1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
#include "parallel/ForceMatrixDecomposition.hpp" |
42 |
#include "math/SquareMatrix3.hpp" |
43 |
#include "nonbonded/NonBondedInteraction.hpp" |
44 |
#include "brains/SnapshotManager.hpp" |
45 |
|
46 |
using namespace std; |
47 |
namespace OpenMD { |
48 |
|
49 |
/** |
50 |
* distributeInitialData is essentially a copy of the older fortran |
51 |
* SimulationSetup |
52 |
*/ |
53 |
|
54 |
void ForceMatrixDecomposition::distributeInitialData() { |
55 |
snap_ = sman_->getCurrentSnapshot(); |
56 |
storageLayout_ = sman_->getStorageLayout(); |
57 |
nLocal_ = snap_->getNumberOfAtoms(); |
58 |
nGroups_ = snap_->getNumberOfCutoffGroups(); |
59 |
|
60 |
#ifdef IS_MPI |
61 |
|
62 |
AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
63 |
AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
64 |
AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
65 |
AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
66 |
|
67 |
AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
68 |
AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
69 |
AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
70 |
AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
71 |
|
72 |
cgCommIntRow = new Communicator<Row,int>(nGroups_); |
73 |
cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
74 |
cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
75 |
cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
76 |
|
77 |
nAtomsInRow_ = AtomCommIntRow->getSize(); |
78 |
nAtomsInCol_ = AtomCommIntColumn->getSize(); |
79 |
nGroupsInRow_ = cgCommIntRow->getSize(); |
80 |
nGroupsInCol_ = cgCommIntColumn->getSize(); |
81 |
|
82 |
// Modify the data storage objects with the correct layouts and sizes: |
83 |
atomRowData.resize(nAtomsInRow_); |
84 |
atomRowData.setStorageLayout(storageLayout_); |
85 |
atomColData.resize(nAtomsInCol_); |
86 |
atomColData.setStorageLayout(storageLayout_); |
87 |
cgRowData.resize(nGroupsInRow_); |
88 |
cgRowData.setStorageLayout(DataStorage::dslPosition); |
89 |
cgColData.resize(nGroupsInCol_); |
90 |
cgColData.setStorageLayout(DataStorage::dslPosition); |
91 |
|
92 |
vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES, |
93 |
vector<RealType> (nAtomsInRow_, 0.0)); |
94 |
vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES, |
95 |
vector<RealType> (nAtomsInCol_, 0.0)); |
96 |
|
97 |
|
98 |
vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0); |
99 |
|
100 |
// gather the information for atomtype IDs (atids): |
101 |
vector<int> identsLocal = info_->getIdentArray(); |
102 |
identsRow.reserve(nAtomsInRow_); |
103 |
identsCol.reserve(nAtomsInCol_); |
104 |
|
105 |
AtomCommIntRow->gather(identsLocal, identsRow); |
106 |
AtomCommIntColumn->gather(identsLocal, identsCol); |
107 |
|
108 |
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
109 |
AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
110 |
AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
111 |
|
112 |
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
113 |
cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
114 |
cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
115 |
|
116 |
// still need: |
117 |
// topoDist |
118 |
// exclude |
119 |
#endif |
120 |
} |
121 |
|
122 |
|
123 |
|
124 |
void ForceMatrixDecomposition::distributeData() { |
125 |
snap_ = sman_->getCurrentSnapshot(); |
126 |
storageLayout_ = sman_->getStorageLayout(); |
127 |
#ifdef IS_MPI |
128 |
|
129 |
// gather up the atomic positions |
130 |
AtomCommVectorRow->gather(snap_->atomData.position, |
131 |
atomRowData.position); |
132 |
AtomCommVectorColumn->gather(snap_->atomData.position, |
133 |
atomColData.position); |
134 |
|
135 |
// gather up the cutoff group positions |
136 |
cgCommVectorRow->gather(snap_->cgData.position, |
137 |
cgRowData.position); |
138 |
cgCommVectorColumn->gather(snap_->cgData.position, |
139 |
cgColData.position); |
140 |
|
141 |
// if needed, gather the atomic rotation matrices |
142 |
if (storageLayout_ & DataStorage::dslAmat) { |
143 |
AtomCommMatrixRow->gather(snap_->atomData.aMat, |
144 |
atomRowData.aMat); |
145 |
AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
146 |
atomColData.aMat); |
147 |
} |
148 |
|
149 |
// if needed, gather the atomic eletrostatic frames |
150 |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
151 |
AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
152 |
atomRowData.electroFrame); |
153 |
AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
154 |
atomColData.electroFrame); |
155 |
} |
156 |
#endif |
157 |
} |
158 |
|
159 |
void ForceMatrixDecomposition::collectIntermediateData() { |
160 |
snap_ = sman_->getCurrentSnapshot(); |
161 |
storageLayout_ = sman_->getStorageLayout(); |
162 |
#ifdef IS_MPI |
163 |
|
164 |
if (storageLayout_ & DataStorage::dslDensity) { |
165 |
|
166 |
AtomCommRealRow->scatter(atomRowData.density, |
167 |
snap_->atomData.density); |
168 |
|
169 |
int n = snap_->atomData.density.size(); |
170 |
std::vector<RealType> rho_tmp(n, 0.0); |
171 |
AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
172 |
for (int i = 0; i < n; i++) |
173 |
snap_->atomData.density[i] += rho_tmp[i]; |
174 |
} |
175 |
#endif |
176 |
} |
177 |
|
178 |
void ForceMatrixDecomposition::distributeIntermediateData() { |
179 |
snap_ = sman_->getCurrentSnapshot(); |
180 |
storageLayout_ = sman_->getStorageLayout(); |
181 |
#ifdef IS_MPI |
182 |
if (storageLayout_ & DataStorage::dslFunctional) { |
183 |
AtomCommRealRow->gather(snap_->atomData.functional, |
184 |
atomRowData.functional); |
185 |
AtomCommRealColumn->gather(snap_->atomData.functional, |
186 |
atomColData.functional); |
187 |
} |
188 |
|
189 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
190 |
AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
191 |
atomRowData.functionalDerivative); |
192 |
AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
193 |
atomColData.functionalDerivative); |
194 |
} |
195 |
#endif |
196 |
} |
197 |
|
198 |
|
199 |
void ForceMatrixDecomposition::collectData() { |
200 |
snap_ = sman_->getCurrentSnapshot(); |
201 |
storageLayout_ = sman_->getStorageLayout(); |
202 |
#ifdef IS_MPI |
203 |
int n = snap_->atomData.force.size(); |
204 |
vector<Vector3d> frc_tmp(n, V3Zero); |
205 |
|
206 |
AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
207 |
for (int i = 0; i < n; i++) { |
208 |
snap_->atomData.force[i] += frc_tmp[i]; |
209 |
frc_tmp[i] = 0.0; |
210 |
} |
211 |
|
212 |
AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
213 |
for (int i = 0; i < n; i++) |
214 |
snap_->atomData.force[i] += frc_tmp[i]; |
215 |
|
216 |
|
217 |
if (storageLayout_ & DataStorage::dslTorque) { |
218 |
|
219 |
int nt = snap_->atomData.force.size(); |
220 |
vector<Vector3d> trq_tmp(nt, V3Zero); |
221 |
|
222 |
AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
223 |
for (int i = 0; i < n; i++) { |
224 |
snap_->atomData.torque[i] += trq_tmp[i]; |
225 |
trq_tmp[i] = 0.0; |
226 |
} |
227 |
|
228 |
AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
229 |
for (int i = 0; i < n; i++) |
230 |
snap_->atomData.torque[i] += trq_tmp[i]; |
231 |
} |
232 |
|
233 |
nLocal_ = snap_->getNumberOfAtoms(); |
234 |
|
235 |
vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES, |
236 |
vector<RealType> (nLocal_, 0.0)); |
237 |
|
238 |
for (int i = 0; i < N_INTERACTION_FAMILIES; i++) { |
239 |
AtomCommRealRow->scatter(pot_row[i], pot_temp[i]); |
240 |
for (int ii = 0; ii < pot_temp[i].size(); ii++ ) { |
241 |
pot_local[i] += pot_temp[i][ii]; |
242 |
} |
243 |
} |
244 |
#endif |
245 |
} |
246 |
|
247 |
|
248 |
Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ |
249 |
Vector3d d; |
250 |
|
251 |
#ifdef IS_MPI |
252 |
d = cgColData.position[cg2] - cgRowData.position[cg1]; |
253 |
#else |
254 |
d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; |
255 |
#endif |
256 |
|
257 |
snap_->wrapVector(d); |
258 |
return d; |
259 |
} |
260 |
|
261 |
|
262 |
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ |
263 |
|
264 |
Vector3d d; |
265 |
|
266 |
#ifdef IS_MPI |
267 |
d = cgRowData.position[cg1] - atomRowData.position[atom1]; |
268 |
#else |
269 |
d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; |
270 |
#endif |
271 |
|
272 |
snap_->wrapVector(d); |
273 |
return d; |
274 |
} |
275 |
|
276 |
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){ |
277 |
Vector3d d; |
278 |
|
279 |
#ifdef IS_MPI |
280 |
d = cgColData.position[cg2] - atomColData.position[atom2]; |
281 |
#else |
282 |
d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; |
283 |
#endif |
284 |
|
285 |
snap_->wrapVector(d); |
286 |
return d; |
287 |
} |
288 |
|
289 |
Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ |
290 |
Vector3d d; |
291 |
|
292 |
#ifdef IS_MPI |
293 |
d = atomColData.position[atom2] - atomRowData.position[atom1]; |
294 |
#else |
295 |
d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; |
296 |
#endif |
297 |
|
298 |
snap_->wrapVector(d); |
299 |
return d; |
300 |
} |
301 |
|
302 |
void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ |
303 |
#ifdef IS_MPI |
304 |
atomRowData.force[atom1] += fg; |
305 |
#else |
306 |
snap_->atomData.force[atom1] += fg; |
307 |
#endif |
308 |
} |
309 |
|
310 |
void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){ |
311 |
#ifdef IS_MPI |
312 |
atomColData.force[atom2] += fg; |
313 |
#else |
314 |
snap_->atomData.force[atom2] += fg; |
315 |
#endif |
316 |
} |
317 |
|
318 |
// filling interaction blocks with pointers |
319 |
InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { |
320 |
InteractionData idat; |
321 |
|
322 |
#ifdef IS_MPI |
323 |
if (storageLayout_ & DataStorage::dslAmat) { |
324 |
idat.A1 = &(atomRowData.aMat[atom1]); |
325 |
idat.A2 = &(atomColData.aMat[atom2]); |
326 |
} |
327 |
|
328 |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
329 |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
330 |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
331 |
} |
332 |
|
333 |
if (storageLayout_ & DataStorage::dslTorque) { |
334 |
idat.t1 = &(atomRowData.torque[atom1]); |
335 |
idat.t2 = &(atomColData.torque[atom2]); |
336 |
} |
337 |
|
338 |
if (storageLayout_ & DataStorage::dslDensity) { |
339 |
idat.rho1 = &(atomRowData.density[atom1]); |
340 |
idat.rho2 = &(atomColData.density[atom2]); |
341 |
} |
342 |
|
343 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
344 |
idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); |
345 |
idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); |
346 |
} |
347 |
#else |
348 |
if (storageLayout_ & DataStorage::dslAmat) { |
349 |
idat.A1 = &(snap_->atomData.aMat[atom1]); |
350 |
idat.A2 = &(snap_->atomData.aMat[atom2]); |
351 |
} |
352 |
|
353 |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
354 |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
355 |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
356 |
} |
357 |
|
358 |
if (storageLayout_ & DataStorage::dslTorque) { |
359 |
idat.t1 = &(snap_->atomData.torque[atom1]); |
360 |
idat.t2 = &(snap_->atomData.torque[atom2]); |
361 |
} |
362 |
|
363 |
if (storageLayout_ & DataStorage::dslDensity) { |
364 |
idat.rho1 = &(snap_->atomData.density[atom1]); |
365 |
idat.rho2 = &(snap_->atomData.density[atom2]); |
366 |
} |
367 |
|
368 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
369 |
idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); |
370 |
idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); |
371 |
} |
372 |
#endif |
373 |
return idat; |
374 |
} |
375 |
|
376 |
InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ |
377 |
|
378 |
InteractionData idat; |
379 |
#ifdef IS_MPI |
380 |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
381 |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
382 |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
383 |
} |
384 |
if (storageLayout_ & DataStorage::dslTorque) { |
385 |
idat.t1 = &(atomRowData.torque[atom1]); |
386 |
idat.t2 = &(atomColData.torque[atom2]); |
387 |
} |
388 |
if (storageLayout_ & DataStorage::dslForce) { |
389 |
idat.t1 = &(atomRowData.force[atom1]); |
390 |
idat.t2 = &(atomColData.force[atom2]); |
391 |
} |
392 |
#else |
393 |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
394 |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
395 |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
396 |
} |
397 |
if (storageLayout_ & DataStorage::dslTorque) { |
398 |
idat.t1 = &(snap_->atomData.torque[atom1]); |
399 |
idat.t2 = &(snap_->atomData.torque[atom2]); |
400 |
} |
401 |
if (storageLayout_ & DataStorage::dslForce) { |
402 |
idat.t1 = &(snap_->atomData.force[atom1]); |
403 |
idat.t2 = &(snap_->atomData.force[atom2]); |
404 |
} |
405 |
#endif |
406 |
|
407 |
} |
408 |
|
409 |
SelfData ForceMatrixDecomposition::fillSelfData(int atom1) { |
410 |
SelfData sdat; |
411 |
// Still Missing atype, skippedCharge, potVec pot, |
412 |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
413 |
sdat.eFrame = &(snap_->atomData.electroFrame[atom1]); |
414 |
} |
415 |
|
416 |
if (storageLayout_ & DataStorage::dslTorque) { |
417 |
sdat.t = &(snap_->atomData.torque[atom1]); |
418 |
} |
419 |
|
420 |
if (storageLayout_ & DataStorage::dslDensity) { |
421 |
sdat.rho = &(snap_->atomData.density[atom1]); |
422 |
} |
423 |
|
424 |
if (storageLayout_ & DataStorage::dslFunctional) { |
425 |
sdat.frho = &(snap_->atomData.functional[atom1]); |
426 |
} |
427 |
|
428 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
429 |
sdat.dfrhodrho = &(snap_->atomData.functionalDerivative[atom1]); |
430 |
} |
431 |
|
432 |
return sdat; |
433 |
} |
434 |
|
435 |
|
436 |
|
437 |
/* |
438 |
* buildNeighborList |
439 |
* |
440 |
* first element of pair is row-indexed CutoffGroup |
441 |
* second element of pair is column-indexed CutoffGroup |
442 |
*/ |
443 |
vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
444 |
|
445 |
vector<pair<int, int> > neighborList; |
446 |
#ifdef IS_MPI |
447 |
CellListRow.clear(); |
448 |
CellListCol.clear(); |
449 |
#else |
450 |
CellList.clear(); |
451 |
#endif |
452 |
|
453 |
// dangerous to not do error checking. |
454 |
RealType skinThickness_ = info_->getSimParams()->getSkinThickness(); |
455 |
RealType rCut_; |
456 |
|
457 |
RealType rList_ = (rCut_ + skinThickness_); |
458 |
RealType rl2 = rList_ * rList_; |
459 |
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
460 |
Mat3x3d Hmat = snap_->getHmat(); |
461 |
Vector3d Hx = Hmat.getColumn(0); |
462 |
Vector3d Hy = Hmat.getColumn(1); |
463 |
Vector3d Hz = Hmat.getColumn(2); |
464 |
Vector3i nCells; |
465 |
|
466 |
nCells.x() = (int) ( Hx.length() )/ rList_; |
467 |
nCells.y() = (int) ( Hy.length() )/ rList_; |
468 |
nCells.z() = (int) ( Hz.length() )/ rList_; |
469 |
|
470 |
Mat3x3d invHmat = snap_->getInvHmat(); |
471 |
Vector3d rs, scaled, dr; |
472 |
Vector3i whichCell; |
473 |
int cellIndex; |
474 |
|
475 |
#ifdef IS_MPI |
476 |
for (int i = 0; i < nGroupsInRow_; i++) { |
477 |
rs = cgRowData.position[i]; |
478 |
// scaled positions relative to the box vectors |
479 |
scaled = invHmat * rs; |
480 |
// wrap the vector back into the unit box by subtracting integer box |
481 |
// numbers |
482 |
for (int j = 0; j < 3; j++) |
483 |
scaled[j] -= roundMe(scaled[j]); |
484 |
|
485 |
// find xyz-indices of cell that cutoffGroup is in. |
486 |
whichCell.x() = nCells.x() * scaled.x(); |
487 |
whichCell.y() = nCells.y() * scaled.y(); |
488 |
whichCell.z() = nCells.z() * scaled.z(); |
489 |
|
490 |
// find single index of this cell: |
491 |
cellIndex = Vlinear(whichCell, nCells); |
492 |
// add this cutoff group to the list of groups in this cell; |
493 |
CellListRow[cellIndex].push_back(i); |
494 |
} |
495 |
|
496 |
for (int i = 0; i < nGroupsInCol_; i++) { |
497 |
rs = cgColData.position[i]; |
498 |
// scaled positions relative to the box vectors |
499 |
scaled = invHmat * rs; |
500 |
// wrap the vector back into the unit box by subtracting integer box |
501 |
// numbers |
502 |
for (int j = 0; j < 3; j++) |
503 |
scaled[j] -= roundMe(scaled[j]); |
504 |
|
505 |
// find xyz-indices of cell that cutoffGroup is in. |
506 |
whichCell.x() = nCells.x() * scaled.x(); |
507 |
whichCell.y() = nCells.y() * scaled.y(); |
508 |
whichCell.z() = nCells.z() * scaled.z(); |
509 |
|
510 |
// find single index of this cell: |
511 |
cellIndex = Vlinear(whichCell, nCells); |
512 |
// add this cutoff group to the list of groups in this cell; |
513 |
CellListCol[cellIndex].push_back(i); |
514 |
} |
515 |
#else |
516 |
for (int i = 0; i < nGroups_; i++) { |
517 |
rs = snap_->cgData.position[i]; |
518 |
// scaled positions relative to the box vectors |
519 |
scaled = invHmat * rs; |
520 |
// wrap the vector back into the unit box by subtracting integer box |
521 |
// numbers |
522 |
for (int j = 0; j < 3; j++) |
523 |
scaled[j] -= roundMe(scaled[j]); |
524 |
|
525 |
// find xyz-indices of cell that cutoffGroup is in. |
526 |
whichCell.x() = nCells.x() * scaled.x(); |
527 |
whichCell.y() = nCells.y() * scaled.y(); |
528 |
whichCell.z() = nCells.z() * scaled.z(); |
529 |
|
530 |
// find single index of this cell: |
531 |
cellIndex = Vlinear(whichCell, nCells); |
532 |
// add this cutoff group to the list of groups in this cell; |
533 |
CellList[cellIndex].push_back(i); |
534 |
} |
535 |
#endif |
536 |
|
537 |
|
538 |
|
539 |
for (int m1z = 0; m1z < nCells.z(); m1z++) { |
540 |
for (int m1y = 0; m1y < nCells.y(); m1y++) { |
541 |
for (int m1x = 0; m1x < nCells.x(); m1x++) { |
542 |
Vector3i m1v(m1x, m1y, m1z); |
543 |
int m1 = Vlinear(m1v, nCells); |
544 |
for (int offset = 0; offset < nOffset_; offset++) { |
545 |
Vector3i m2v = m1v + cellOffsets_[offset]; |
546 |
|
547 |
if (m2v.x() >= nCells.x()) { |
548 |
m2v.x() = 0; |
549 |
} else if (m2v.x() < 0) { |
550 |
m2v.x() = nCells.x() - 1; |
551 |
} |
552 |
|
553 |
if (m2v.y() >= nCells.y()) { |
554 |
m2v.y() = 0; |
555 |
} else if (m2v.y() < 0) { |
556 |
m2v.y() = nCells.y() - 1; |
557 |
} |
558 |
|
559 |
if (m2v.z() >= nCells.z()) { |
560 |
m2v.z() = 0; |
561 |
} else if (m2v.z() < 0) { |
562 |
m2v.z() = nCells.z() - 1; |
563 |
} |
564 |
|
565 |
int m2 = Vlinear (m2v, nCells); |
566 |
|
567 |
#ifdef IS_MPI |
568 |
for (vector<int>::iterator j1 = CellListRow[m1].begin(); |
569 |
j1 != CellListRow[m1].end(); ++j1) { |
570 |
for (vector<int>::iterator j2 = CellListCol[m2].begin(); |
571 |
j2 != CellListCol[m2].end(); ++j2) { |
572 |
|
573 |
// Always do this if we're in different cells or if |
574 |
// we're in the same cell and the global index of the |
575 |
// j2 cutoff group is less than the j1 cutoff group |
576 |
|
577 |
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
578 |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
579 |
snap_->wrapVector(dr); |
580 |
if (dr.lengthSquare() < rl2) { |
581 |
neighborList.push_back(make_pair((*j1), (*j2))); |
582 |
} |
583 |
} |
584 |
} |
585 |
} |
586 |
#else |
587 |
for (vector<int>::iterator j1 = CellList[m1].begin(); |
588 |
j1 != CellList[m1].end(); ++j1) { |
589 |
for (vector<int>::iterator j2 = CellList[m2].begin(); |
590 |
j2 != CellList[m2].end(); ++j2) { |
591 |
|
592 |
// Always do this if we're in different cells or if |
593 |
// we're in the same cell and the global index of the |
594 |
// j2 cutoff group is less than the j1 cutoff group |
595 |
|
596 |
if (m2 != m1 || (*j2) < (*j1)) { |
597 |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
598 |
snap_->wrapVector(dr); |
599 |
if (dr.lengthSquare() < rl2) { |
600 |
neighborList.push_back(make_pair((*j1), (*j2))); |
601 |
} |
602 |
} |
603 |
} |
604 |
} |
605 |
#endif |
606 |
} |
607 |
} |
608 |
} |
609 |
} |
610 |
return neighborList; |
611 |
} |
612 |
} //end namespace OpenMD |