData.functional.begin(),
585 snap_->atomData.functional.end(), 0.0);
586 }
587
588 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
589 fill(snap_->atomData.functionalDerivative.begin(),
590 snap_->atomData.functionalDerivative.end(), 0.0);
591 }
592
593 if (storageLayout_ & DataStorage::dslSkippedCharge) {
594 fill(snap_->atomData.skippedCharge.begin(),
595 snap_->atomData.skippedCharge.end(), 0.0);
596 }
597
598 if (storageLayout_ & DataStorage::dslElectricField) {
599 fill(snap_->atomData.electricField.begin(),
600 snap_->atomData.electricField.end(), V3Zero);
601 }
602 }
603
604
605 void ForceMatrixDecomposition::distributeData() {
606 snap_ = sman_->getCurrentSnapshot();
607 storageLayout_ = sman_->getStorageLayout();
608 #ifdef IS_MPI
609
610 // gather up the atomic positions
611 AtomPlanVectorRow->gather(snap_->atomData.position,
612 atomRowData.position);
613 AtomPlanVectorColumn->gather(snap_->atomData.position,
614 atomColData.position);
615
616 // gather up the cutoff group positions
617
618 cgPlanVectorRow->gather(snap_->cgData.position,
619 cgRowData.position);
620
621 cgPlanVectorColumn->gather(snap_->cgData.position,
622 cgColData.position);
623
624
625
626 if (needVelocities_) {
627 // gather up the atomic velocities
628 AtomPlanVectorColumn->gather(snap_->atomData.velocity,
629 atomColData.velocity);
630
631 cgPlanVectorColumn->gather(snap_->cgData.velocity,
632 cgColData.velocity);
633 }
634
635
636 // if needed, gather the atomic rotation matrices
637 if (storageLayout_ & DataStorage::dslAmat) {
638 AtomPlanMatrixRow->gather(snap_->atomData.aMat,
639 atomRowData.aMat);
640 AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
641 atomColData.aMat);
642 }
643
644 // if needed, gather the atomic eletrostatic frames
645 if (storageLayout_ & DataStorage::dslElectroFrame) {
646 AtomPlanMatrixRow->gather(snap_->atomData.electroFrame,
647 atomRowData.electroFrame);
648 AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame,
649 atomColData.electroFrame);
650 }
651
652 // if needed, gather the atomic fluctuating charge values
653 if (storageLayout_ & DataStorage::dslFlucQPosition) {
654 AtomPlanRealRow->gather(snap_->atomData.flucQPos,
655 atomRowData.flucQPos);
656 AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
657 atomColData.flucQPos);
658 }
659
660 #endif
661 }
662
663 /* collects information obtained during the pre-pair loop onto local
664 * data structures.
665 */
666 void ForceMatrixDecomposition::collectIntermediateData() {
667 snap_ = sman_->getCurrentSnapshot();
668 storageLayout_ = sman_->getStorageLayout();
669 #ifdef IS_MPI
670
671 if (storageLayout_ & DataStorage::dslDensity) {
672
673 AtomPlanRealRow->scatter(atomRowData.density,
674 snap_->atomData.density);
675
676 int n = snap_->atomData.density.size();
677 vector<RealType> rho_tmp(n, 0.0);
678 AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
679 for (int i = 0; i < n; i++)
680 snap_->atomData.density[i] += rho_tmp[i];
681 }
682
683 if (storageLayout_ & DataStorage::dslElectricField) {
684
685 AtomPlanVectorRow->scatter(atomRowData.electricField,
686 snap_->atomData.electricField);
687
688 int n = snap_->atomData.electricField.size();
689 vector<Vector3d> field_tmp(n, V3Zero);
690 AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp);
691 for (int i = 0; i < n; i++)
692 snap_->atomData.electricField[i] += field_tmp[i];
693 }
694 #endif
695 }
696
697 /*
698 * redistributes information obtained during the pre-pair loop out to
699 * row and column-indexed data structures
700 */
701 void ForceMatrixDecomposition::distributeIntermediateData() {
702 snap_ = sman_->getCurrentSnapshot();
703 storageLayout_ = sman_->getStorageLayout();
704 #ifdef IS_MPI
705 if (storageLayout_ & DataStorage::dslFunctional) {
706 AtomPlanRealRow->gather(snap_->atomData.functional,
707 atomRowData.functional);
708 AtomPlanRealColumn->gather(snap_->atomData.functional,
709 atomColData.functional);
710 }
711
712 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
713 AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
714 atomRowData.functionalDerivative);
715 AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
716 atomColData.functionalDerivative);
717 }
718 #endif
719 }
720
721
722 void ForceMatrixDecomposition::collectData() {
723 snap_ = sman_->getCurrentSnapshot();
724 storageLayout_ = sman_->getStorageLayout();
725 #ifdef IS_MPI
726 int n = snap_->atomData.force.size();
727 vector<Vector3d> frc_tmp(n, V3Zero);
728
729 AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
730 for (int i = 0; i < n; i++) {
731 snap_->atomData.force[i] += frc_tmp[i];
732 frc_tmp[i] = 0.0;
733 }
734
735 AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
736 for (int i = 0; i < n; i++) {
737 snap_->atomData.force[i] += frc_tmp[i];
738 }
739
740 if (storageLayout_ & DataStorage::dslTorque) {
741
742 int nt = snap_->atomData.torque.size();
743 vector<Vector3d> trq_tmp(nt, V3Zero);
744
745 AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
746 for (int i = 0; i < nt; i++) {
747 snap_->atomData.torque[i] += trq_tmp[i];
748 trq_tmp[i] = 0.0;
749 }
750
751 AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
752 for (int i = 0; i < nt; i++)
753 snap_->atomData.torque[i] += trq_tmp[i];
754 }
755
756 if (storageLayout_ & DataStorage::dslSkippedCharge) {
757
758 int ns = snap_->atomData.skippedCharge.size();
759 vector<RealType> skch_tmp(ns, 0.0);
760
761 AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
762 for (int i = 0; i < ns; i++) {
763 snap_->atomData.skippedCharge[i] += skch_tmp[i];
764 skch_tmp[i] = 0.0;
765 }
766
767 AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
768 for (int i = 0; i < ns; i++)
769 snap_->atomData.skippedCharge[i] += skch_tmp[i];
770
771 }
772
773 if (storageLayout_ & DataStorage::dslFlucQForce) {
774
775 int nq = snap_->atomData.flucQFrc.size();
776 vector<RealType> fqfrc_tmp(nq, 0.0);
777
778 AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
779 for (int i = 0; i < nq; i++) {
780 snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
781 fqfrc_tmp[i] = 0.0;
782 }
783
784 AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
785 for (int i = 0; i < nq; i++)
786 snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
787
788 }
789
790 nLocal_ = snap_->getNumberOfAtoms();
791
792 vector<potVec> pot_temp(nLocal_,
793 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
794 vector<potVec> expot_temp(nLocal_,
795 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
796
797 // scatter/gather pot_row into the members of my column
798
799 AtomPlanPotRow->scatter(pot_row, pot_temp);
800 AtomPlanPotRow->scatter(expot_row, expot_temp);
801
802 for (int ii = 0; ii < pot_temp.size(); ii++ )
803 pairwisePot += pot_temp[ii];
804
805 for (int ii = 0; ii < expot_temp.size(); ii++ )
806 excludedPot += expot_temp[ii];
807
808 if (storageLayout_ & DataStorage::dslParticlePot) {
809 // This is the pairwise contribution to the particle pot. The
810 // embedding contribution is added in each of the low level
811 // non-bonded routines. In single processor, this is done in
812 // unpackInteractionData, not in collectData.
813 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
814 for (int i = 0; i < nLocal_; i++) {
815 // factor of two is because the total potential terms are divided
816 // by 2 in parallel due to row/ column scatter
817 snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
818 }
819 }
820 }
821
822 fill(pot_temp.begin(), pot_temp.end(),
823 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
824 fill(expot_temp.begin(), expot_temp.end(),
825 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
826
827 AtomPlanPotColumn->scatter(pot_col, pot_temp);
828 AtomPlanPotColumn->scatter(expot_col, expot_temp);
829
830 for (int ii = 0; ii < pot_temp.size(); ii++ )
831 pairwisePot += pot_temp[ii];
832
833 for (int ii = 0; ii < expot_temp.size(); ii++ )
834 excludedPot += expot_temp[ii];
835
836 if (storageLayout_ & DataStorage::dslParticlePot) {
837 // This is the pairwise contribution to the particle pot. The
838 // embedding contribution is added in each of the low level
839 // non-bonded routines. In single processor, this is done in
840 // unpackInteractionData, not in collectData.
841 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
842 for (int i = 0; i < nLocal_; i++) {
843 // factor of two is because the total potential terms are divided
844 // by 2 in parallel due to row/ column scatter
845 snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
846 }
847 }
848 }
849
850 if (storageLayout_ & DataStorage::dslParticlePot) {
851 int npp = snap_->atomData.particlePot.size();
852 vector<RealType> ppot_temp(npp, 0.0);
853
854 // This is the direct or embedding contribution to the particle
855 // pot.
856
857 AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
858 for (int i = 0; i < npp; i++) {
859 snap_->atomData.particlePot[i] += ppot_temp[i];
860 }
861
862 fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
863
864 AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
865 for (int i = 0; i < npp; i++) {
866 snap_->atomData.particlePot[i] += ppot_temp[i];
867 }
868 }
869
870 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
871 RealType ploc1 = pairwisePot[ii];
872 RealType ploc2 = 0.0;
873 MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
874 pairwisePot[ii] = ploc2;
875 }
876
877 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
878 RealType ploc1 = excludedPot[ii];
879 RealType ploc2 = 0.0;
880 MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
881 excludedPot[ii] = ploc2;
882 }
883
884 // Here be dragons.
885 MPI::Intracomm col = colComm.getComm();
886
887 col.Allreduce(MPI::IN_PLACE,
888 &snap_->frameData.conductiveHeatFlux[0], 3,
889 MPI::REALTYPE, MPI::SUM);
890
891
892 #endif
893
894 }
895
896 /**
897 * Collects information obtained during the post-pair (and embedding
898 * functional) loops onto local data structures.
899 */
900 void ForceMatrixDecomposition::collectSelfData() {
901 snap_ = sman_->getCurrentSnapshot();
902 storageLayout_ = sman_->getStorageLayout();
903
904 #ifdef IS_MPI
905 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
906 RealType ploc1 = embeddingPot[ii];
907 RealType ploc2 = 0.0;
908 MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
909 embeddingPot[ii] = ploc2;
910 }
911 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
912 RealType ploc1 = excludedSelfPot[ii];
913 RealType ploc2 = 0.0;
914 MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
915 excludedSelfPot[ii] = ploc2;
916 }
917 #endif
918
919 }
920
921
922
923 int ForceMatrixDecomposition::getNAtomsInRow() {
924 #ifdef IS_MPI
925 return nAtomsInRow_;
926 #else
927 return nLocal_;
928 #endif
929 }
930
931 /**
932 * returns the list of atoms belonging to this group.
933 */
934 vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
935 #ifdef IS_MPI
936 return groupListRow_[cg1];
937 #else
938 return groupList_[cg1];
939 #endif
940 }
941
942 vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
943 #ifdef IS_MPI
944 return groupListCol_[cg2];
945 #else
946 return groupList_[cg2];
947 #endif
948 }
949
950 Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
951 Vector3d d;
952
953 #ifdef IS_MPI
954 d = cgColData.position[cg2] - cgRowData.position[cg1];
955 #else
956 d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
957 #endif
958
959 snap_->wrapVector(d);
960 return d;
961 }
962
963 Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
964 #ifdef IS_MPI
965 return cgColData.velocity[cg2];
966 #else
967 return snap_->cgData.velocity[cg2];
968 #endif
969 }
970
971 Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
972 #ifdef IS_MPI
973 return atomColData.velocity[atom2];
974 #else
975 return snap_->atomData.velocity[atom2];
976 #endif
977 }
978
979
980 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
981
982 Vector3d d;
983
984 #ifdef IS_MPI
985 d = cgRowData.position[cg1] - atomRowData.position[atom1];
986 #else
987 d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
988 #endif
989
990 snap_->wrapVector(d);
991 return d;
992 }
993
994 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
995 Vector3d d;
996
997 #ifdef IS_MPI
998 d = cgColData.position[cg2] - atomColData.position[atom2];
999 #else
1000 d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
1001 #endif
1002
1003 snap_->wrapVector(d);
1004 return d;
1005 }
1006
1007 RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
1008 #ifdef IS_MPI
1009 return massFactorsRow[atom1];
1010 #else
1011 return massFactors[atom1];
1012 #endif
1013 }
1014
1015 RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
1016 #ifdef IS_MPI
1017 return massFactorsCol[atom2];
1018 #else
1019 return massFactors[atom2];
1020 #endif
1021
1022 }
1023
1024 Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
1025 Vector3d d;
1026
1027 #ifdef IS_MPI
1028 d = atomColData.position[atom2] - atomRowData.position[atom1];
1029 #else
1030 d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
1031 #endif
1032
1033 snap_->wrapVector(d);
1034 return d;
1035 }
1036
1037 vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
1038 return excludesForAtom[atom1];
1039 }
1040
1041 /**
1042 * We need to exclude some overcounted interactions that result from
1043 * the parallel decomposition.
1044 */
1045 bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) {
1046 int unique_id_1, unique_id_2, group1, group2;
1047
1048 #ifdef IS_MPI
1049 // in MPI, we have to look up the unique IDs for each atom
1050 unique_id_1 = AtomRowToGlobal[atom1];
1051 unique_id_2 = AtomColToGlobal[atom2];
1052 group1 = cgRowToGlobal[cg1];
1053 group2 = cgColToGlobal[cg2];
1054 #else
1055 unique_id_1 = AtomLocalToGlobal[atom1];
1056 unique_id_2 = AtomLocalToGlobal[atom2];
1057 group1 = cgLocalToGlobal[cg1];
1058 group2 = cgLocalToGlobal[cg2];
1059 #endif
1060
1061 if (unique_id_1 == unique_id_2) return true;
1062
1063 #ifdef IS_MPI
1064 // this prevents us from doing the pair on multiple processors
1065 if (unique_id_1 < unique_id_2) {
1066 if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
1067 } else {
1068 if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1069 }
1070 #endif
1071
1072 #ifndef IS_MPI
1073 if (group1 == group2) {
1074 if (unique_id_1 < unique_id_2) return true;
1075 }
1076 #endif
1077
1078 return false;
1079 }
1080
1081 /**
1082 * We need to handle the interactions for atoms who are involved in
1083 * the same rigid body as well as some short range interactions
1084 * (bonds, bends, torsions) differently from other interactions.
1085 * We'll still visit the pairwise routines, but with a flag that
1086 * tells those routines to exclude the pair from direct long range
1087 * interactions. Some indirect interactions (notably reaction
1088 * field) must still be handled for these pairs.
1089 */
1090 bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
1091
1092 // excludesForAtom was constructed to use row/column indices in the MPI
1093 // version, and to use local IDs in the non-MPI version:
1094
1095 for (vector<int>::iterator i = excludesForAtom[atom1].begin();
1096 i != excludesForAtom[atom1].end(); ++i) {
1097 if ( (*i) == atom2 ) return true;
1098 }
1099
1100 return false;
1101 }
1102
1103
1104 void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
1105 #ifdef IS_MPI
1106 atomRowData.force[atom1] += fg;
1107 #else
1108 snap_->atomData.force[atom1] += fg;
1109 #endif
1110 }
1111
1112 void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
1113 #ifdef IS_MPI
1114 atomColData.force[atom2] += fg;
1115 #else
1116 snap_->atomData.force[atom2] += fg;
1117 #endif
1118 }
1119
1120 // filling interaction blocks with pointers
1121 void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1122 int atom1, int atom2) {
1123
1124 idat.excluded = excludeAtomPair(atom1, atom2);
1125
1126 #ifdef IS_MPI
1127 idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
1128 //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
1129 // ff_->getAtomType(identsCol[atom2]) );
1130
1131 if (storageLayout_ & DataStorage::dslAmat) {
1132 idat.A1 = &(atomRowData.aMat[atom1]);
1133 idat.A2 = &(atomColData.aMat[atom2]);
1134 }
1135
1136 if (storageLayout_ & DataStorage::dslElectroFrame) {
1137 idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
1138 idat.eFrame2 = &(atomColData.electroFrame[atom2]);
1139 }
1140
1141 if (storageLayout_ & DataStorage::dslTorque) {
1142 idat.t1 = &(atomRowData.torque[atom1]);
1143 idat.t2 = &(atomColData.torque[atom2]);
1144 }
1145
1146 if (storageLayout_ & DataStorage::dslDensity) {
1147 idat.rho1 = &(atomRowData.density[atom1]);
1148 idat.rho2 = &(atomColData.density[atom2]);
1149 }
1150
1151 if (storageLayout_ & DataStorage::dslFunctional) {
1152 idat.frho1 = &(atomRowData.functional[atom1]);
1153 idat.frho2 = &(atomColData.functional[atom2]);
1154 }
1155
1156 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1157 idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1158 idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1159 }
1160
1161 if (storageLayout_ & DataStorage::dslParticlePot) {
1162 idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1163 idat.particlePot2 = &(atomColData.particlePot[atom2]);
1164 }
1165
1166 if (storageLayout_ & DataStorage::dslSkippedCharge) {
1167 idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1168 idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1169 }
1170
1171 if (storageLayout_ & DataStorage::dslFlucQPosition) {
1172 idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1173 idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1174 }
1175
1176 #else
1177
1178 idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
1179
1180 if (storageLayout_ & DataStorage::dslAmat) {
1181 idat.A1 = &(snap_->atomData.aMat[atom1]);
1182 idat.A2 = &(snap_->atomData.aMat[atom2]);
1183 }
1184
1185 if (storageLayout_ & DataStorage::dslElectroFrame) {
1186 idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
1187 idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
1188 }
1189
1190 if (storageLayout_ & DataStorage::dslTorque) {
1191 idat.t1 = &(snap_->atomData.torque[atom1]);
1192 idat.t2 = &(snap_->atomData.torque[atom2]);
1193 }
1194
1195 if (storageLayout_ & DataStorage::dslDensity) {
1196 idat.rho1 = &(snap_->atomData.density[atom1]);
1197 idat.rho2 = &(snap_->atomData.density[atom2]);
1198 }
1199
1200 if (storageLayout_ & DataStorage::dslFunctional) {
1201 idat.frho1 = &(snap_->atomData.functional[atom1]);
1202 idat.frho2 = &(snap_->atomData.functional[atom2]);
1203 }
1204
1205 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1206 idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1207 idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1208 }
1209
1210 if (storageLayout_ & DataStorage::dslParticlePot) {
1211 idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1212 idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1213 }
1214
1215 if (storageLayout_ & DataStorage::dslSkippedCharge) {
1216 idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1217 idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1218 }
1219
1220 if (storageLayout_ & DataStorage::dslFlucQPosition) {
1221 idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1222 idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1223 }
1224
1225 #endif
1226 }
1227
1228
1229 void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {
1230 #ifdef IS_MPI
1231 pot_row[atom1] += RealType(0.5) * *(idat.pot);
1232 pot_col[atom2] += RealType(0.5) * *(idat.pot);
1233 expot_row[atom1] += RealType(0.5) * *(idat.excludedPot);
1234 expot_col[atom2] += RealType(0.5) * *(idat.excludedPot);
1235
1236 atomRowData.force[atom1] += *(idat.f1);
1237 atomColData.force[atom2] -= *(idat.f1);
1238
1239 if (storageLayout_ & DataStorage::dslFlucQForce) {
1240 atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1241 atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1242 }
1243
1244 if (storageLayout_ & DataStorage::dslElectricField) {
1245 atomRowData.electricField[atom1] += *(idat.eField1);
1246 atomColData.electricField[atom2] += *(idat.eField2);
1247 }
1248
1249 #else
1250 pairwisePot += *(idat.pot);
1251 excludedPot += *(idat.excludedPot);
1252
1253 snap_->atomData.force[atom1] += *(idat.f1);
1254 snap_->atomData.force[atom2] -= *(idat.f1);
1255
1256 if (idat.doParticlePot) {
1257 // This is the pairwise contribution to the particle pot. The
1258 // embedding contribution is added in each of the low level
1259 // non-bonded routines. In parallel, this calculation is done
1260 // in collectData, not in unpackInteractionData.
1261 snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1262 snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1263 }
1264
1265 if (storageLayout_ & DataStorage::dslFlucQForce) {
1266 snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1267 snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1268 }
1269
1270 if (storageLayout_ & DataStorage::dslElectricField) {
1271 snap_->atomData.electricField[atom1] += *(idat.eField1);
1272 snap_->atomData.electricField[atom2] += *(idat.eField2);
1273 }
1274
1275 #endif
1276
1277 }
1278
1279 /*
1280 * buildNeighborList
1281 *
1282 * first element of pair is row-indexed CutoffGroup
1283 * second element of pair is column-indexed CutoffGroup
1284 */
1285 vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1286
1287 vector<pair<int, int> > neighborList;
1288 groupCutoffs cuts;
1289 bool doAllPairs = false;
1290
1291 #ifdef IS_MPI
1292 cellListRow_.clear();
1293 cellListCol_.clear();
1294 #else
1295 cellList_.clear();
1296 #endif
1297
1298 RealType rList_ = (largestRcut_ + skinThickness_);
1299 RealType rl2 = rList_ * rList_;
1300 Snapshot* snap_ = sman_->getCurrentSnapshot();
1301 Mat3x3d Hmat = snap_->getHmat();
1302 Vector3d Hx = Hmat.getColumn(0);
1303 Vector3d Hy = Hmat.getColumn(1);
1304 Vector3d Hz = Hmat.getColumn(2);
1305
1306 nCells_.x() = (int) ( Hx.length() )/ rList_;
1307 nCells_.y() = (int) ( Hy.length() )/ rList_;
1308 nCells_.z() = (int) ( Hz.length() )/ rList_;
1309
1310 // handle small boxes where the cell offsets can end up repeating cells
1311
1312 if (nCells_.x() < 3) doAllPairs = true;
1313 if (nCells_.y() < 3) doAllPairs = true;
1314 if (nCells_.z() < 3) doAllPairs = true;
1315
1316 Mat3x3d invHmat = snap_->getInvHmat();
1317 Vector3d rs, scaled, dr;
1318 Vector3i whichCell;
1319 int cellIndex;
1320 int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1321
1322 #ifdef IS_MPI
1323 cellListRow_.resize(nCtot);
1324 cellListCol_.resize(nCtot);
1325 #else
1326 cellList_.resize(nCtot);
1327 #endif
1328
1329 if (!doAllPairs) {
1330 #ifdef IS_MPI
1331
1332 for (int i = 0; i < nGroupsInRow_; i++) {
1333 rs = cgRowData.position[i];
1334
1335 // scaled positions relative to the box vectors
1336 scaled = invHmat * rs;
1337
1338 // wrap the vector back into the unit box by subtracting integer box
1339 // numbers
1340 for (int j = 0; j < 3; j++) {
1341 scaled[j] -= roundMe(scaled[j]);
1342 scaled[j] += 0.5;
1343 }
1344
1345 // find xyz-indices of cell that cutoffGroup is in.
1346 whichCell.x() = nCells_.x() * scaled.x();
1347 whichCell.y() = nCells_.y() * scaled.y();
1348 whichCell.z() = nCells_.z() * scaled.z();
1349
1350 // find single index of this cell:
1351 cellIndex = Vlinear(whichCell, nCells_);
1352
1353 // add this cutoff group to the list of groups in this cell;
1354 cellListRow_[cellIndex].push_back(i);
1355 }
1356 for (int i = 0; i < nGroupsInCol_; i++) {
1357 rs = cgColData.position[i];
1358
1359 // scaled positions relative to the box vectors
1360 scaled = invHmat * rs;
1361
1362 // wrap the vector back into the unit box by subtracting integer box
1363 // numbers
1364 for (int j = 0; j < 3; j++) {
1365 scaled[j] -= roundMe(scaled[j]);
1366 scaled[j] += 0.5;
1367 }
1368
1369 // find xyz-indices of cell that cutoffGroup is in.
1370 whichCell.x() = nCells_.x() * scaled.x();
1371 whichCell.y() = nCells_.y() * scaled.y();
1372 whichCell.z() = nCells_.z() * scaled.z();
1373
1374 // find single index of this cell:
1375 cellIndex = Vlinear(whichCell, nCells_);
1376
1377 // add this cutoff group to the list of groups in this cell;
1378 cellListCol_[cellIndex].push_back(i);
1379 }
1380
1381 #else
1382 for (int i = 0; i < nGroups_; i++) {
1383 rs = snap_->cgData.position[i];
1384
1385 // scaled positions relative to the box vectors
1386 scaled = invHmat * rs;
1387
1388 // wrap the vector back into the unit box by subtracting integer box
1389 // numbers
1390 for (int j = 0; j < 3; j++) {
1391 scaled[j] -= roundMe(scaled[j]);
1392 scaled[j] += 0.5;
1393 }
1394
1395 // find xyz-indices of cell that cutoffGroup is in.
1396 whichCell.x() = nCells_.x() * scaled.x();
1397 whichCell.y() = nCells_.y() * scaled.y();
1398 whichCell.z() = nCells_.z() * scaled.z();
1399
1400 // find single index of this cell:
1401 cellIndex = Vlinear(whichCell, nCells_);
1402
1403 // add this cutoff group to the list of groups in this cell;
1404 cellList_[cellIndex].push_back(i);
1405 }
1406
1407 #endif
1408
1409 for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1410 for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1411 for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1412 Vector3i m1v(m1x, m1y, m1z);
1413 int m1 = Vlinear(m1v, nCells_);
1414
1415 for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1416 os != cellOffsets_.end(); ++os) {
1417
1418 Vector3i m2v = m1v + (*os);
1419
1420
1421 if (m2v.x() >= nCells_.x()) {
1422 m2v.x() = 0;
1423 } else if (m2v.x() < 0) {
1424 m2v.x() = nCells_.x() - 1;
1425 }
1426
1427 if (m2v.y() >= nCells_.y()) {
1428 m2v.y() = 0;
1429 } else if (m2v.y() < 0) {
1430 m2v.y() = nCells_.y() - 1;
1431 }
1432
1433 if (m2v.z() >= nCells_.z()) {
1434 m2v.z() = 0;
1435 } else if (m2v.z() < 0) {
1436 m2v.z() = nCells_.z() - 1;
1437 }
1438
1439 int m2 = Vlinear (m2v, nCells_);
1440
1441 #ifdef IS_MPI
1442 for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1443 j1 != cellListRow_[m1].end(); ++j1) {
1444 for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1445 j2 != cellListCol_[m2].end(); ++j2) {
1446
1447 // In parallel, we need to visit *all* pairs of row
1448 // & column indicies and will divide labor in the
1449 // force evaluation later.
1450 dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1451 snap_->wrapVector(dr);
1452 cuts = getGroupCutoffs( (*j1), (*j2) );
1453 if (dr.lengthSquare() < cuts.third) {
1454 neighborList.push_back(make_pair((*j1), (*j2)));
1455 }
1456 }
1457 }
1458 #else
1459 for (vector<int>::iterator j1 = cellList_[m1].begin();
1460 j1 != cellList_[m1].end(); ++j1) {
1461 for (vector<int>::iterator j2 = cellList_[m2].begin();
1462 j2 != cellList_[m2].end(); ++j2) {
1463
1464 // Always do this if we're in different cells or if
1465 // we're in the same cell and the global index of
1466 // the j2 cutoff group is greater than or equal to
1467 // the j1 cutoff group. Note that Rappaport's code
1468 // has a "less than" conditional here, but that
1469 // deals with atom-by-atom computation. OpenMD
1470 // allows atoms within a single cutoff group to
1471 // interact with each other.
1472
1473
1474
1475 if (m2 != m1 || (*j2) >= (*j1) ) {
1476
1477 dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1478 snap_->wrapVector(dr);
1479 cuts = getGroupCutoffs( (*j1), (*j2) );
1480 if (dr.lengthSquare() < cuts.third) {
1481 neighborList.push_back(make_pair((*j1), (*j2)));
1482 }
1483 }
1484 }
1485 }
1486 #endif
1487 }
1488 }
1489 }
1490 }
1491 } else {
1492 // branch to do all cutoff group pairs
1493 #ifdef IS_MPI
1494 for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1495 for (int j2 = 0; j2 < nGroupsInCol_; j2++) {
1496 dr = cgColData.position[j2] - cgRowData.position[j1];
1497 snap_->wrapVector(dr);
1498 cuts = getGroupCutoffs( j1, j2 );
1499 if (dr.lengthSquare() < cuts.third) {
1500 neighborList.push_back(make_pair(j1, j2));
1501 }
1502 }
1503 }
1504 #else
1505 // include all groups here.
1506 for (int j1 = 0; j1 < nGroups_; j1++) {
1507 // include self group interactions j2 == j1
1508 for (int j2 = j1; j2 < nGroups_; j2++) {
1509 dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1510 snap_->wrapVector(dr);
1511 cuts = getGroupCutoffs( j1, j2 );
1512 if (dr.lengthSquare() < cuts.third) {
1513 neighborList.push_back(make_pair(j1, j2));
1514 }
1515 }
1516 }
1517 #endif
1518 }
1519
1520 // save the local cutoff group positions for the check that is
1521 // done on each loop:
1522 saved_CG_positions_.clear();
1523 for (int i = 0; i < nGroups_; i++)
1524 saved_CG_positions_.push_back(snap_->cgData.position[i]);
1525
1526 return neighborList;
1527 }
1528 } //end namespace OpenMD