| 35 | 
  | 
 *                                                                       | 
| 36 | 
  | 
 * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).              | 
| 37 | 
  | 
 * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).           | 
| 38 | 
< | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).           | 
| 39 | 
< | 
 * [4]  Vardeman & Gezelter, in progress (2009).                         | 
| 38 | 
> | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).           | 
| 39 | 
> | 
 * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | 
> | 
 * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | 
  | 
 */ | 
| 42 | 
  | 
#include "parallel/ForceMatrixDecomposition.hpp" | 
| 43 | 
  | 
#include "math/SquareMatrix3.hpp" | 
| 44 | 
  | 
#include "nonbonded/NonBondedInteraction.hpp" | 
| 45 | 
  | 
#include "brains/SnapshotManager.hpp" | 
| 46 | 
+ | 
#include "brains/PairList.hpp" | 
| 47 | 
  | 
 | 
| 48 | 
  | 
using namespace std; | 
| 49 | 
  | 
namespace OpenMD { | 
| 50 | 
  | 
 | 
| 51 | 
+ | 
  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { | 
| 52 | 
+ | 
 | 
| 53 | 
+ | 
    // Row and colum scans must visit all surrounding cells | 
| 54 | 
+ | 
    cellOffsets_.clear(); | 
| 55 | 
+ | 
    cellOffsets_.push_back( Vector3i(-1,-1,-1) ); | 
| 56 | 
+ | 
    cellOffsets_.push_back( Vector3i( 0,-1,-1) ); | 
| 57 | 
+ | 
    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                           | 
| 58 | 
+ | 
    cellOffsets_.push_back( Vector3i(-1, 0,-1) ); | 
| 59 | 
+ | 
    cellOffsets_.push_back( Vector3i( 0, 0,-1) ); | 
| 60 | 
+ | 
    cellOffsets_.push_back( Vector3i( 1, 0,-1) ); | 
| 61 | 
+ | 
    cellOffsets_.push_back( Vector3i(-1, 1,-1) ); | 
| 62 | 
+ | 
    cellOffsets_.push_back( Vector3i( 0, 1,-1) );       | 
| 63 | 
+ | 
    cellOffsets_.push_back( Vector3i( 1, 1,-1) ); | 
| 64 | 
+ | 
    cellOffsets_.push_back( Vector3i(-1,-1, 0) ); | 
| 65 | 
+ | 
    cellOffsets_.push_back( Vector3i( 0,-1, 0) ); | 
| 66 | 
+ | 
    cellOffsets_.push_back( Vector3i( 1,-1, 0) ); | 
| 67 | 
+ | 
    cellOffsets_.push_back( Vector3i(-1, 0, 0) );        | 
| 68 | 
+ | 
    cellOffsets_.push_back( Vector3i( 0, 0, 0) ); | 
| 69 | 
+ | 
    cellOffsets_.push_back( Vector3i( 1, 0, 0) ); | 
| 70 | 
+ | 
    cellOffsets_.push_back( Vector3i(-1, 1, 0) ); | 
| 71 | 
+ | 
    cellOffsets_.push_back( Vector3i( 0, 1, 0) ); | 
| 72 | 
+ | 
    cellOffsets_.push_back( Vector3i( 1, 1, 0) ); | 
| 73 | 
+ | 
    cellOffsets_.push_back( Vector3i(-1,-1, 1) ); | 
| 74 | 
+ | 
    cellOffsets_.push_back( Vector3i( 0,-1, 1) ); | 
| 75 | 
+ | 
    cellOffsets_.push_back( Vector3i( 1,-1, 1) ); | 
| 76 | 
+ | 
    cellOffsets_.push_back( Vector3i(-1, 0, 1) ); | 
| 77 | 
+ | 
    cellOffsets_.push_back( Vector3i( 0, 0, 1) ); | 
| 78 | 
+ | 
    cellOffsets_.push_back( Vector3i( 1, 0, 1) ); | 
| 79 | 
+ | 
    cellOffsets_.push_back( Vector3i(-1, 1, 1) ); | 
| 80 | 
+ | 
    cellOffsets_.push_back( Vector3i( 0, 1, 1) ); | 
| 81 | 
+ | 
    cellOffsets_.push_back( Vector3i( 1, 1, 1) ); | 
| 82 | 
+ | 
  } | 
| 83 | 
+ | 
 | 
| 84 | 
+ | 
 | 
| 85 | 
  | 
  /** | 
| 86 | 
  | 
   * distributeInitialData is essentially a copy of the older fortran  | 
| 87 | 
  | 
   * SimulationSetup | 
| 88 | 
  | 
   */ | 
| 53 | 
– | 
   | 
| 89 | 
  | 
  void ForceMatrixDecomposition::distributeInitialData() { | 
| 90 | 
  | 
    snap_ = sman_->getCurrentSnapshot(); | 
| 91 | 
  | 
    storageLayout_ = sman_->getStorageLayout(); | 
| 92 | 
+ | 
    ff_ = info_->getForceField(); | 
| 93 | 
  | 
    nLocal_ = snap_->getNumberOfAtoms(); | 
| 94 | 
< | 
    nGroups_ = snap_->getNumberOfCutoffGroups(); | 
| 94 | 
> | 
    | 
| 95 | 
> | 
    nGroups_ = info_->getNLocalCutoffGroups(); | 
| 96 | 
> | 
    // gather the information for atomtype IDs (atids): | 
| 97 | 
> | 
    idents = info_->getIdentArray(); | 
| 98 | 
> | 
    regions = info_->getRegions(); | 
| 99 | 
> | 
    AtomLocalToGlobal = info_->getGlobalAtomIndices(); | 
| 100 | 
> | 
    cgLocalToGlobal = info_->getGlobalGroupIndices(); | 
| 101 | 
> | 
    vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); | 
| 102 | 
  | 
 | 
| 103 | 
+ | 
    massFactors = info_->getMassFactors(); | 
| 104 | 
+ | 
 | 
| 105 | 
+ | 
    PairList* excludes = info_->getExcludedInteractions(); | 
| 106 | 
+ | 
    PairList* oneTwo = info_->getOneTwoInteractions(); | 
| 107 | 
+ | 
    PairList* oneThree = info_->getOneThreeInteractions(); | 
| 108 | 
+ | 
    PairList* oneFour = info_->getOneFourInteractions(); | 
| 109 | 
+ | 
     | 
| 110 | 
+ | 
    if (needVelocities_)  | 
| 111 | 
+ | 
      snap_->cgData.setStorageLayout(DataStorage::dslPosition |  | 
| 112 | 
+ | 
                                     DataStorage::dslVelocity); | 
| 113 | 
+ | 
    else  | 
| 114 | 
+ | 
      snap_->cgData.setStorageLayout(DataStorage::dslPosition); | 
| 115 | 
+ | 
     | 
| 116 | 
  | 
#ifdef IS_MPI | 
| 117 | 
  | 
  | 
| 118 | 
< | 
    AtomCommIntRow = new Communicator<Row,int>(nLocal_); | 
| 119 | 
< | 
    AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); | 
| 64 | 
< | 
    AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); | 
| 65 | 
< | 
    AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); | 
| 118 | 
> | 
    MPI_Comm row = rowComm.getComm(); | 
| 119 | 
> | 
    MPI_Comm col = colComm.getComm(); | 
| 120 | 
  | 
 | 
| 121 | 
< | 
    AtomCommIntColumn = new Communicator<Column,int>(nLocal_); | 
| 122 | 
< | 
    AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); | 
| 123 | 
< | 
    AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); | 
| 124 | 
< | 
    AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); | 
| 121 | 
> | 
    AtomPlanIntRow = new Plan<int>(row, nLocal_); | 
| 122 | 
> | 
    AtomPlanRealRow = new Plan<RealType>(row, nLocal_); | 
| 123 | 
> | 
    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); | 
| 124 | 
> | 
    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); | 
| 125 | 
> | 
    AtomPlanPotRow = new Plan<potVec>(row, nLocal_); | 
| 126 | 
  | 
 | 
| 127 | 
< | 
    cgCommIntRow = new Communicator<Row,int>(nGroups_); | 
| 128 | 
< | 
    cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); | 
| 129 | 
< | 
    cgCommIntColumn = new Communicator<Column,int>(nGroups_); | 
| 130 | 
< | 
    cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); | 
| 127 | 
> | 
    AtomPlanIntColumn = new Plan<int>(col, nLocal_); | 
| 128 | 
> | 
    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); | 
| 129 | 
> | 
    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); | 
| 130 | 
> | 
    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); | 
| 131 | 
> | 
    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); | 
| 132 | 
  | 
 | 
| 133 | 
< | 
    nAtomsInRow_ = AtomCommIntRow->getSize(); | 
| 134 | 
< | 
    nAtomsInCol_ = AtomCommIntColumn->getSize(); | 
| 135 | 
< | 
    nGroupsInRow_ = cgCommIntRow->getSize(); | 
| 136 | 
< | 
    nGroupsInCol_ = cgCommIntColumn->getSize(); | 
| 133 | 
> | 
    cgPlanIntRow = new Plan<int>(row, nGroups_); | 
| 134 | 
> | 
    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); | 
| 135 | 
> | 
    cgPlanIntColumn = new Plan<int>(col, nGroups_); | 
| 136 | 
> | 
    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); | 
| 137 | 
  | 
 | 
| 138 | 
+ | 
    nAtomsInRow_ = AtomPlanIntRow->getSize(); | 
| 139 | 
+ | 
    nAtomsInCol_ = AtomPlanIntColumn->getSize(); | 
| 140 | 
+ | 
    nGroupsInRow_ = cgPlanIntRow->getSize(); | 
| 141 | 
+ | 
    nGroupsInCol_ = cgPlanIntColumn->getSize(); | 
| 142 | 
+ | 
 | 
| 143 | 
  | 
    // Modify the data storage objects with the correct layouts and sizes: | 
| 144 | 
  | 
    atomRowData.resize(nAtomsInRow_); | 
| 145 | 
  | 
    atomRowData.setStorageLayout(storageLayout_); | 
| 148 | 
  | 
    cgRowData.resize(nGroupsInRow_); | 
| 149 | 
  | 
    cgRowData.setStorageLayout(DataStorage::dslPosition); | 
| 150 | 
  | 
    cgColData.resize(nGroupsInCol_); | 
| 151 | 
< | 
    cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 151 | 
> | 
    if (needVelocities_) | 
| 152 | 
> | 
      // we only need column velocities if we need them. | 
| 153 | 
> | 
      cgColData.setStorageLayout(DataStorage::dslPosition | | 
| 154 | 
> | 
                                 DataStorage::dslVelocity); | 
| 155 | 
> | 
    else      | 
| 156 | 
> | 
      cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 157 | 
> | 
       | 
| 158 | 
> | 
    identsRow.resize(nAtomsInRow_); | 
| 159 | 
> | 
    identsCol.resize(nAtomsInCol_); | 
| 160 | 
  | 
     | 
| 161 | 
< | 
    vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES,  | 
| 162 | 
< | 
                                      vector<RealType> (nAtomsInRow_, 0.0)); | 
| 94 | 
< | 
    vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES, | 
| 95 | 
< | 
                                      vector<RealType> (nAtomsInCol_, 0.0)); | 
| 161 | 
> | 
    AtomPlanIntRow->gather(idents, identsRow); | 
| 162 | 
> | 
    AtomPlanIntColumn->gather(idents, identsCol); | 
| 163 | 
  | 
 | 
| 164 | 
< | 
 | 
| 165 | 
< | 
    vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0); | 
| 164 | 
> | 
    regionsRow.resize(nAtomsInRow_); | 
| 165 | 
> | 
    regionsCol.resize(nAtomsInCol_); | 
| 166 | 
  | 
     | 
| 167 | 
< | 
    // gather the information for atomtype IDs (atids): | 
| 168 | 
< | 
    vector<int> identsLocal = info_->getIdentArray(); | 
| 102 | 
< | 
    identsRow.reserve(nAtomsInRow_); | 
| 103 | 
< | 
    identsCol.reserve(nAtomsInCol_); | 
| 167 | 
> | 
    AtomPlanIntRow->gather(regions, regionsRow); | 
| 168 | 
> | 
    AtomPlanIntColumn->gather(regions, regionsCol); | 
| 169 | 
  | 
     | 
| 170 | 
< | 
    AtomCommIntRow->gather(identsLocal, identsRow); | 
| 171 | 
< | 
    AtomCommIntColumn->gather(identsLocal, identsCol); | 
| 172 | 
< | 
     | 
| 108 | 
< | 
    AtomLocalToGlobal = info_->getGlobalAtomIndices(); | 
| 109 | 
< | 
    AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | 
| 110 | 
< | 
    AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | 
| 111 | 
< | 
     | 
| 112 | 
< | 
    cgLocalToGlobal = info_->getGlobalGroupIndices(); | 
| 113 | 
< | 
    cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | 
| 114 | 
< | 
    cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | 
| 170 | 
> | 
    // allocate memory for the parallel objects | 
| 171 | 
> | 
    atypesRow.resize(nAtomsInRow_); | 
| 172 | 
> | 
    atypesCol.resize(nAtomsInCol_); | 
| 173 | 
  | 
 | 
| 174 | 
< | 
    // still need: | 
| 175 | 
< | 
    // topoDist | 
| 176 | 
< | 
    // exclude | 
| 174 | 
> | 
    for (int i = 0; i < nAtomsInRow_; i++)  | 
| 175 | 
> | 
      atypesRow[i] = ff_->getAtomType(identsRow[i]); | 
| 176 | 
> | 
    for (int i = 0; i < nAtomsInCol_; i++)  | 
| 177 | 
> | 
      atypesCol[i] = ff_->getAtomType(identsCol[i]);          | 
| 178 | 
> | 
 | 
| 179 | 
> | 
    pot_row.resize(nAtomsInRow_); | 
| 180 | 
> | 
    pot_col.resize(nAtomsInCol_); | 
| 181 | 
> | 
 | 
| 182 | 
> | 
    expot_row.resize(nAtomsInRow_); | 
| 183 | 
> | 
    expot_col.resize(nAtomsInCol_); | 
| 184 | 
> | 
 | 
| 185 | 
> | 
    AtomRowToGlobal.resize(nAtomsInRow_); | 
| 186 | 
> | 
    AtomColToGlobal.resize(nAtomsInCol_); | 
| 187 | 
> | 
    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | 
| 188 | 
> | 
    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | 
| 189 | 
> | 
 | 
| 190 | 
> | 
    cgRowToGlobal.resize(nGroupsInRow_); | 
| 191 | 
> | 
    cgColToGlobal.resize(nGroupsInCol_); | 
| 192 | 
> | 
    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | 
| 193 | 
> | 
    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | 
| 194 | 
> | 
 | 
| 195 | 
> | 
    massFactorsRow.resize(nAtomsInRow_); | 
| 196 | 
> | 
    massFactorsCol.resize(nAtomsInCol_); | 
| 197 | 
> | 
    AtomPlanRealRow->gather(massFactors, massFactorsRow); | 
| 198 | 
> | 
    AtomPlanRealColumn->gather(massFactors, massFactorsCol); | 
| 199 | 
> | 
 | 
| 200 | 
> | 
    groupListRow_.clear(); | 
| 201 | 
> | 
    groupListRow_.resize(nGroupsInRow_); | 
| 202 | 
> | 
    for (int i = 0; i < nGroupsInRow_; i++) { | 
| 203 | 
> | 
      int gid = cgRowToGlobal[i]; | 
| 204 | 
> | 
      for (int j = 0; j < nAtomsInRow_; j++) { | 
| 205 | 
> | 
        int aid = AtomRowToGlobal[j]; | 
| 206 | 
> | 
        if (globalGroupMembership[aid] == gid) | 
| 207 | 
> | 
          groupListRow_[i].push_back(j); | 
| 208 | 
> | 
      }       | 
| 209 | 
> | 
    } | 
| 210 | 
> | 
 | 
| 211 | 
> | 
    groupListCol_.clear(); | 
| 212 | 
> | 
    groupListCol_.resize(nGroupsInCol_); | 
| 213 | 
> | 
    for (int i = 0; i < nGroupsInCol_; i++) { | 
| 214 | 
> | 
      int gid = cgColToGlobal[i]; | 
| 215 | 
> | 
      for (int j = 0; j < nAtomsInCol_; j++) { | 
| 216 | 
> | 
        int aid = AtomColToGlobal[j]; | 
| 217 | 
> | 
        if (globalGroupMembership[aid] == gid) | 
| 218 | 
> | 
          groupListCol_[i].push_back(j); | 
| 219 | 
> | 
      }       | 
| 220 | 
> | 
    } | 
| 221 | 
> | 
 | 
| 222 | 
> | 
    excludesForAtom.clear(); | 
| 223 | 
> | 
    excludesForAtom.resize(nAtomsInRow_); | 
| 224 | 
> | 
    toposForAtom.clear(); | 
| 225 | 
> | 
    toposForAtom.resize(nAtomsInRow_); | 
| 226 | 
> | 
    topoDist.clear(); | 
| 227 | 
> | 
    topoDist.resize(nAtomsInRow_); | 
| 228 | 
> | 
    for (int i = 0; i < nAtomsInRow_; i++) { | 
| 229 | 
> | 
      int iglob = AtomRowToGlobal[i]; | 
| 230 | 
> | 
 | 
| 231 | 
> | 
      for (int j = 0; j < nAtomsInCol_; j++) { | 
| 232 | 
> | 
        int jglob = AtomColToGlobal[j]; | 
| 233 | 
> | 
 | 
| 234 | 
> | 
        if (excludes->hasPair(iglob, jglob))  | 
| 235 | 
> | 
          excludesForAtom[i].push_back(j);        | 
| 236 | 
> | 
         | 
| 237 | 
> | 
        if (oneTwo->hasPair(iglob, jglob)) { | 
| 238 | 
> | 
          toposForAtom[i].push_back(j); | 
| 239 | 
> | 
          topoDist[i].push_back(1); | 
| 240 | 
> | 
        } else { | 
| 241 | 
> | 
          if (oneThree->hasPair(iglob, jglob)) { | 
| 242 | 
> | 
            toposForAtom[i].push_back(j); | 
| 243 | 
> | 
            topoDist[i].push_back(2); | 
| 244 | 
> | 
          } else { | 
| 245 | 
> | 
            if (oneFour->hasPair(iglob, jglob)) { | 
| 246 | 
> | 
              toposForAtom[i].push_back(j); | 
| 247 | 
> | 
              topoDist[i].push_back(3); | 
| 248 | 
> | 
            } | 
| 249 | 
> | 
          } | 
| 250 | 
> | 
        } | 
| 251 | 
> | 
      }       | 
| 252 | 
> | 
    } | 
| 253 | 
> | 
 | 
| 254 | 
> | 
#else | 
| 255 | 
> | 
    excludesForAtom.clear(); | 
| 256 | 
> | 
    excludesForAtom.resize(nLocal_); | 
| 257 | 
> | 
    toposForAtom.clear(); | 
| 258 | 
> | 
    toposForAtom.resize(nLocal_); | 
| 259 | 
> | 
    topoDist.clear(); | 
| 260 | 
> | 
    topoDist.resize(nLocal_); | 
| 261 | 
> | 
 | 
| 262 | 
> | 
    for (int i = 0; i < nLocal_; i++) { | 
| 263 | 
> | 
      int iglob = AtomLocalToGlobal[i]; | 
| 264 | 
> | 
 | 
| 265 | 
> | 
      for (int j = 0; j < nLocal_; j++) { | 
| 266 | 
> | 
        int jglob = AtomLocalToGlobal[j]; | 
| 267 | 
> | 
 | 
| 268 | 
> | 
        if (excludes->hasPair(iglob, jglob))  | 
| 269 | 
> | 
          excludesForAtom[i].push_back(j);               | 
| 270 | 
> | 
         | 
| 271 | 
> | 
        if (oneTwo->hasPair(iglob, jglob)) { | 
| 272 | 
> | 
          toposForAtom[i].push_back(j); | 
| 273 | 
> | 
          topoDist[i].push_back(1); | 
| 274 | 
> | 
        } else { | 
| 275 | 
> | 
          if (oneThree->hasPair(iglob, jglob)) { | 
| 276 | 
> | 
            toposForAtom[i].push_back(j); | 
| 277 | 
> | 
            topoDist[i].push_back(2); | 
| 278 | 
> | 
          } else { | 
| 279 | 
> | 
            if (oneFour->hasPair(iglob, jglob)) { | 
| 280 | 
> | 
              toposForAtom[i].push_back(j); | 
| 281 | 
> | 
              topoDist[i].push_back(3); | 
| 282 | 
> | 
            } | 
| 283 | 
> | 
          } | 
| 284 | 
> | 
        } | 
| 285 | 
> | 
      }       | 
| 286 | 
> | 
    } | 
| 287 | 
  | 
#endif | 
| 288 | 
+ | 
 | 
| 289 | 
+ | 
    // allocate memory for the parallel objects | 
| 290 | 
+ | 
    atypesLocal.resize(nLocal_); | 
| 291 | 
+ | 
 | 
| 292 | 
+ | 
    for (int i = 0; i < nLocal_; i++)  | 
| 293 | 
+ | 
      atypesLocal[i] = ff_->getAtomType(idents[i]); | 
| 294 | 
+ | 
 | 
| 295 | 
+ | 
    groupList_.clear(); | 
| 296 | 
+ | 
    groupList_.resize(nGroups_); | 
| 297 | 
+ | 
    for (int i = 0; i < nGroups_; i++) { | 
| 298 | 
+ | 
      int gid = cgLocalToGlobal[i]; | 
| 299 | 
+ | 
      for (int j = 0; j < nLocal_; j++) { | 
| 300 | 
+ | 
        int aid = AtomLocalToGlobal[j]; | 
| 301 | 
+ | 
        if (globalGroupMembership[aid] == gid) { | 
| 302 | 
+ | 
          groupList_[i].push_back(j); | 
| 303 | 
+ | 
        } | 
| 304 | 
+ | 
      }       | 
| 305 | 
+ | 
    }     | 
| 306 | 
  | 
  } | 
| 307 | 
  | 
     | 
| 308 | 
+ | 
  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { | 
| 309 | 
+ | 
    for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { | 
| 310 | 
+ | 
      if (toposForAtom[atom1][j] == atom2)  | 
| 311 | 
+ | 
        return topoDist[atom1][j]; | 
| 312 | 
+ | 
    }                                            | 
| 313 | 
+ | 
    return 0; | 
| 314 | 
+ | 
  } | 
| 315 | 
  | 
 | 
| 316 | 
+ | 
  void ForceMatrixDecomposition::zeroWorkArrays() { | 
| 317 | 
+ | 
    pairwisePot = 0.0; | 
| 318 | 
+ | 
    embeddingPot = 0.0; | 
| 319 | 
+ | 
    excludedPot = 0.0; | 
| 320 | 
+ | 
    excludedSelfPot = 0.0; | 
| 321 | 
  | 
 | 
| 322 | 
+ | 
#ifdef IS_MPI | 
| 323 | 
+ | 
    if (storageLayout_ & DataStorage::dslForce) { | 
| 324 | 
+ | 
      fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); | 
| 325 | 
+ | 
      fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); | 
| 326 | 
+ | 
    } | 
| 327 | 
+ | 
 | 
| 328 | 
+ | 
    if (storageLayout_ & DataStorage::dslTorque) { | 
| 329 | 
+ | 
      fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); | 
| 330 | 
+ | 
      fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); | 
| 331 | 
+ | 
    } | 
| 332 | 
+ | 
     | 
| 333 | 
+ | 
    fill(pot_row.begin(), pot_row.end(),  | 
| 334 | 
+ | 
         Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 335 | 
+ | 
 | 
| 336 | 
+ | 
    fill(pot_col.begin(), pot_col.end(),  | 
| 337 | 
+ | 
         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));    | 
| 338 | 
+ | 
 | 
| 339 | 
+ | 
    fill(expot_row.begin(), expot_row.end(),  | 
| 340 | 
+ | 
         Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 341 | 
+ | 
 | 
| 342 | 
+ | 
    fill(expot_col.begin(), expot_col.end(),  | 
| 343 | 
+ | 
         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));    | 
| 344 | 
+ | 
 | 
| 345 | 
+ | 
    if (storageLayout_ & DataStorage::dslParticlePot) {     | 
| 346 | 
+ | 
      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), | 
| 347 | 
+ | 
           0.0); | 
| 348 | 
+ | 
      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), | 
| 349 | 
+ | 
           0.0); | 
| 350 | 
+ | 
    } | 
| 351 | 
+ | 
 | 
| 352 | 
+ | 
    if (storageLayout_ & DataStorage::dslDensity) {       | 
| 353 | 
+ | 
      fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); | 
| 354 | 
+ | 
      fill(atomColData.density.begin(), atomColData.density.end(), 0.0); | 
| 355 | 
+ | 
    } | 
| 356 | 
+ | 
 | 
| 357 | 
+ | 
    if (storageLayout_ & DataStorage::dslFunctional) {    | 
| 358 | 
+ | 
      fill(atomRowData.functional.begin(), atomRowData.functional.end(), | 
| 359 | 
+ | 
           0.0); | 
| 360 | 
+ | 
      fill(atomColData.functional.begin(), atomColData.functional.end(), | 
| 361 | 
+ | 
           0.0); | 
| 362 | 
+ | 
    } | 
| 363 | 
+ | 
 | 
| 364 | 
+ | 
    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {       | 
| 365 | 
+ | 
      fill(atomRowData.functionalDerivative.begin(),  | 
| 366 | 
+ | 
           atomRowData.functionalDerivative.end(), 0.0); | 
| 367 | 
+ | 
      fill(atomColData.functionalDerivative.begin(),  | 
| 368 | 
+ | 
           atomColData.functionalDerivative.end(), 0.0); | 
| 369 | 
+ | 
    } | 
| 370 | 
+ | 
 | 
| 371 | 
+ | 
    if (storageLayout_ & DataStorage::dslSkippedCharge) {       | 
| 372 | 
+ | 
      fill(atomRowData.skippedCharge.begin(),  | 
| 373 | 
+ | 
           atomRowData.skippedCharge.end(), 0.0); | 
| 374 | 
+ | 
      fill(atomColData.skippedCharge.begin(),  | 
| 375 | 
+ | 
           atomColData.skippedCharge.end(), 0.0); | 
| 376 | 
+ | 
    } | 
| 377 | 
+ | 
 | 
| 378 | 
+ | 
    if (storageLayout_ & DataStorage::dslFlucQForce) {       | 
| 379 | 
+ | 
      fill(atomRowData.flucQFrc.begin(),  | 
| 380 | 
+ | 
           atomRowData.flucQFrc.end(), 0.0); | 
| 381 | 
+ | 
      fill(atomColData.flucQFrc.begin(),  | 
| 382 | 
+ | 
           atomColData.flucQFrc.end(), 0.0); | 
| 383 | 
+ | 
    } | 
| 384 | 
+ | 
 | 
| 385 | 
+ | 
    if (storageLayout_ & DataStorage::dslElectricField) {     | 
| 386 | 
+ | 
      fill(atomRowData.electricField.begin(),  | 
| 387 | 
+ | 
           atomRowData.electricField.end(), V3Zero); | 
| 388 | 
+ | 
      fill(atomColData.electricField.begin(),  | 
| 389 | 
+ | 
           atomColData.electricField.end(), V3Zero); | 
| 390 | 
+ | 
    } | 
| 391 | 
+ | 
 | 
| 392 | 
+ | 
    if (storageLayout_ & DataStorage::dslSitePotential) {     | 
| 393 | 
+ | 
      fill(atomRowData.sitePotential.begin(),  | 
| 394 | 
+ | 
           atomRowData.sitePotential.end(), 0.0); | 
| 395 | 
+ | 
      fill(atomColData.sitePotential.begin(),  | 
| 396 | 
+ | 
           atomColData.sitePotential.end(), 0.0); | 
| 397 | 
+ | 
    } | 
| 398 | 
+ | 
 | 
| 399 | 
+ | 
#endif | 
| 400 | 
+ | 
    // even in parallel, we need to zero out the local arrays: | 
| 401 | 
+ | 
 | 
| 402 | 
+ | 
    if (storageLayout_ & DataStorage::dslParticlePot) {       | 
| 403 | 
+ | 
      fill(snap_->atomData.particlePot.begin(),  | 
| 404 | 
+ | 
           snap_->atomData.particlePot.end(), 0.0); | 
| 405 | 
+ | 
    } | 
| 406 | 
+ | 
     | 
| 407 | 
+ | 
    if (storageLayout_ & DataStorage::dslDensity) {       | 
| 408 | 
+ | 
      fill(snap_->atomData.density.begin(),  | 
| 409 | 
+ | 
           snap_->atomData.density.end(), 0.0); | 
| 410 | 
+ | 
    } | 
| 411 | 
+ | 
 | 
| 412 | 
+ | 
    if (storageLayout_ & DataStorage::dslFunctional) { | 
| 413 | 
+ | 
      fill(snap_->atomData.functional.begin(),  | 
| 414 | 
+ | 
           snap_->atomData.functional.end(), 0.0); | 
| 415 | 
+ | 
    } | 
| 416 | 
+ | 
 | 
| 417 | 
+ | 
    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {       | 
| 418 | 
+ | 
      fill(snap_->atomData.functionalDerivative.begin(),  | 
| 419 | 
+ | 
           snap_->atomData.functionalDerivative.end(), 0.0); | 
| 420 | 
+ | 
    } | 
| 421 | 
+ | 
 | 
| 422 | 
+ | 
    if (storageLayout_ & DataStorage::dslSkippedCharge) {       | 
| 423 | 
+ | 
      fill(snap_->atomData.skippedCharge.begin(),  | 
| 424 | 
+ | 
           snap_->atomData.skippedCharge.end(), 0.0); | 
| 425 | 
+ | 
    } | 
| 426 | 
+ | 
 | 
| 427 | 
+ | 
    if (storageLayout_ & DataStorage::dslElectricField) {       | 
| 428 | 
+ | 
      fill(snap_->atomData.electricField.begin(),  | 
| 429 | 
+ | 
           snap_->atomData.electricField.end(), V3Zero); | 
| 430 | 
+ | 
    } | 
| 431 | 
+ | 
    if (storageLayout_ & DataStorage::dslSitePotential) {       | 
| 432 | 
+ | 
      fill(snap_->atomData.sitePotential.begin(),  | 
| 433 | 
+ | 
           snap_->atomData.sitePotential.end(), 0.0); | 
| 434 | 
+ | 
    } | 
| 435 | 
+ | 
  } | 
| 436 | 
+ | 
 | 
| 437 | 
+ | 
 | 
| 438 | 
  | 
  void ForceMatrixDecomposition::distributeData()  { | 
| 439 | 
+ | 
    | 
| 440 | 
+ | 
#ifdef IS_MPI | 
| 441 | 
+ | 
 | 
| 442 | 
  | 
    snap_ = sman_->getCurrentSnapshot(); | 
| 443 | 
  | 
    storageLayout_ = sman_->getStorageLayout(); | 
| 127 | 
– | 
#ifdef IS_MPI | 
| 444 | 
  | 
     | 
| 445 | 
+ | 
    bool needsCG = true; | 
| 446 | 
+ | 
    if(info_->getNCutoffGroups() != info_->getNAtoms()) | 
| 447 | 
+ | 
      needsCG = false; | 
| 448 | 
+ | 
 | 
| 449 | 
  | 
    // gather up the atomic positions | 
| 450 | 
< | 
    AtomCommVectorRow->gather(snap_->atomData.position,  | 
| 450 | 
> | 
    AtomPlanVectorRow->gather(snap_->atomData.position,  | 
| 451 | 
  | 
                              atomRowData.position); | 
| 452 | 
< | 
    AtomCommVectorColumn->gather(snap_->atomData.position,  | 
| 452 | 
> | 
    AtomPlanVectorColumn->gather(snap_->atomData.position,  | 
| 453 | 
  | 
                                 atomColData.position); | 
| 454 | 
  | 
     | 
| 455 | 
  | 
    // gather up the cutoff group positions | 
| 456 | 
< | 
    cgCommVectorRow->gather(snap_->cgData.position,  | 
| 457 | 
< | 
                            cgRowData.position); | 
| 458 | 
< | 
    cgCommVectorColumn->gather(snap_->cgData.position,  | 
| 459 | 
< | 
                               cgColData.position); | 
| 456 | 
> | 
 | 
| 457 | 
> | 
    if (needsCG) { | 
| 458 | 
> | 
      cgPlanVectorRow->gather(snap_->cgData.position,  | 
| 459 | 
> | 
                              cgRowData.position); | 
| 460 | 
> | 
       | 
| 461 | 
> | 
      cgPlanVectorColumn->gather(snap_->cgData.position,  | 
| 462 | 
> | 
                                 cgColData.position); | 
| 463 | 
> | 
    } | 
| 464 | 
> | 
 | 
| 465 | 
> | 
 | 
| 466 | 
> | 
    if (needVelocities_) { | 
| 467 | 
> | 
      // gather up the atomic velocities | 
| 468 | 
> | 
      AtomPlanVectorColumn->gather(snap_->atomData.velocity,  | 
| 469 | 
> | 
                                   atomColData.velocity); | 
| 470 | 
> | 
 | 
| 471 | 
> | 
      if (needsCG) {         | 
| 472 | 
> | 
        cgPlanVectorColumn->gather(snap_->cgData.velocity,  | 
| 473 | 
> | 
                                   cgColData.velocity); | 
| 474 | 
> | 
      } | 
| 475 | 
> | 
    } | 
| 476 | 
> | 
 | 
| 477 | 
  | 
     | 
| 478 | 
  | 
    // if needed, gather the atomic rotation matrices | 
| 479 | 
  | 
    if (storageLayout_ & DataStorage::dslAmat) { | 
| 480 | 
< | 
      AtomCommMatrixRow->gather(snap_->atomData.aMat,  | 
| 480 | 
> | 
      AtomPlanMatrixRow->gather(snap_->atomData.aMat,  | 
| 481 | 
  | 
                                atomRowData.aMat); | 
| 482 | 
< | 
      AtomCommMatrixColumn->gather(snap_->atomData.aMat,  | 
| 482 | 
> | 
      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,  | 
| 483 | 
  | 
                                   atomColData.aMat); | 
| 484 | 
  | 
    } | 
| 485 | 
< | 
     | 
| 486 | 
< | 
    // if needed, gather the atomic eletrostatic frames | 
| 487 | 
< | 
    if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 488 | 
< | 
      AtomCommMatrixRow->gather(snap_->atomData.electroFrame,  | 
| 489 | 
< | 
                                atomRowData.electroFrame); | 
| 490 | 
< | 
      AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,  | 
| 491 | 
< | 
                                   atomColData.electroFrame); | 
| 485 | 
> | 
 | 
| 486 | 
> | 
    // if needed, gather the atomic eletrostatic information | 
| 487 | 
> | 
    if (storageLayout_ & DataStorage::dslDipole) { | 
| 488 | 
> | 
      AtomPlanVectorRow->gather(snap_->atomData.dipole,  | 
| 489 | 
> | 
                                atomRowData.dipole); | 
| 490 | 
> | 
      AtomPlanVectorColumn->gather(snap_->atomData.dipole,  | 
| 491 | 
> | 
                                   atomColData.dipole); | 
| 492 | 
  | 
    } | 
| 493 | 
+ | 
 | 
| 494 | 
+ | 
    if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 495 | 
+ | 
      AtomPlanMatrixRow->gather(snap_->atomData.quadrupole,  | 
| 496 | 
+ | 
                                atomRowData.quadrupole); | 
| 497 | 
+ | 
      AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole,  | 
| 498 | 
+ | 
                                   atomColData.quadrupole); | 
| 499 | 
+ | 
    } | 
| 500 | 
+ | 
         | 
| 501 | 
+ | 
    // if needed, gather the atomic fluctuating charge values | 
| 502 | 
+ | 
    if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 503 | 
+ | 
      AtomPlanRealRow->gather(snap_->atomData.flucQPos,  | 
| 504 | 
+ | 
                              atomRowData.flucQPos); | 
| 505 | 
+ | 
      AtomPlanRealColumn->gather(snap_->atomData.flucQPos,  | 
| 506 | 
+ | 
                                 atomColData.flucQPos); | 
| 507 | 
+ | 
    } | 
| 508 | 
+ | 
 | 
| 509 | 
  | 
#endif       | 
| 510 | 
  | 
  } | 
| 511 | 
  | 
   | 
| 512 | 
+ | 
  /* collects information obtained during the pre-pair loop onto local | 
| 513 | 
+ | 
   * data structures. | 
| 514 | 
+ | 
   */ | 
| 515 | 
  | 
  void ForceMatrixDecomposition::collectIntermediateData() { | 
| 516 | 
+ | 
#ifdef IS_MPI | 
| 517 | 
+ | 
 | 
| 518 | 
  | 
    snap_ = sman_->getCurrentSnapshot(); | 
| 519 | 
  | 
    storageLayout_ = sman_->getStorageLayout(); | 
| 520 | 
< | 
#ifdef IS_MPI | 
| 163 | 
< | 
     | 
| 520 | 
> | 
 | 
| 521 | 
  | 
    if (storageLayout_ & DataStorage::dslDensity) { | 
| 522 | 
  | 
       | 
| 523 | 
< | 
      AtomCommRealRow->scatter(atomRowData.density,  | 
| 523 | 
> | 
      AtomPlanRealRow->scatter(atomRowData.density,  | 
| 524 | 
  | 
                               snap_->atomData.density); | 
| 525 | 
  | 
       | 
| 526 | 
  | 
      int n = snap_->atomData.density.size(); | 
| 527 | 
< | 
      std::vector<RealType> rho_tmp(n, 0.0); | 
| 528 | 
< | 
      AtomCommRealColumn->scatter(atomColData.density, rho_tmp); | 
| 527 | 
> | 
      vector<RealType> rho_tmp(n, 0.0); | 
| 528 | 
> | 
      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); | 
| 529 | 
  | 
      for (int i = 0; i < n; i++) | 
| 530 | 
  | 
        snap_->atomData.density[i] += rho_tmp[i]; | 
| 531 | 
  | 
    } | 
| 532 | 
+ | 
 | 
| 533 | 
+ | 
    // this isn't necessary if we don't have polarizable atoms, but | 
| 534 | 
+ | 
    // we'll leave it here for now. | 
| 535 | 
+ | 
    if (storageLayout_ & DataStorage::dslElectricField) { | 
| 536 | 
+ | 
       | 
| 537 | 
+ | 
      AtomPlanVectorRow->scatter(atomRowData.electricField,  | 
| 538 | 
+ | 
                                 snap_->atomData.electricField); | 
| 539 | 
+ | 
       | 
| 540 | 
+ | 
      int n = snap_->atomData.electricField.size(); | 
| 541 | 
+ | 
      vector<Vector3d> field_tmp(n, V3Zero); | 
| 542 | 
+ | 
      AtomPlanVectorColumn->scatter(atomColData.electricField,  | 
| 543 | 
+ | 
                                    field_tmp); | 
| 544 | 
+ | 
      for (int i = 0; i < n; i++) | 
| 545 | 
+ | 
        snap_->atomData.electricField[i] += field_tmp[i]; | 
| 546 | 
+ | 
    } | 
| 547 | 
  | 
#endif | 
| 548 | 
  | 
  } | 
| 549 | 
< | 
   | 
| 549 | 
> | 
 | 
| 550 | 
> | 
  /* | 
| 551 | 
> | 
   * redistributes information obtained during the pre-pair loop out to  | 
| 552 | 
> | 
   * row and column-indexed data structures | 
| 553 | 
> | 
   */ | 
| 554 | 
  | 
  void ForceMatrixDecomposition::distributeIntermediateData() { | 
| 555 | 
+ | 
#ifdef IS_MPI | 
| 556 | 
  | 
    snap_ = sman_->getCurrentSnapshot(); | 
| 557 | 
  | 
    storageLayout_ = sman_->getStorageLayout(); | 
| 558 | 
< | 
#ifdef IS_MPI | 
| 558 | 
> | 
 | 
| 559 | 
  | 
    if (storageLayout_ & DataStorage::dslFunctional) { | 
| 560 | 
< | 
      AtomCommRealRow->gather(snap_->atomData.functional,  | 
| 560 | 
> | 
      AtomPlanRealRow->gather(snap_->atomData.functional,  | 
| 561 | 
  | 
                              atomRowData.functional); | 
| 562 | 
< | 
      AtomCommRealColumn->gather(snap_->atomData.functional,  | 
| 562 | 
> | 
      AtomPlanRealColumn->gather(snap_->atomData.functional,  | 
| 563 | 
  | 
                                 atomColData.functional); | 
| 564 | 
  | 
    } | 
| 565 | 
  | 
     | 
| 566 | 
  | 
    if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 567 | 
< | 
      AtomCommRealRow->gather(snap_->atomData.functionalDerivative,  | 
| 567 | 
> | 
      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,  | 
| 568 | 
  | 
                              atomRowData.functionalDerivative); | 
| 569 | 
< | 
      AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,  | 
| 569 | 
> | 
      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,  | 
| 570 | 
  | 
                                 atomColData.functionalDerivative); | 
| 571 | 
  | 
    } | 
| 572 | 
  | 
#endif | 
| 574 | 
  | 
   | 
| 575 | 
  | 
   | 
| 576 | 
  | 
  void ForceMatrixDecomposition::collectData() { | 
| 577 | 
+ | 
#ifdef IS_MPI | 
| 578 | 
  | 
    snap_ = sman_->getCurrentSnapshot(); | 
| 579 | 
  | 
    storageLayout_ = sman_->getStorageLayout(); | 
| 580 | 
< | 
#ifdef IS_MPI     | 
| 580 | 
> | 
 | 
| 581 | 
  | 
    int n = snap_->atomData.force.size(); | 
| 582 | 
  | 
    vector<Vector3d> frc_tmp(n, V3Zero); | 
| 583 | 
  | 
     | 
| 584 | 
< | 
    AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); | 
| 584 | 
> | 
    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); | 
| 585 | 
  | 
    for (int i = 0; i < n; i++) { | 
| 586 | 
  | 
      snap_->atomData.force[i] += frc_tmp[i]; | 
| 587 | 
  | 
      frc_tmp[i] = 0.0; | 
| 588 | 
  | 
    } | 
| 589 | 
  | 
     | 
| 590 | 
< | 
    AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); | 
| 591 | 
< | 
    for (int i = 0; i < n; i++) | 
| 590 | 
> | 
    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); | 
| 591 | 
> | 
    for (int i = 0; i < n; i++) { | 
| 592 | 
  | 
      snap_->atomData.force[i] += frc_tmp[i]; | 
| 593 | 
< | 
     | 
| 594 | 
< | 
     | 
| 593 | 
> | 
    } | 
| 594 | 
> | 
         | 
| 595 | 
  | 
    if (storageLayout_ & DataStorage::dslTorque) { | 
| 596 | 
  | 
 | 
| 597 | 
< | 
      int nt = snap_->atomData.force.size(); | 
| 597 | 
> | 
      int nt = snap_->atomData.torque.size(); | 
| 598 | 
  | 
      vector<Vector3d> trq_tmp(nt, V3Zero); | 
| 599 | 
  | 
 | 
| 600 | 
< | 
      AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); | 
| 601 | 
< | 
      for (int i = 0; i < n; i++) { | 
| 600 | 
> | 
      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); | 
| 601 | 
> | 
      for (int i = 0; i < nt; i++) { | 
| 602 | 
  | 
        snap_->atomData.torque[i] += trq_tmp[i]; | 
| 603 | 
  | 
        trq_tmp[i] = 0.0; | 
| 604 | 
  | 
      } | 
| 605 | 
  | 
       | 
| 606 | 
< | 
      AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); | 
| 607 | 
< | 
      for (int i = 0; i < n; i++) | 
| 606 | 
> | 
      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); | 
| 607 | 
> | 
      for (int i = 0; i < nt; i++) | 
| 608 | 
  | 
        snap_->atomData.torque[i] += trq_tmp[i]; | 
| 609 | 
  | 
    } | 
| 610 | 
+ | 
 | 
| 611 | 
+ | 
    if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 612 | 
+ | 
 | 
| 613 | 
+ | 
      int ns = snap_->atomData.skippedCharge.size(); | 
| 614 | 
+ | 
      vector<RealType> skch_tmp(ns, 0.0); | 
| 615 | 
+ | 
 | 
| 616 | 
+ | 
      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); | 
| 617 | 
+ | 
      for (int i = 0; i < ns; i++) { | 
| 618 | 
+ | 
        snap_->atomData.skippedCharge[i] += skch_tmp[i]; | 
| 619 | 
+ | 
        skch_tmp[i] = 0.0; | 
| 620 | 
+ | 
      } | 
| 621 | 
+ | 
       | 
| 622 | 
+ | 
      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); | 
| 623 | 
+ | 
      for (int i = 0; i < ns; i++)  | 
| 624 | 
+ | 
        snap_->atomData.skippedCharge[i] += skch_tmp[i]; | 
| 625 | 
+ | 
             | 
| 626 | 
+ | 
    } | 
| 627 | 
  | 
     | 
| 628 | 
+ | 
    if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 629 | 
+ | 
 | 
| 630 | 
+ | 
      int nq = snap_->atomData.flucQFrc.size(); | 
| 631 | 
+ | 
      vector<RealType> fqfrc_tmp(nq, 0.0); | 
| 632 | 
+ | 
 | 
| 633 | 
+ | 
      AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); | 
| 634 | 
+ | 
      for (int i = 0; i < nq; i++) { | 
| 635 | 
+ | 
        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; | 
| 636 | 
+ | 
        fqfrc_tmp[i] = 0.0; | 
| 637 | 
+ | 
      } | 
| 638 | 
+ | 
       | 
| 639 | 
+ | 
      AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); | 
| 640 | 
+ | 
      for (int i = 0; i < nq; i++)  | 
| 641 | 
+ | 
        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; | 
| 642 | 
+ | 
             | 
| 643 | 
+ | 
    } | 
| 644 | 
+ | 
 | 
| 645 | 
+ | 
    if (storageLayout_ & DataStorage::dslElectricField) { | 
| 646 | 
+ | 
 | 
| 647 | 
+ | 
      int nef = snap_->atomData.electricField.size(); | 
| 648 | 
+ | 
      vector<Vector3d> efield_tmp(nef, V3Zero); | 
| 649 | 
+ | 
 | 
| 650 | 
+ | 
      AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp); | 
| 651 | 
+ | 
      for (int i = 0; i < nef; i++) { | 
| 652 | 
+ | 
        snap_->atomData.electricField[i] += efield_tmp[i]; | 
| 653 | 
+ | 
        efield_tmp[i] = 0.0; | 
| 654 | 
+ | 
      } | 
| 655 | 
+ | 
       | 
| 656 | 
+ | 
      AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp); | 
| 657 | 
+ | 
      for (int i = 0; i < nef; i++) | 
| 658 | 
+ | 
        snap_->atomData.electricField[i] += efield_tmp[i]; | 
| 659 | 
+ | 
    } | 
| 660 | 
+ | 
 | 
| 661 | 
+ | 
    if (storageLayout_ & DataStorage::dslSitePotential) { | 
| 662 | 
+ | 
 | 
| 663 | 
+ | 
      int nsp = snap_->atomData.sitePotential.size(); | 
| 664 | 
+ | 
      vector<RealType> sp_tmp(nsp, 0.0); | 
| 665 | 
+ | 
 | 
| 666 | 
+ | 
      AtomPlanRealRow->scatter(atomRowData.sitePotential, sp_tmp); | 
| 667 | 
+ | 
      for (int i = 0; i < nsp; i++) { | 
| 668 | 
+ | 
        snap_->atomData.sitePotential[i] += sp_tmp[i]; | 
| 669 | 
+ | 
        sp_tmp[i] = 0.0; | 
| 670 | 
+ | 
      } | 
| 671 | 
+ | 
       | 
| 672 | 
+ | 
      AtomPlanRealColumn->scatter(atomColData.sitePotential, sp_tmp); | 
| 673 | 
+ | 
      for (int i = 0; i < nsp; i++) | 
| 674 | 
+ | 
        snap_->atomData.sitePotential[i] += sp_tmp[i]; | 
| 675 | 
+ | 
    } | 
| 676 | 
+ | 
 | 
| 677 | 
  | 
    nLocal_ = snap_->getNumberOfAtoms(); | 
| 678 | 
  | 
 | 
| 679 | 
< | 
    vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES,  | 
| 680 | 
< | 
                                       vector<RealType> (nLocal_, 0.0)); | 
| 679 | 
> | 
    vector<potVec> pot_temp(nLocal_,  | 
| 680 | 
> | 
                            Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 681 | 
> | 
    vector<potVec> expot_temp(nLocal_,  | 
| 682 | 
> | 
                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 683 | 
> | 
 | 
| 684 | 
> | 
    // scatter/gather pot_row into the members of my column | 
| 685 | 
> | 
           | 
| 686 | 
> | 
    AtomPlanPotRow->scatter(pot_row, pot_temp); | 
| 687 | 
> | 
    AtomPlanPotRow->scatter(expot_row, expot_temp); | 
| 688 | 
> | 
 | 
| 689 | 
> | 
    for (int ii = 0;  ii < pot_temp.size(); ii++ )  | 
| 690 | 
> | 
      pairwisePot += pot_temp[ii]; | 
| 691 | 
> | 
 | 
| 692 | 
> | 
    for (int ii = 0;  ii < expot_temp.size(); ii++ )  | 
| 693 | 
> | 
      excludedPot += expot_temp[ii]; | 
| 694 | 
> | 
         | 
| 695 | 
> | 
    if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 696 | 
> | 
      // This is the pairwise contribution to the particle pot.  The | 
| 697 | 
> | 
      // embedding contribution is added in each of the low level | 
| 698 | 
> | 
      // non-bonded routines.  In single processor, this is done in | 
| 699 | 
> | 
      // unpackInteractionData, not in collectData. | 
| 700 | 
> | 
      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 701 | 
> | 
        for (int i = 0; i < nLocal_; i++) { | 
| 702 | 
> | 
          // factor of two is because the total potential terms are divided | 
| 703 | 
> | 
          // by 2 in parallel due to row/ column scatter        | 
| 704 | 
> | 
          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); | 
| 705 | 
> | 
        } | 
| 706 | 
> | 
      } | 
| 707 | 
> | 
    } | 
| 708 | 
> | 
 | 
| 709 | 
> | 
    fill(pot_temp.begin(), pot_temp.end(),  | 
| 710 | 
> | 
         Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 711 | 
> | 
    fill(expot_temp.begin(), expot_temp.end(),  | 
| 712 | 
> | 
         Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 713 | 
> | 
       | 
| 714 | 
> | 
    AtomPlanPotColumn->scatter(pot_col, pot_temp);     | 
| 715 | 
> | 
    AtomPlanPotColumn->scatter(expot_col, expot_temp);     | 
| 716 | 
  | 
     | 
| 717 | 
< | 
    for (int i = 0; i < N_INTERACTION_FAMILIES; i++) { | 
| 718 | 
< | 
      AtomCommRealRow->scatter(pot_row[i], pot_temp[i]); | 
| 719 | 
< | 
      for (int ii = 0;  ii < pot_temp[i].size(); ii++ ) { | 
| 720 | 
< | 
        pot_local[i] += pot_temp[i][ii]; | 
| 717 | 
> | 
    for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 718 | 
> | 
      pairwisePot += pot_temp[ii];     | 
| 719 | 
> | 
 | 
| 720 | 
> | 
    for (int ii = 0;  ii < expot_temp.size(); ii++ ) | 
| 721 | 
> | 
      excludedPot += expot_temp[ii];     | 
| 722 | 
> | 
 | 
| 723 | 
> | 
    if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 724 | 
> | 
      // This is the pairwise contribution to the particle pot.  The | 
| 725 | 
> | 
      // embedding contribution is added in each of the low level | 
| 726 | 
> | 
      // non-bonded routines.  In single processor, this is done in | 
| 727 | 
> | 
      // unpackInteractionData, not in collectData. | 
| 728 | 
> | 
      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 729 | 
> | 
        for (int i = 0; i < nLocal_; i++) { | 
| 730 | 
> | 
          // factor of two is because the total potential terms are divided | 
| 731 | 
> | 
          // by 2 in parallel due to row/ column scatter        | 
| 732 | 
> | 
          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); | 
| 733 | 
> | 
        } | 
| 734 | 
  | 
      } | 
| 735 | 
  | 
    } | 
| 736 | 
+ | 
     | 
| 737 | 
+ | 
    if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 738 | 
+ | 
      int npp = snap_->atomData.particlePot.size(); | 
| 739 | 
+ | 
      vector<RealType> ppot_temp(npp, 0.0); | 
| 740 | 
+ | 
 | 
| 741 | 
+ | 
      // This is the direct or embedding contribution to the particle | 
| 742 | 
+ | 
      // pot. | 
| 743 | 
+ | 
       | 
| 744 | 
+ | 
      AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); | 
| 745 | 
+ | 
      for (int i = 0; i < npp; i++) { | 
| 746 | 
+ | 
        snap_->atomData.particlePot[i] += ppot_temp[i]; | 
| 747 | 
+ | 
      } | 
| 748 | 
+ | 
 | 
| 749 | 
+ | 
      fill(ppot_temp.begin(), ppot_temp.end(), 0.0); | 
| 750 | 
+ | 
       | 
| 751 | 
+ | 
      AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); | 
| 752 | 
+ | 
      for (int i = 0; i < npp; i++) { | 
| 753 | 
+ | 
        snap_->atomData.particlePot[i] += ppot_temp[i]; | 
| 754 | 
+ | 
      } | 
| 755 | 
+ | 
    } | 
| 756 | 
+ | 
 | 
| 757 | 
+ | 
    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 758 | 
+ | 
      RealType ploc1 = pairwisePot[ii]; | 
| 759 | 
+ | 
      RealType ploc2 = 0.0; | 
| 760 | 
+ | 
      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 761 | 
+ | 
      pairwisePot[ii] = ploc2; | 
| 762 | 
+ | 
    } | 
| 763 | 
+ | 
 | 
| 764 | 
+ | 
    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 765 | 
+ | 
      RealType ploc1 = excludedPot[ii]; | 
| 766 | 
+ | 
      RealType ploc2 = 0.0; | 
| 767 | 
+ | 
      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 768 | 
+ | 
      excludedPot[ii] = ploc2; | 
| 769 | 
+ | 
    } | 
| 770 | 
+ | 
 | 
| 771 | 
+ | 
    // Here be dragons. | 
| 772 | 
+ | 
    MPI_Comm col = colComm.getComm(); | 
| 773 | 
+ | 
 | 
| 774 | 
+ | 
    MPI_Allreduce(MPI_IN_PLACE,  | 
| 775 | 
+ | 
                  &snap_->frameData.conductiveHeatFlux[0], 3,  | 
| 776 | 
+ | 
                  MPI_REALTYPE, MPI_SUM, col); | 
| 777 | 
+ | 
 | 
| 778 | 
+ | 
 | 
| 779 | 
  | 
#endif | 
| 780 | 
+ | 
 | 
| 781 | 
  | 
  } | 
| 782 | 
  | 
 | 
| 783 | 
+ | 
  /**  | 
| 784 | 
+ | 
   * Collects information obtained during the post-pair (and embedding | 
| 785 | 
+ | 
   * functional) loops onto local data structures. | 
| 786 | 
+ | 
   */ | 
| 787 | 
+ | 
  void ForceMatrixDecomposition::collectSelfData() { | 
| 788 | 
+ | 
 | 
| 789 | 
+ | 
#ifdef IS_MPI | 
| 790 | 
+ | 
    snap_ = sman_->getCurrentSnapshot(); | 
| 791 | 
+ | 
    storageLayout_ = sman_->getStorageLayout(); | 
| 792 | 
+ | 
 | 
| 793 | 
+ | 
    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 794 | 
+ | 
      RealType ploc1 = embeddingPot[ii]; | 
| 795 | 
+ | 
      RealType ploc2 = 0.0; | 
| 796 | 
+ | 
      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 797 | 
+ | 
      embeddingPot[ii] = ploc2; | 
| 798 | 
+ | 
    }     | 
| 799 | 
+ | 
    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 800 | 
+ | 
      RealType ploc1 = excludedSelfPot[ii]; | 
| 801 | 
+ | 
      RealType ploc2 = 0.0; | 
| 802 | 
+ | 
      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 803 | 
+ | 
      excludedSelfPot[ii] = ploc2; | 
| 804 | 
+ | 
    }     | 
| 805 | 
+ | 
#endif | 
| 806 | 
+ | 
     | 
| 807 | 
+ | 
  } | 
| 808 | 
+ | 
 | 
| 809 | 
+ | 
  int& ForceMatrixDecomposition::getNAtomsInRow() {    | 
| 810 | 
+ | 
#ifdef IS_MPI | 
| 811 | 
+ | 
    return nAtomsInRow_; | 
| 812 | 
+ | 
#else | 
| 813 | 
+ | 
    return nLocal_; | 
| 814 | 
+ | 
#endif | 
| 815 | 
+ | 
  } | 
| 816 | 
+ | 
 | 
| 817 | 
+ | 
  /** | 
| 818 | 
+ | 
   * returns the list of atoms belonging to this group.   | 
| 819 | 
+ | 
   */ | 
| 820 | 
+ | 
  vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ | 
| 821 | 
+ | 
#ifdef IS_MPI | 
| 822 | 
+ | 
    return groupListRow_[cg1]; | 
| 823 | 
+ | 
#else  | 
| 824 | 
+ | 
    return groupList_[cg1]; | 
| 825 | 
+ | 
#endif | 
| 826 | 
+ | 
  } | 
| 827 | 
+ | 
 | 
| 828 | 
+ | 
  vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ | 
| 829 | 
+ | 
#ifdef IS_MPI | 
| 830 | 
+ | 
    return groupListCol_[cg2]; | 
| 831 | 
+ | 
#else  | 
| 832 | 
+ | 
    return groupList_[cg2]; | 
| 833 | 
+ | 
#endif | 
| 834 | 
+ | 
  } | 
| 835 | 
  | 
   | 
| 836 | 
< | 
  Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ | 
| 836 | 
> | 
  inline Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, | 
| 837 | 
> | 
                                                                int cg2){ | 
| 838 | 
> | 
 | 
| 839 | 
  | 
    Vector3d d; | 
| 250 | 
– | 
     | 
| 840 | 
  | 
#ifdef IS_MPI | 
| 841 | 
  | 
    d = cgColData.position[cg2] - cgRowData.position[cg1]; | 
| 842 | 
  | 
#else | 
| 843 | 
  | 
    d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; | 
| 844 | 
  | 
#endif | 
| 845 | 
  | 
     | 
| 846 | 
< | 
    snap_->wrapVector(d); | 
| 846 | 
> | 
    if (usePeriodicBoundaryConditions_) { | 
| 847 | 
> | 
      snap_->wrapVector(d); | 
| 848 | 
> | 
    } | 
| 849 | 
  | 
    return d;     | 
| 850 | 
  | 
  } | 
| 851 | 
  | 
 | 
| 852 | 
+ | 
  Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ | 
| 853 | 
+ | 
#ifdef IS_MPI | 
| 854 | 
+ | 
    return cgColData.velocity[cg2]; | 
| 855 | 
+ | 
#else | 
| 856 | 
+ | 
    return snap_->cgData.velocity[cg2]; | 
| 857 | 
+ | 
#endif | 
| 858 | 
+ | 
  } | 
| 859 | 
  | 
 | 
| 860 | 
< | 
  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ | 
| 860 | 
> | 
  Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ | 
| 861 | 
> | 
#ifdef IS_MPI | 
| 862 | 
> | 
    return atomColData.velocity[atom2]; | 
| 863 | 
> | 
#else | 
| 864 | 
> | 
    return snap_->atomData.velocity[atom2]; | 
| 865 | 
> | 
#endif | 
| 866 | 
> | 
  } | 
| 867 | 
  | 
 | 
| 868 | 
+ | 
 | 
| 869 | 
+ | 
  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, | 
| 870 | 
+ | 
                                                             int cg1) { | 
| 871 | 
  | 
    Vector3d d; | 
| 872 | 
  | 
     | 
| 873 | 
  | 
#ifdef IS_MPI | 
| 875 | 
  | 
#else | 
| 876 | 
  | 
    d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; | 
| 877 | 
  | 
#endif | 
| 878 | 
< | 
 | 
| 879 | 
< | 
    snap_->wrapVector(d); | 
| 878 | 
> | 
    if (usePeriodicBoundaryConditions_) { | 
| 879 | 
> | 
      snap_->wrapVector(d); | 
| 880 | 
> | 
    } | 
| 881 | 
  | 
    return d;     | 
| 882 | 
  | 
  } | 
| 883 | 
  | 
   | 
| 884 | 
< | 
  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){ | 
| 884 | 
> | 
  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, | 
| 885 | 
> | 
                                                                int cg2) { | 
| 886 | 
  | 
    Vector3d d; | 
| 887 | 
  | 
     | 
| 888 | 
  | 
#ifdef IS_MPI | 
| 890 | 
  | 
#else | 
| 891 | 
  | 
    d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; | 
| 892 | 
  | 
#endif | 
| 893 | 
< | 
     | 
| 894 | 
< | 
    snap_->wrapVector(d); | 
| 893 | 
> | 
    if (usePeriodicBoundaryConditions_) { | 
| 894 | 
> | 
      snap_->wrapVector(d); | 
| 895 | 
> | 
    } | 
| 896 | 
  | 
    return d;     | 
| 897 | 
  | 
  } | 
| 898 | 
+ | 
 | 
| 899 | 
+ | 
  RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) { | 
| 900 | 
+ | 
#ifdef IS_MPI | 
| 901 | 
+ | 
    return massFactorsRow[atom1]; | 
| 902 | 
+ | 
#else | 
| 903 | 
+ | 
    return massFactors[atom1]; | 
| 904 | 
+ | 
#endif | 
| 905 | 
+ | 
  } | 
| 906 | 
+ | 
 | 
| 907 | 
+ | 
  RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) { | 
| 908 | 
+ | 
#ifdef IS_MPI | 
| 909 | 
+ | 
    return massFactorsCol[atom2]; | 
| 910 | 
+ | 
#else | 
| 911 | 
+ | 
    return massFactors[atom2]; | 
| 912 | 
+ | 
#endif | 
| 913 | 
+ | 
 | 
| 914 | 
+ | 
  } | 
| 915 | 
  | 
     | 
| 916 | 
< | 
  Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ | 
| 916 | 
> | 
  inline Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, | 
| 917 | 
> | 
                                                                 int atom2){ | 
| 918 | 
  | 
    Vector3d d; | 
| 919 | 
  | 
     | 
| 920 | 
  | 
#ifdef IS_MPI | 
| 922 | 
  | 
#else | 
| 923 | 
  | 
    d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; | 
| 924 | 
  | 
#endif | 
| 925 | 
< | 
 | 
| 926 | 
< | 
    snap_->wrapVector(d); | 
| 925 | 
> | 
    if (usePeriodicBoundaryConditions_) { | 
| 926 | 
> | 
      snap_->wrapVector(d); | 
| 927 | 
> | 
    } | 
| 928 | 
  | 
    return d;     | 
| 929 | 
  | 
  } | 
| 930 | 
  | 
 | 
| 931 | 
+ | 
  vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) { | 
| 932 | 
+ | 
    return excludesForAtom[atom1]; | 
| 933 | 
+ | 
  } | 
| 934 | 
+ | 
 | 
| 935 | 
+ | 
  /** | 
| 936 | 
+ | 
   * We need to exclude some overcounted interactions that result from | 
| 937 | 
+ | 
   * the parallel decomposition. | 
| 938 | 
+ | 
   */ | 
| 939 | 
+ | 
  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, | 
| 940 | 
+ | 
                                              int cg1, int cg2) { | 
| 941 | 
+ | 
    int unique_id_1, unique_id_2; | 
| 942 | 
+ | 
         | 
| 943 | 
+ | 
#ifdef IS_MPI | 
| 944 | 
+ | 
    // in MPI, we have to look up the unique IDs for each atom | 
| 945 | 
+ | 
    unique_id_1 = AtomRowToGlobal[atom1]; | 
| 946 | 
+ | 
    unique_id_2 = AtomColToGlobal[atom2]; | 
| 947 | 
+ | 
    // group1 = cgRowToGlobal[cg1]; | 
| 948 | 
+ | 
    // group2 = cgColToGlobal[cg2]; | 
| 949 | 
+ | 
#else | 
| 950 | 
+ | 
    unique_id_1 = AtomLocalToGlobal[atom1]; | 
| 951 | 
+ | 
    unique_id_2 = AtomLocalToGlobal[atom2]; | 
| 952 | 
+ | 
    int group1 = cgLocalToGlobal[cg1]; | 
| 953 | 
+ | 
    int group2 = cgLocalToGlobal[cg2]; | 
| 954 | 
+ | 
#endif    | 
| 955 | 
+ | 
 | 
| 956 | 
+ | 
    if (unique_id_1 == unique_id_2) return true; | 
| 957 | 
+ | 
 | 
| 958 | 
+ | 
#ifdef IS_MPI | 
| 959 | 
+ | 
    // this prevents us from doing the pair on multiple processors | 
| 960 | 
+ | 
    if (unique_id_1 < unique_id_2) { | 
| 961 | 
+ | 
      if ((unique_id_1 + unique_id_2) % 2 == 0) return true; | 
| 962 | 
+ | 
    } else { | 
| 963 | 
+ | 
      if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | 
| 964 | 
+ | 
    } | 
| 965 | 
+ | 
#endif     | 
| 966 | 
+ | 
 | 
| 967 | 
+ | 
#ifndef IS_MPI | 
| 968 | 
+ | 
    if (group1 == group2) { | 
| 969 | 
+ | 
      if (unique_id_1 < unique_id_2) return true; | 
| 970 | 
+ | 
    } | 
| 971 | 
+ | 
#endif | 
| 972 | 
+ | 
     | 
| 973 | 
+ | 
    return false; | 
| 974 | 
+ | 
  } | 
| 975 | 
+ | 
 | 
| 976 | 
+ | 
  /** | 
| 977 | 
+ | 
   * We need to handle the interactions for atoms who are involved in | 
| 978 | 
+ | 
   * the same rigid body as well as some short range interactions | 
| 979 | 
+ | 
   * (bonds, bends, torsions) differently from other interactions. | 
| 980 | 
+ | 
   * We'll still visit the pairwise routines, but with a flag that | 
| 981 | 
+ | 
   * tells those routines to exclude the pair from direct long range | 
| 982 | 
+ | 
   * interactions.  Some indirect interactions (notably reaction | 
| 983 | 
+ | 
   * field) must still be handled for these pairs. | 
| 984 | 
+ | 
   */ | 
| 985 | 
+ | 
  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { | 
| 986 | 
+ | 
 | 
| 987 | 
+ | 
    // excludesForAtom was constructed to use row/column indices in the MPI | 
| 988 | 
+ | 
    // version, and to use local IDs in the non-MPI version: | 
| 989 | 
+ | 
     | 
| 990 | 
+ | 
    for (vector<int>::iterator i = excludesForAtom[atom1].begin(); | 
| 991 | 
+ | 
         i != excludesForAtom[atom1].end(); ++i) { | 
| 992 | 
+ | 
      if ( (*i) == atom2 ) return true; | 
| 993 | 
+ | 
    } | 
| 994 | 
+ | 
 | 
| 995 | 
+ | 
    return false; | 
| 996 | 
+ | 
  } | 
| 997 | 
+ | 
 | 
| 998 | 
+ | 
 | 
| 999 | 
  | 
  void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ | 
| 1000 | 
  | 
#ifdef IS_MPI | 
| 1001 | 
  | 
    atomRowData.force[atom1] += fg; | 
| 1013 | 
  | 
  } | 
| 1014 | 
  | 
 | 
| 1015 | 
  | 
    // filling interaction blocks with pointers | 
| 1016 | 
< | 
  InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) {     | 
| 1017 | 
< | 
    InteractionData idat; | 
| 1016 | 
> | 
  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,  | 
| 1017 | 
> | 
                                                     int atom1, int atom2, | 
| 1018 | 
> | 
                                                     bool newAtom1) { | 
| 1019 | 
  | 
 | 
| 1020 | 
+ | 
    idat.excluded = excludeAtomPair(atom1, atom2); | 
| 1021 | 
+ | 
 | 
| 1022 | 
+ | 
    if (newAtom1) { | 
| 1023 | 
+ | 
       | 
| 1024 | 
  | 
#ifdef IS_MPI | 
| 1025 | 
+ | 
      idat.atid1 = identsRow[atom1]; | 
| 1026 | 
+ | 
      idat.atid2 = identsCol[atom2]; | 
| 1027 | 
+ | 
       | 
| 1028 | 
+ | 
      if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) { | 
| 1029 | 
+ | 
        idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]); | 
| 1030 | 
+ | 
      } else { | 
| 1031 | 
+ | 
        idat.sameRegion = false; | 
| 1032 | 
+ | 
      } | 
| 1033 | 
+ | 
       | 
| 1034 | 
+ | 
      if (storageLayout_ & DataStorage::dslAmat) { | 
| 1035 | 
+ | 
        idat.A1 = &(atomRowData.aMat[atom1]); | 
| 1036 | 
+ | 
        idat.A2 = &(atomColData.aMat[atom2]); | 
| 1037 | 
+ | 
      } | 
| 1038 | 
+ | 
       | 
| 1039 | 
+ | 
      if (storageLayout_ & DataStorage::dslTorque) { | 
| 1040 | 
+ | 
        idat.t1 = &(atomRowData.torque[atom1]); | 
| 1041 | 
+ | 
        idat.t2 = &(atomColData.torque[atom2]); | 
| 1042 | 
+ | 
      } | 
| 1043 | 
+ | 
       | 
| 1044 | 
+ | 
      if (storageLayout_ & DataStorage::dslDipole) { | 
| 1045 | 
+ | 
        idat.dipole1 = &(atomRowData.dipole[atom1]); | 
| 1046 | 
+ | 
        idat.dipole2 = &(atomColData.dipole[atom2]); | 
| 1047 | 
+ | 
      } | 
| 1048 | 
+ | 
       | 
| 1049 | 
+ | 
      if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 1050 | 
+ | 
        idat.quadrupole1 = &(atomRowData.quadrupole[atom1]); | 
| 1051 | 
+ | 
        idat.quadrupole2 = &(atomColData.quadrupole[atom2]); | 
| 1052 | 
+ | 
      } | 
| 1053 | 
+ | 
       | 
| 1054 | 
+ | 
      if (storageLayout_ & DataStorage::dslDensity) { | 
| 1055 | 
+ | 
        idat.rho1 = &(atomRowData.density[atom1]); | 
| 1056 | 
+ | 
        idat.rho2 = &(atomColData.density[atom2]); | 
| 1057 | 
+ | 
      } | 
| 1058 | 
+ | 
       | 
| 1059 | 
+ | 
      if (storageLayout_ & DataStorage::dslFunctional) { | 
| 1060 | 
+ | 
        idat.frho1 = &(atomRowData.functional[atom1]); | 
| 1061 | 
+ | 
        idat.frho2 = &(atomColData.functional[atom2]); | 
| 1062 | 
+ | 
      } | 
| 1063 | 
+ | 
       | 
| 1064 | 
+ | 
      if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 1065 | 
+ | 
        idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); | 
| 1066 | 
+ | 
        idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); | 
| 1067 | 
+ | 
      } | 
| 1068 | 
+ | 
       | 
| 1069 | 
+ | 
      if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 1070 | 
+ | 
        idat.particlePot1 = &(atomRowData.particlePot[atom1]); | 
| 1071 | 
+ | 
        idat.particlePot2 = &(atomColData.particlePot[atom2]); | 
| 1072 | 
+ | 
      } | 
| 1073 | 
+ | 
       | 
| 1074 | 
+ | 
      if (storageLayout_ & DataStorage::dslSkippedCharge) {               | 
| 1075 | 
+ | 
        idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); | 
| 1076 | 
+ | 
        idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); | 
| 1077 | 
+ | 
      } | 
| 1078 | 
+ | 
       | 
| 1079 | 
+ | 
      if (storageLayout_ & DataStorage::dslFlucQPosition) {               | 
| 1080 | 
+ | 
        idat.flucQ1 = &(atomRowData.flucQPos[atom1]); | 
| 1081 | 
+ | 
        idat.flucQ2 = &(atomColData.flucQPos[atom2]); | 
| 1082 | 
+ | 
      } | 
| 1083 | 
+ | 
       | 
| 1084 | 
+ | 
#else | 
| 1085 | 
+ | 
       | 
| 1086 | 
+ | 
      idat.atid1 = idents[atom1]; | 
| 1087 | 
+ | 
      idat.atid2 = idents[atom2]; | 
| 1088 | 
+ | 
       | 
| 1089 | 
+ | 
      if (regions[atom1] >= 0 && regions[atom2] >= 0) { | 
| 1090 | 
+ | 
        idat.sameRegion = (regions[atom1] == regions[atom2]); | 
| 1091 | 
+ | 
      } else { | 
| 1092 | 
+ | 
        idat.sameRegion = false; | 
| 1093 | 
+ | 
      } | 
| 1094 | 
+ | 
       | 
| 1095 | 
+ | 
      if (storageLayout_ & DataStorage::dslAmat) { | 
| 1096 | 
+ | 
        idat.A1 = &(snap_->atomData.aMat[atom1]); | 
| 1097 | 
+ | 
        idat.A2 = &(snap_->atomData.aMat[atom2]); | 
| 1098 | 
+ | 
      } | 
| 1099 | 
+ | 
       | 
| 1100 | 
+ | 
      if (storageLayout_ & DataStorage::dslTorque) { | 
| 1101 | 
+ | 
        idat.t1 = &(snap_->atomData.torque[atom1]); | 
| 1102 | 
+ | 
        idat.t2 = &(snap_->atomData.torque[atom2]); | 
| 1103 | 
+ | 
      } | 
| 1104 | 
+ | 
       | 
| 1105 | 
+ | 
      if (storageLayout_ & DataStorage::dslDipole) { | 
| 1106 | 
+ | 
        idat.dipole1 = &(snap_->atomData.dipole[atom1]); | 
| 1107 | 
+ | 
        idat.dipole2 = &(snap_->atomData.dipole[atom2]); | 
| 1108 | 
+ | 
      } | 
| 1109 | 
+ | 
       | 
| 1110 | 
+ | 
      if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 1111 | 
+ | 
        idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]); | 
| 1112 | 
+ | 
        idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]); | 
| 1113 | 
+ | 
      } | 
| 1114 | 
+ | 
       | 
| 1115 | 
+ | 
      if (storageLayout_ & DataStorage::dslDensity) {      | 
| 1116 | 
+ | 
        idat.rho1 = &(snap_->atomData.density[atom1]); | 
| 1117 | 
+ | 
        idat.rho2 = &(snap_->atomData.density[atom2]); | 
| 1118 | 
+ | 
      } | 
| 1119 | 
+ | 
       | 
| 1120 | 
+ | 
      if (storageLayout_ & DataStorage::dslFunctional) { | 
| 1121 | 
+ | 
        idat.frho1 = &(snap_->atomData.functional[atom1]); | 
| 1122 | 
+ | 
        idat.frho2 = &(snap_->atomData.functional[atom2]); | 
| 1123 | 
+ | 
      } | 
| 1124 | 
+ | 
       | 
| 1125 | 
+ | 
      if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 1126 | 
+ | 
        idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); | 
| 1127 | 
+ | 
        idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); | 
| 1128 | 
+ | 
      } | 
| 1129 | 
+ | 
       | 
| 1130 | 
+ | 
      if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 1131 | 
+ | 
        idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); | 
| 1132 | 
+ | 
        idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); | 
| 1133 | 
+ | 
      } | 
| 1134 | 
+ | 
       | 
| 1135 | 
+ | 
      if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 1136 | 
+ | 
        idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); | 
| 1137 | 
+ | 
        idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); | 
| 1138 | 
+ | 
      } | 
| 1139 | 
+ | 
       | 
| 1140 | 
+ | 
      if (storageLayout_ & DataStorage::dslFlucQPosition) {               | 
| 1141 | 
+ | 
        idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); | 
| 1142 | 
+ | 
        idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); | 
| 1143 | 
+ | 
      } | 
| 1144 | 
+ | 
#endif | 
| 1145 | 
+ | 
       | 
| 1146 | 
+ | 
    } else { | 
| 1147 | 
+ | 
      // atom1 is not new, so don't bother updating properties of that atom: | 
| 1148 | 
+ | 
#ifdef IS_MPI | 
| 1149 | 
+ | 
    idat.atid2 = identsCol[atom2]; | 
| 1150 | 
+ | 
 | 
| 1151 | 
+ | 
    if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) { | 
| 1152 | 
+ | 
      idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]); | 
| 1153 | 
+ | 
    } else { | 
| 1154 | 
+ | 
      idat.sameRegion = false; | 
| 1155 | 
+ | 
    } | 
| 1156 | 
+ | 
 | 
| 1157 | 
  | 
    if (storageLayout_ & DataStorage::dslAmat) { | 
| 324 | 
– | 
      idat.A1 = &(atomRowData.aMat[atom1]); | 
| 1158 | 
  | 
      idat.A2 = &(atomColData.aMat[atom2]); | 
| 1159 | 
  | 
    } | 
| 1160 | 
  | 
     | 
| 328 | 
– | 
    if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 329 | 
– | 
      idat.eFrame1 = &(atomRowData.electroFrame[atom1]); | 
| 330 | 
– | 
      idat.eFrame2 = &(atomColData.electroFrame[atom2]); | 
| 331 | 
– | 
    } | 
| 332 | 
– | 
 | 
| 1161 | 
  | 
    if (storageLayout_ & DataStorage::dslTorque) { | 
| 334 | 
– | 
      idat.t1 = &(atomRowData.torque[atom1]); | 
| 1162 | 
  | 
      idat.t2 = &(atomColData.torque[atom2]); | 
| 1163 | 
  | 
    } | 
| 1164 | 
  | 
 | 
| 1165 | 
+ | 
    if (storageLayout_ & DataStorage::dslDipole) { | 
| 1166 | 
+ | 
      idat.dipole2 = &(atomColData.dipole[atom2]); | 
| 1167 | 
+ | 
    } | 
| 1168 | 
+ | 
 | 
| 1169 | 
+ | 
    if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 1170 | 
+ | 
      idat.quadrupole2 = &(atomColData.quadrupole[atom2]); | 
| 1171 | 
+ | 
    } | 
| 1172 | 
+ | 
 | 
| 1173 | 
  | 
    if (storageLayout_ & DataStorage::dslDensity) { | 
| 339 | 
– | 
      idat.rho1 = &(atomRowData.density[atom1]); | 
| 1174 | 
  | 
      idat.rho2 = &(atomColData.density[atom2]); | 
| 1175 | 
  | 
    } | 
| 1176 | 
  | 
 | 
| 1177 | 
+ | 
    if (storageLayout_ & DataStorage::dslFunctional) { | 
| 1178 | 
+ | 
      idat.frho2 = &(atomColData.functional[atom2]); | 
| 1179 | 
+ | 
    } | 
| 1180 | 
+ | 
 | 
| 1181 | 
  | 
    if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 344 | 
– | 
      idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); | 
| 1182 | 
  | 
      idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); | 
| 1183 | 
  | 
    } | 
| 1184 | 
< | 
#else | 
| 1185 | 
< | 
    if (storageLayout_ & DataStorage::dslAmat) { | 
| 1186 | 
< | 
      idat.A1 = &(snap_->atomData.aMat[atom1]); | 
| 350 | 
< | 
      idat.A2 = &(snap_->atomData.aMat[atom2]); | 
| 1184 | 
> | 
 | 
| 1185 | 
> | 
    if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 1186 | 
> | 
      idat.particlePot2 = &(atomColData.particlePot[atom2]); | 
| 1187 | 
  | 
    } | 
| 1188 | 
  | 
 | 
| 1189 | 
< | 
    if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 1190 | 
< | 
      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); | 
| 355 | 
< | 
      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); | 
| 1189 | 
> | 
    if (storageLayout_ & DataStorage::dslSkippedCharge) {               | 
| 1190 | 
> | 
      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); | 
| 1191 | 
  | 
    } | 
| 1192 | 
  | 
 | 
| 1193 | 
+ | 
    if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1194 | 
+ | 
      idat.flucQ2 = &(atomColData.flucQPos[atom2]); | 
| 1195 | 
+ | 
    } | 
| 1196 | 
+ | 
 | 
| 1197 | 
+ | 
#else    | 
| 1198 | 
+ | 
    idat.atid2 = idents[atom2]; | 
| 1199 | 
+ | 
 | 
| 1200 | 
+ | 
    if (regions[atom1] >= 0 && regions[atom2] >= 0) { | 
| 1201 | 
+ | 
      idat.sameRegion = (regions[atom1] == regions[atom2]); | 
| 1202 | 
+ | 
    } else { | 
| 1203 | 
+ | 
      idat.sameRegion = false; | 
| 1204 | 
+ | 
    } | 
| 1205 | 
+ | 
 | 
| 1206 | 
+ | 
    if (storageLayout_ & DataStorage::dslAmat) { | 
| 1207 | 
+ | 
      idat.A2 = &(snap_->atomData.aMat[atom2]); | 
| 1208 | 
+ | 
    } | 
| 1209 | 
+ | 
 | 
| 1210 | 
  | 
    if (storageLayout_ & DataStorage::dslTorque) { | 
| 359 | 
– | 
      idat.t1 = &(snap_->atomData.torque[atom1]); | 
| 1211 | 
  | 
      idat.t2 = &(snap_->atomData.torque[atom2]); | 
| 1212 | 
  | 
    } | 
| 1213 | 
  | 
 | 
| 1214 | 
< | 
    if (storageLayout_ & DataStorage::dslDensity) { | 
| 1215 | 
< | 
      idat.rho1 = &(snap_->atomData.density[atom1]); | 
| 1214 | 
> | 
    if (storageLayout_ & DataStorage::dslDipole) { | 
| 1215 | 
> | 
      idat.dipole2 = &(snap_->atomData.dipole[atom2]); | 
| 1216 | 
> | 
    } | 
| 1217 | 
> | 
 | 
| 1218 | 
> | 
    if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 1219 | 
> | 
      idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]); | 
| 1220 | 
> | 
    } | 
| 1221 | 
> | 
 | 
| 1222 | 
> | 
    if (storageLayout_ & DataStorage::dslDensity) {      | 
| 1223 | 
  | 
      idat.rho2 = &(snap_->atomData.density[atom2]); | 
| 1224 | 
  | 
    } | 
| 1225 | 
  | 
 | 
| 1226 | 
+ | 
    if (storageLayout_ & DataStorage::dslFunctional) { | 
| 1227 | 
+ | 
      idat.frho2 = &(snap_->atomData.functional[atom2]); | 
| 1228 | 
+ | 
    } | 
| 1229 | 
+ | 
 | 
| 1230 | 
  | 
    if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 369 | 
– | 
      idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); | 
| 1231 | 
  | 
      idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); | 
| 1232 | 
  | 
    } | 
| 372 | 
– | 
#endif | 
| 373 | 
– | 
    return idat; | 
| 374 | 
– | 
  } | 
| 1233 | 
  | 
 | 
| 1234 | 
< | 
  InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ | 
| 1234 | 
> | 
    if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 1235 | 
> | 
      idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); | 
| 1236 | 
> | 
    } | 
| 1237 | 
  | 
 | 
| 1238 | 
< | 
    InteractionData idat; | 
| 1239 | 
< | 
#ifdef IS_MPI | 
| 380 | 
< | 
    if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 381 | 
< | 
      idat.eFrame1 = &(atomRowData.electroFrame[atom1]); | 
| 382 | 
< | 
      idat.eFrame2 = &(atomColData.electroFrame[atom2]); | 
| 1238 | 
> | 
    if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 1239 | 
> | 
      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); | 
| 1240 | 
  | 
    } | 
| 1241 | 
< | 
    if (storageLayout_ & DataStorage::dslTorque) { | 
| 1242 | 
< | 
      idat.t1 = &(atomRowData.torque[atom1]); | 
| 1243 | 
< | 
      idat.t2 = &(atomColData.torque[atom2]); | 
| 1241 | 
> | 
 | 
| 1242 | 
> | 
    if (storageLayout_ & DataStorage::dslFlucQPosition) {               | 
| 1243 | 
> | 
      idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); | 
| 1244 | 
  | 
    } | 
| 1245 | 
< | 
    if (storageLayout_ & DataStorage::dslForce) { | 
| 1246 | 
< | 
      idat.t1 = &(atomRowData.force[atom1]); | 
| 390 | 
< | 
      idat.t2 = &(atomColData.force[atom2]); | 
| 1245 | 
> | 
 | 
| 1246 | 
> | 
#endif | 
| 1247 | 
  | 
    } | 
| 1248 | 
< | 
#else | 
| 1249 | 
< | 
    if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 1250 | 
< | 
      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); | 
| 1251 | 
< | 
      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); | 
| 1248 | 
> | 
  } | 
| 1249 | 
> | 
   | 
| 1250 | 
> | 
  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, | 
| 1251 | 
> | 
                                                       int atom1, int atom2) {   | 
| 1252 | 
> | 
#ifdef IS_MPI | 
| 1253 | 
> | 
    pot_row[atom1] += RealType(0.5) *  *(idat.pot); | 
| 1254 | 
> | 
    pot_col[atom2] += RealType(0.5) *  *(idat.pot); | 
| 1255 | 
> | 
    expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot); | 
| 1256 | 
> | 
    expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot); | 
| 1257 | 
> | 
 | 
| 1258 | 
> | 
    atomRowData.force[atom1] += *(idat.f1); | 
| 1259 | 
> | 
    atomColData.force[atom2] -= *(idat.f1); | 
| 1260 | 
> | 
 | 
| 1261 | 
> | 
    if (storageLayout_ & DataStorage::dslFlucQForce) {               | 
| 1262 | 
> | 
      atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); | 
| 1263 | 
> | 
      atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); | 
| 1264 | 
  | 
    } | 
| 1265 | 
< | 
    if (storageLayout_ & DataStorage::dslTorque) { | 
| 1266 | 
< | 
      idat.t1 = &(snap_->atomData.torque[atom1]); | 
| 1267 | 
< | 
      idat.t2 = &(snap_->atomData.torque[atom2]); | 
| 1265 | 
> | 
 | 
| 1266 | 
> | 
    if (storageLayout_ & DataStorage::dslElectricField) {               | 
| 1267 | 
> | 
      atomRowData.electricField[atom1] += *(idat.eField1); | 
| 1268 | 
> | 
      atomColData.electricField[atom2] += *(idat.eField2); | 
| 1269 | 
  | 
    } | 
| 1270 | 
< | 
    if (storageLayout_ & DataStorage::dslForce) { | 
| 1271 | 
< | 
      idat.t1 = &(snap_->atomData.force[atom1]); | 
| 1272 | 
< | 
      idat.t2 = &(snap_->atomData.force[atom2]); | 
| 1270 | 
> | 
 | 
| 1271 | 
> | 
    if (storageLayout_ & DataStorage::dslSitePotential) {               | 
| 1272 | 
> | 
      atomRowData.sitePotential[atom1] += *(idat.sPot1); | 
| 1273 | 
> | 
      atomColData.sitePotential[atom2] += *(idat.sPot2); | 
| 1274 | 
  | 
    } | 
| 405 | 
– | 
#endif | 
| 406 | 
– | 
     | 
| 407 | 
– | 
  } | 
| 1275 | 
  | 
 | 
| 1276 | 
< | 
  SelfData ForceMatrixDecomposition::fillSelfData(int atom1) { | 
| 1277 | 
< | 
    SelfData sdat; | 
| 1278 | 
< | 
    // Still Missing atype, skippedCharge, potVec pot, | 
| 1279 | 
< | 
    if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 1280 | 
< | 
      sdat.eFrame = &(snap_->atomData.electroFrame[atom1]); | 
| 1276 | 
> | 
#else | 
| 1277 | 
> | 
    pairwisePot += *(idat.pot); | 
| 1278 | 
> | 
    excludedPot += *(idat.excludedPot); | 
| 1279 | 
> | 
 | 
| 1280 | 
> | 
    snap_->atomData.force[atom1] += *(idat.f1); | 
| 1281 | 
> | 
    snap_->atomData.force[atom2] -= *(idat.f1); | 
| 1282 | 
> | 
 | 
| 1283 | 
> | 
    if (idat.doParticlePot) { | 
| 1284 | 
> | 
      // This is the pairwise contribution to the particle pot.  The | 
| 1285 | 
> | 
      // embedding contribution is added in each of the low level | 
| 1286 | 
> | 
      // non-bonded routines.  In parallel, this calculation is done | 
| 1287 | 
> | 
      // in collectData, not in unpackInteractionData. | 
| 1288 | 
> | 
      snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); | 
| 1289 | 
> | 
      snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); | 
| 1290 | 
  | 
    } | 
| 1291 | 
  | 
     | 
| 1292 | 
< | 
    if (storageLayout_ & DataStorage::dslTorque) { | 
| 1293 | 
< | 
      sdat.t = &(snap_->atomData.torque[atom1]); | 
| 1292 | 
> | 
    if (storageLayout_ & DataStorage::dslFlucQForce) {               | 
| 1293 | 
> | 
      snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); | 
| 1294 | 
> | 
      snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); | 
| 1295 | 
  | 
    } | 
| 1296 | 
< | 
     | 
| 1297 | 
< | 
    if (storageLayout_ & DataStorage::dslDensity) { | 
| 1298 | 
< | 
      sdat.rho = &(snap_->atomData.density[atom1]); | 
| 1296 | 
> | 
 | 
| 1297 | 
> | 
    if (storageLayout_ & DataStorage::dslElectricField) {               | 
| 1298 | 
> | 
      snap_->atomData.electricField[atom1] += *(idat.eField1); | 
| 1299 | 
> | 
      snap_->atomData.electricField[atom2] += *(idat.eField2); | 
| 1300 | 
  | 
    } | 
| 1301 | 
< | 
     | 
| 1302 | 
< | 
    if (storageLayout_ & DataStorage::dslFunctional) { | 
| 1303 | 
< | 
      sdat.frho = &(snap_->atomData.functional[atom1]); | 
| 1301 | 
> | 
 | 
| 1302 | 
> | 
    if (storageLayout_ & DataStorage::dslSitePotential) {               | 
| 1303 | 
> | 
      snap_->atomData.sitePotential[atom1] += *(idat.sPot1); | 
| 1304 | 
> | 
      snap_->atomData.sitePotential[atom2] += *(idat.sPot2); | 
| 1305 | 
  | 
    } | 
| 427 | 
– | 
     | 
| 428 | 
– | 
    if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 429 | 
– | 
      sdat.dfrhodrho = &(snap_->atomData.functionalDerivative[atom1]); | 
| 430 | 
– | 
    } | 
| 1306 | 
  | 
 | 
| 1307 | 
< | 
    return sdat;     | 
| 1307 | 
> | 
#endif | 
| 1308 | 
> | 
     | 
| 1309 | 
  | 
  } | 
| 1310 | 
  | 
 | 
| 435 | 
– | 
 | 
| 436 | 
– | 
 | 
| 1311 | 
  | 
  /* | 
| 1312 | 
  | 
   * buildNeighborList | 
| 1313 | 
  | 
   * | 
| 1314 | 
< | 
   * first element of pair is row-indexed CutoffGroup | 
| 1315 | 
< | 
   * second element of pair is column-indexed CutoffGroup | 
| 1314 | 
> | 
   * Constructs the Verlet neighbor list for a force-matrix | 
| 1315 | 
> | 
   * decomposition.  In this case, each processor is responsible for | 
| 1316 | 
> | 
   * row-site interactions with column-sites.  | 
| 1317 | 
> | 
   * | 
| 1318 | 
> | 
   * neighborList is returned as a packed array of neighboring | 
| 1319 | 
> | 
   * column-ordered CutoffGroups.  The starting position in | 
| 1320 | 
> | 
   * neighborList for each row-ordered CutoffGroup is given by the | 
| 1321 | 
> | 
   * returned vector point. | 
| 1322 | 
  | 
   */ | 
| 1323 | 
< | 
  vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { | 
| 1324 | 
< | 
       | 
| 1325 | 
< | 
    vector<pair<int, int> > neighborList; | 
| 1326 | 
< | 
#ifdef IS_MPI | 
| 1327 | 
< | 
    CellListRow.clear(); | 
| 1328 | 
< | 
    CellListCol.clear(); | 
| 1329 | 
< | 
#else | 
| 450 | 
< | 
    CellList.clear(); | 
| 451 | 
< | 
#endif | 
| 1323 | 
> | 
  void ForceMatrixDecomposition::buildNeighborList(vector<int>& neighborList, | 
| 1324 | 
> | 
                                                   vector<int>& point) { | 
| 1325 | 
> | 
    neighborList.clear(); | 
| 1326 | 
> | 
    point.clear(); | 
| 1327 | 
> | 
    int len = 0; | 
| 1328 | 
> | 
     | 
| 1329 | 
> | 
    bool doAllPairs = false; | 
| 1330 | 
  | 
 | 
| 453 | 
– | 
    // dangerous to not do error checking. | 
| 454 | 
– | 
    RealType skinThickness_ = info_->getSimParams()->getSkinThickness(); | 
| 455 | 
– | 
    RealType rCut_; | 
| 456 | 
– | 
  | 
| 457 | 
– | 
    RealType rList_ = (rCut_ + skinThickness_); | 
| 458 | 
– | 
    RealType rl2 = rList_ * rList_; | 
| 1331 | 
  | 
    Snapshot* snap_ = sman_->getCurrentSnapshot(); | 
| 1332 | 
< | 
    Mat3x3d Hmat = snap_->getHmat(); | 
| 1333 | 
< | 
    Vector3d Hx = Hmat.getColumn(0); | 
| 462 | 
< | 
    Vector3d Hy = Hmat.getColumn(1); | 
| 463 | 
< | 
    Vector3d Hz = Hmat.getColumn(2); | 
| 464 | 
< | 
    Vector3i nCells; | 
| 1332 | 
> | 
    Mat3x3d box; | 
| 1333 | 
> | 
    Mat3x3d invBox; | 
| 1334 | 
  | 
 | 
| 466 | 
– | 
    nCells.x() = (int) ( Hx.length() )/ rList_; | 
| 467 | 
– | 
    nCells.y() = (int) ( Hy.length() )/ rList_; | 
| 468 | 
– | 
    nCells.z() = (int) ( Hz.length() )/ rList_; | 
| 469 | 
– | 
 | 
| 470 | 
– | 
    Mat3x3d invHmat = snap_->getInvHmat(); | 
| 1335 | 
  | 
    Vector3d rs, scaled, dr; | 
| 1336 | 
  | 
    Vector3i whichCell; | 
| 1337 | 
  | 
    int cellIndex; | 
| 1338 | 
  | 
 | 
| 1339 | 
  | 
#ifdef IS_MPI | 
| 1340 | 
< | 
    for (int i = 0; i < nGroupsInRow_; i++) { | 
| 1341 | 
< | 
      rs = cgRowData.position[i]; | 
| 1342 | 
< | 
      // scaled positions relative to the box vectors | 
| 1343 | 
< | 
      scaled = invHmat * rs; | 
| 1344 | 
< | 
      // wrap the vector back into the unit box by subtracting integer box  | 
| 1345 | 
< | 
      // numbers | 
| 1346 | 
< | 
      for (int j = 0; j < 3; j++)  | 
| 1347 | 
< | 
        scaled[j] -= roundMe(scaled[j]); | 
| 1348 | 
< | 
      | 
| 1349 | 
< | 
      // find xyz-indices of cell that cutoffGroup is in. | 
| 1350 | 
< | 
      whichCell.x() = nCells.x() * scaled.x(); | 
| 1351 | 
< | 
      whichCell.y() = nCells.y() * scaled.y(); | 
| 1352 | 
< | 
      whichCell.z() = nCells.z() * scaled.z(); | 
| 1353 | 
< | 
 | 
| 490 | 
< | 
      // find single index of this cell: | 
| 491 | 
< | 
      cellIndex = Vlinear(whichCell, nCells); | 
| 492 | 
< | 
      // add this cutoff group to the list of groups in this cell; | 
| 493 | 
< | 
      CellListRow[cellIndex].push_back(i); | 
| 1340 | 
> | 
    cellListRow_.clear(); | 
| 1341 | 
> | 
    cellListCol_.clear(); | 
| 1342 | 
> | 
    point.resize(nGroupsInRow_+1); | 
| 1343 | 
> | 
#else | 
| 1344 | 
> | 
    cellList_.clear(); | 
| 1345 | 
> | 
    point.resize(nGroups_+1); | 
| 1346 | 
> | 
#endif | 
| 1347 | 
> | 
     | 
| 1348 | 
> | 
    if (!usePeriodicBoundaryConditions_) { | 
| 1349 | 
> | 
      box = snap_->getBoundingBox(); | 
| 1350 | 
> | 
      invBox = snap_->getInvBoundingBox(); | 
| 1351 | 
> | 
    } else { | 
| 1352 | 
> | 
      box = snap_->getHmat(); | 
| 1353 | 
> | 
      invBox = snap_->getInvHmat(); | 
| 1354 | 
  | 
    } | 
| 1355 | 
+ | 
     | 
| 1356 | 
+ | 
    Vector3d A = box.getColumn(0); | 
| 1357 | 
+ | 
    Vector3d B = box.getColumn(1); | 
| 1358 | 
+ | 
    Vector3d C = box.getColumn(2); | 
| 1359 | 
  | 
 | 
| 1360 | 
< | 
    for (int i = 0; i < nGroupsInCol_; i++) { | 
| 1361 | 
< | 
      rs = cgColData.position[i]; | 
| 1362 | 
< | 
      // scaled positions relative to the box vectors | 
| 1363 | 
< | 
      scaled = invHmat * rs; | 
| 500 | 
< | 
      // wrap the vector back into the unit box by subtracting integer box  | 
| 501 | 
< | 
      // numbers | 
| 502 | 
< | 
      for (int j = 0; j < 3; j++)  | 
| 503 | 
< | 
        scaled[j] -= roundMe(scaled[j]); | 
| 1360 | 
> | 
    // Required for triclinic cells | 
| 1361 | 
> | 
    Vector3d AxB = cross(A, B); | 
| 1362 | 
> | 
    Vector3d BxC = cross(B, C); | 
| 1363 | 
> | 
    Vector3d CxA = cross(C, A); | 
| 1364 | 
  | 
 | 
| 1365 | 
< | 
      // find xyz-indices of cell that cutoffGroup is in. | 
| 1366 | 
< | 
      whichCell.x() = nCells.x() * scaled.x(); | 
| 1367 | 
< | 
      whichCell.y() = nCells.y() * scaled.y(); | 
| 1368 | 
< | 
      whichCell.z() = nCells.z() * scaled.z(); | 
| 1365 | 
> | 
    // unit vectors perpendicular to the faces of the triclinic cell: | 
| 1366 | 
> | 
    AxB.normalize(); | 
| 1367 | 
> | 
    BxC.normalize(); | 
| 1368 | 
> | 
    CxA.normalize(); | 
| 1369 | 
  | 
 | 
| 1370 | 
< | 
      // find single index of this cell: | 
| 1371 | 
< | 
      cellIndex = Vlinear(whichCell, nCells); | 
| 1372 | 
< | 
      // add this cutoff group to the list of groups in this cell; | 
| 1373 | 
< | 
      CellListCol[cellIndex].push_back(i); | 
| 1374 | 
< | 
    } | 
| 1370 | 
> | 
    // A set of perpendicular lengths in triclinic cells: | 
| 1371 | 
> | 
    RealType Wa = abs(dot(A, BxC)); | 
| 1372 | 
> | 
    RealType Wb = abs(dot(B, CxA)); | 
| 1373 | 
> | 
    RealType Wc = abs(dot(C, AxB)); | 
| 1374 | 
> | 
     | 
| 1375 | 
> | 
    nCells_.x() = int( Wa / rList_ ); | 
| 1376 | 
> | 
    nCells_.y() = int( Wb / rList_ ); | 
| 1377 | 
> | 
    nCells_.z() = int( Wc / rList_ ); | 
| 1378 | 
> | 
     | 
| 1379 | 
> | 
    // handle small boxes where the cell offsets can end up repeating cells | 
| 1380 | 
> | 
    if (nCells_.x() < 3) doAllPairs = true; | 
| 1381 | 
> | 
    if (nCells_.y() < 3) doAllPairs = true; | 
| 1382 | 
> | 
    if (nCells_.z() < 3) doAllPairs = true; | 
| 1383 | 
> | 
     | 
| 1384 | 
> | 
    int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); | 
| 1385 | 
> | 
     | 
| 1386 | 
> | 
#ifdef IS_MPI | 
| 1387 | 
> | 
    cellListRow_.resize(nCtot); | 
| 1388 | 
> | 
    cellListCol_.resize(nCtot); | 
| 1389 | 
  | 
#else | 
| 1390 | 
< | 
    for (int i = 0; i < nGroups_; i++) { | 
| 1391 | 
< | 
      rs = snap_->cgData.position[i]; | 
| 1392 | 
< | 
      // scaled positions relative to the box vectors | 
| 1393 | 
< | 
      scaled = invHmat * rs; | 
| 1394 | 
< | 
      // wrap the vector back into the unit box by subtracting integer box  | 
| 1395 | 
< | 
      // numbers | 
| 1396 | 
< | 
      for (int j = 0; j < 3; j++)  | 
| 1397 | 
< | 
        scaled[j] -= roundMe(scaled[j]); | 
| 1390 | 
> | 
    cellList_.resize(nCtot); | 
| 1391 | 
> | 
#endif | 
| 1392 | 
> | 
     | 
| 1393 | 
> | 
    if (!doAllPairs) { | 
| 1394 | 
> | 
       | 
| 1395 | 
> | 
#ifdef IS_MPI | 
| 1396 | 
> | 
       | 
| 1397 | 
> | 
      for (int i = 0; i < nGroupsInRow_; i++) { | 
| 1398 | 
> | 
        rs = cgRowData.position[i]; | 
| 1399 | 
> | 
         | 
| 1400 | 
> | 
        // scaled positions relative to the box vectors | 
| 1401 | 
> | 
        scaled = invBox * rs; | 
| 1402 | 
> | 
         | 
| 1403 | 
> | 
        // wrap the vector back into the unit box by subtracting integer box  | 
| 1404 | 
> | 
        // numbers | 
| 1405 | 
> | 
        for (int j = 0; j < 3; j++) { | 
| 1406 | 
> | 
          scaled[j] -= roundMe(scaled[j]); | 
| 1407 | 
> | 
          scaled[j] += 0.5; | 
| 1408 | 
> | 
          // Handle the special case when an object is exactly on the | 
| 1409 | 
> | 
          // boundary (a scaled coordinate of 1.0 is the same as | 
| 1410 | 
> | 
          // scaled coordinate of 0.0) | 
| 1411 | 
> | 
          if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1412 | 
> | 
        } | 
| 1413 | 
> | 
         | 
| 1414 | 
> | 
        // find xyz-indices of cell that cutoffGroup is in. | 
| 1415 | 
> | 
        whichCell.x() = nCells_.x() * scaled.x(); | 
| 1416 | 
> | 
        whichCell.y() = nCells_.y() * scaled.y(); | 
| 1417 | 
> | 
        whichCell.z() = nCells_.z() * scaled.z(); | 
| 1418 | 
> | 
         | 
| 1419 | 
> | 
        // find single index of this cell: | 
| 1420 | 
> | 
        cellIndex = Vlinear(whichCell, nCells_); | 
| 1421 | 
> | 
         | 
| 1422 | 
> | 
        // add this cutoff group to the list of groups in this cell; | 
| 1423 | 
> | 
        cellListRow_[cellIndex].push_back(i); | 
| 1424 | 
> | 
      } | 
| 1425 | 
> | 
      for (int i = 0; i < nGroupsInCol_; i++) { | 
| 1426 | 
> | 
        rs = cgColData.position[i]; | 
| 1427 | 
> | 
         | 
| 1428 | 
> | 
        // scaled positions relative to the box vectors | 
| 1429 | 
> | 
        scaled = invBox * rs; | 
| 1430 | 
> | 
         | 
| 1431 | 
> | 
        // wrap the vector back into the unit box by subtracting integer box  | 
| 1432 | 
> | 
        // numbers | 
| 1433 | 
> | 
        for (int j = 0; j < 3; j++) { | 
| 1434 | 
> | 
          scaled[j] -= roundMe(scaled[j]); | 
| 1435 | 
> | 
          scaled[j] += 0.5; | 
| 1436 | 
> | 
          // Handle the special case when an object is exactly on the | 
| 1437 | 
> | 
          // boundary (a scaled coordinate of 1.0 is the same as | 
| 1438 | 
> | 
          // scaled coordinate of 0.0) | 
| 1439 | 
> | 
          if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1440 | 
> | 
        } | 
| 1441 | 
> | 
         | 
| 1442 | 
> | 
        // find xyz-indices of cell that cutoffGroup is in. | 
| 1443 | 
> | 
        whichCell.x() = nCells_.x() * scaled.x(); | 
| 1444 | 
> | 
        whichCell.y() = nCells_.y() * scaled.y(); | 
| 1445 | 
> | 
        whichCell.z() = nCells_.z() * scaled.z(); | 
| 1446 | 
> | 
         | 
| 1447 | 
> | 
        // find single index of this cell: | 
| 1448 | 
> | 
        cellIndex = Vlinear(whichCell, nCells_); | 
| 1449 | 
> | 
         | 
| 1450 | 
> | 
        // add this cutoff group to the list of groups in this cell; | 
| 1451 | 
> | 
        cellListCol_[cellIndex].push_back(i); | 
| 1452 | 
> | 
      } | 
| 1453 | 
> | 
             | 
| 1454 | 
> | 
#else | 
| 1455 | 
> | 
      for (int i = 0; i < nGroups_; i++) { | 
| 1456 | 
> | 
        rs = snap_->cgData.position[i]; | 
| 1457 | 
> | 
         | 
| 1458 | 
> | 
        // scaled positions relative to the box vectors | 
| 1459 | 
> | 
        scaled = invBox * rs; | 
| 1460 | 
> | 
         | 
| 1461 | 
> | 
        // wrap the vector back into the unit box by subtracting integer box  | 
| 1462 | 
> | 
        // numbers | 
| 1463 | 
> | 
        for (int j = 0; j < 3; j++) { | 
| 1464 | 
> | 
          scaled[j] -= roundMe(scaled[j]); | 
| 1465 | 
> | 
          scaled[j] += 0.5; | 
| 1466 | 
> | 
          // Handle the special case when an object is exactly on the | 
| 1467 | 
> | 
          // boundary (a scaled coordinate of 1.0 is the same as | 
| 1468 | 
> | 
          // scaled coordinate of 0.0) | 
| 1469 | 
> | 
          if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1470 | 
> | 
        } | 
| 1471 | 
> | 
         | 
| 1472 | 
> | 
        // find xyz-indices of cell that cutoffGroup is in. | 
| 1473 | 
> | 
        whichCell.x() = int(nCells_.x() * scaled.x()); | 
| 1474 | 
> | 
        whichCell.y() = int(nCells_.y() * scaled.y()); | 
| 1475 | 
> | 
        whichCell.z() = int(nCells_.z() * scaled.z()); | 
| 1476 | 
> | 
         | 
| 1477 | 
> | 
        // find single index of this cell: | 
| 1478 | 
> | 
        cellIndex = Vlinear(whichCell, nCells_); | 
| 1479 | 
> | 
         | 
| 1480 | 
> | 
        // add this cutoff group to the list of groups in this cell; | 
| 1481 | 
> | 
        cellList_[cellIndex].push_back(i); | 
| 1482 | 
> | 
      } | 
| 1483 | 
  | 
 | 
| 525 | 
– | 
      // find xyz-indices of cell that cutoffGroup is in. | 
| 526 | 
– | 
      whichCell.x() = nCells.x() * scaled.x(); | 
| 527 | 
– | 
      whichCell.y() = nCells.y() * scaled.y(); | 
| 528 | 
– | 
      whichCell.z() = nCells.z() * scaled.z(); | 
| 529 | 
– | 
 | 
| 530 | 
– | 
      // find single index of this cell: | 
| 531 | 
– | 
      cellIndex = Vlinear(whichCell, nCells); | 
| 532 | 
– | 
      // add this cutoff group to the list of groups in this cell; | 
| 533 | 
– | 
      CellList[cellIndex].push_back(i); | 
| 534 | 
– | 
    } | 
| 1484 | 
  | 
#endif | 
| 1485 | 
  | 
 | 
| 1486 | 
+ | 
#ifdef IS_MPI | 
| 1487 | 
+ | 
      for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | 
| 1488 | 
+ | 
        rs = cgRowData.position[j1]; | 
| 1489 | 
+ | 
#else | 
| 1490 | 
  | 
 | 
| 1491 | 
+ | 
      for (int j1 = 0; j1 < nGroups_; j1++) { | 
| 1492 | 
+ | 
        rs = snap_->cgData.position[j1]; | 
| 1493 | 
+ | 
#endif | 
| 1494 | 
+ | 
        point[j1] = len; | 
| 1495 | 
+ | 
         | 
| 1496 | 
+ | 
        // scaled positions relative to the box vectors | 
| 1497 | 
+ | 
        scaled = invBox * rs; | 
| 1498 | 
+ | 
         | 
| 1499 | 
+ | 
        // wrap the vector back into the unit box by subtracting integer box  | 
| 1500 | 
+ | 
        // numbers | 
| 1501 | 
+ | 
        for (int j = 0; j < 3; j++) { | 
| 1502 | 
+ | 
          scaled[j] -= roundMe(scaled[j]); | 
| 1503 | 
+ | 
          scaled[j] += 0.5; | 
| 1504 | 
+ | 
          // Handle the special case when an object is exactly on the | 
| 1505 | 
+ | 
          // boundary (a scaled coordinate of 1.0 is the same as | 
| 1506 | 
+ | 
          // scaled coordinate of 0.0) | 
| 1507 | 
+ | 
          if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1508 | 
+ | 
        } | 
| 1509 | 
+ | 
         | 
| 1510 | 
+ | 
        // find xyz-indices of cell that cutoffGroup is in. | 
| 1511 | 
+ | 
        whichCell.x() = nCells_.x() * scaled.x(); | 
| 1512 | 
+ | 
        whichCell.y() = nCells_.y() * scaled.y(); | 
| 1513 | 
+ | 
        whichCell.z() = nCells_.z() * scaled.z(); | 
| 1514 | 
+ | 
         | 
| 1515 | 
+ | 
        // find single index of this cell: | 
| 1516 | 
+ | 
        int m1 = Vlinear(whichCell, nCells_); | 
| 1517 | 
  | 
 | 
| 1518 | 
< | 
    for (int m1z = 0; m1z < nCells.z(); m1z++) { | 
| 1519 | 
< | 
      for (int m1y = 0; m1y < nCells.y(); m1y++) { | 
| 1520 | 
< | 
        for (int m1x = 0; m1x < nCells.x(); m1x++) { | 
| 1521 | 
< | 
          Vector3i m1v(m1x, m1y, m1z); | 
| 543 | 
< | 
          int m1 = Vlinear(m1v, nCells); | 
| 544 | 
< | 
          for (int offset = 0; offset < nOffset_; offset++) { | 
| 545 | 
< | 
            Vector3i m2v = m1v + cellOffsets_[offset]; | 
| 1518 | 
> | 
        for (vector<Vector3i>::iterator os = cellOffsets_.begin(); | 
| 1519 | 
> | 
             os != cellOffsets_.end(); ++os) { | 
| 1520 | 
> | 
               | 
| 1521 | 
> | 
          Vector3i m2v = whichCell + (*os); | 
| 1522 | 
  | 
 | 
| 1523 | 
< | 
            if (m2v.x() >= nCells.x()) { | 
| 1524 | 
< | 
              m2v.x() = 0;            | 
| 1525 | 
< | 
            } else if (m2v.x() < 0) { | 
| 1526 | 
< | 
              m2v.x() = nCells.x() - 1;  | 
| 1527 | 
< | 
            } | 
| 1528 | 
< | 
 | 
| 1529 | 
< | 
            if (m2v.y() >= nCells.y()) { | 
| 1530 | 
< | 
              m2v.y() = 0;            | 
| 1531 | 
< | 
            } else if (m2v.y() < 0) { | 
| 1532 | 
< | 
              m2v.y() = nCells.y() - 1;  | 
| 1533 | 
< | 
            } | 
| 1534 | 
< | 
 | 
| 1535 | 
< | 
            if (m2v.z() >= nCells.z()) { | 
| 1536 | 
< | 
              m2v.z() = 0;            | 
| 1537 | 
< | 
            } else if (m2v.z() < 0) { | 
| 1538 | 
< | 
              m2v.z() = nCells.z() - 1;  | 
| 1539 | 
< | 
            } | 
| 1540 | 
< | 
 | 
| 565 | 
< | 
            int m2 = Vlinear (m2v, nCells); | 
| 566 | 
< | 
 | 
| 1523 | 
> | 
          if (m2v.x() >= nCells_.x()) { | 
| 1524 | 
> | 
            m2v.x() = 0;            | 
| 1525 | 
> | 
          } else if (m2v.x() < 0) { | 
| 1526 | 
> | 
            m2v.x() = nCells_.x() - 1;  | 
| 1527 | 
> | 
          } | 
| 1528 | 
> | 
           | 
| 1529 | 
> | 
          if (m2v.y() >= nCells_.y()) { | 
| 1530 | 
> | 
            m2v.y() = 0;            | 
| 1531 | 
> | 
          } else if (m2v.y() < 0) { | 
| 1532 | 
> | 
            m2v.y() = nCells_.y() - 1;  | 
| 1533 | 
> | 
          } | 
| 1534 | 
> | 
           | 
| 1535 | 
> | 
          if (m2v.z() >= nCells_.z()) { | 
| 1536 | 
> | 
            m2v.z() = 0;            | 
| 1537 | 
> | 
          } else if (m2v.z() < 0) { | 
| 1538 | 
> | 
            m2v.z() = nCells_.z() - 1;  | 
| 1539 | 
> | 
          } | 
| 1540 | 
> | 
          int m2 = Vlinear (m2v, nCells_);                                       | 
| 1541 | 
  | 
#ifdef IS_MPI | 
| 1542 | 
< | 
            for (vector<int>::iterator j1 = CellListRow[m1].begin();  | 
| 1543 | 
< | 
                 j1 != CellListRow[m1].end(); ++j1) { | 
| 1544 | 
< | 
              for (vector<int>::iterator j2 = CellListCol[m2].begin();  | 
| 1545 | 
< | 
                   j2 != CellListCol[m2].end(); ++j2) { | 
| 1546 | 
< | 
                                | 
| 1547 | 
< | 
                // Always do this if we're in different cells or if | 
| 1548 | 
< | 
                // we're in the same cell and the global index of the | 
| 1549 | 
< | 
                // j2 cutoff group is less than the j1 cutoff group | 
| 1550 | 
< | 
 | 
| 577 | 
< | 
                if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { | 
| 578 | 
< | 
                  dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | 
| 579 | 
< | 
                  snap_->wrapVector(dr); | 
| 580 | 
< | 
                  if (dr.lengthSquare() < rl2) { | 
| 581 | 
< | 
                    neighborList.push_back(make_pair((*j1), (*j2))); | 
| 582 | 
< | 
                  } | 
| 583 | 
< | 
                } | 
| 584 | 
< | 
              } | 
| 1542 | 
> | 
          for (vector<int>::iterator j2 = cellListCol_[m2].begin();  | 
| 1543 | 
> | 
               j2 != cellListCol_[m2].end(); ++j2) { | 
| 1544 | 
> | 
             | 
| 1545 | 
> | 
            // In parallel, we need to visit *all* pairs of row | 
| 1546 | 
> | 
            // & column indicies and will divide labor in the | 
| 1547 | 
> | 
            // force evaluation later. | 
| 1548 | 
> | 
            dr = cgColData.position[(*j2)] - rs; | 
| 1549 | 
> | 
            if (usePeriodicBoundaryConditions_) { | 
| 1550 | 
> | 
              snap_->wrapVector(dr); | 
| 1551 | 
  | 
            } | 
| 1552 | 
+ | 
            if (dr.lengthSquare() < rListSq_) { | 
| 1553 | 
+ | 
              neighborList.push_back( (*j2) ); | 
| 1554 | 
+ | 
              ++len; | 
| 1555 | 
+ | 
            }                  | 
| 1556 | 
+ | 
          }         | 
| 1557 | 
  | 
#else | 
| 1558 | 
< | 
            for (vector<int>::iterator j1 = CellList[m1].begin();  | 
| 1559 | 
< | 
                 j1 != CellList[m1].end(); ++j1) { | 
| 1560 | 
< | 
              for (vector<int>::iterator j2 = CellList[m2].begin();  | 
| 1561 | 
< | 
                   j2 != CellList[m2].end(); ++j2) { | 
| 1562 | 
< | 
                                | 
| 1563 | 
< | 
                // Always do this if we're in different cells or if | 
| 1564 | 
< | 
                // we're in the same cell and the global index of the | 
| 1565 | 
< | 
                // j2 cutoff group is less than the j1 cutoff group | 
| 1566 | 
< | 
 | 
| 1567 | 
< | 
                if (m2 != m1 || (*j2) < (*j1)) { | 
| 1568 | 
< | 
                  dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | 
| 1569 | 
< | 
                  snap_->wrapVector(dr); | 
| 1570 | 
< | 
                  if (dr.lengthSquare() < rl2) { | 
| 1571 | 
< | 
                    neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1572 | 
< | 
                  } | 
| 1573 | 
< | 
                } | 
| 1558 | 
> | 
          for (vector<int>::iterator j2 = cellList_[m2].begin();  | 
| 1559 | 
> | 
               j2 != cellList_[m2].end(); ++j2) { | 
| 1560 | 
> | 
           | 
| 1561 | 
> | 
            // Always do this if we're in different cells or if | 
| 1562 | 
> | 
            // we're in the same cell and the global index of | 
| 1563 | 
> | 
            // the j2 cutoff group is greater than or equal to | 
| 1564 | 
> | 
            // the j1 cutoff group.  Note that Rappaport's code | 
| 1565 | 
> | 
            // has a "less than" conditional here, but that | 
| 1566 | 
> | 
            // deals with atom-by-atom computation.  OpenMD | 
| 1567 | 
> | 
            // allows atoms within a single cutoff group to | 
| 1568 | 
> | 
            // interact with each other. | 
| 1569 | 
> | 
             | 
| 1570 | 
> | 
            if ( (*j2) >= j1 ) { | 
| 1571 | 
> | 
               | 
| 1572 | 
> | 
              dr = snap_->cgData.position[(*j2)] - rs; | 
| 1573 | 
> | 
              if (usePeriodicBoundaryConditions_) { | 
| 1574 | 
> | 
                snap_->wrapVector(dr); | 
| 1575 | 
  | 
              } | 
| 1576 | 
+ | 
              if ( dr.lengthSquare() < rListSq_) { | 
| 1577 | 
+ | 
                neighborList.push_back( (*j2) ); | 
| 1578 | 
+ | 
                ++len; | 
| 1579 | 
+ | 
              } | 
| 1580 | 
  | 
            } | 
| 1581 | 
+ | 
          }                 | 
| 1582 | 
  | 
#endif | 
| 1583 | 
+ | 
        } | 
| 1584 | 
+ | 
      }       | 
| 1585 | 
+ | 
    } else { | 
| 1586 | 
+ | 
      // branch to do all cutoff group pairs | 
| 1587 | 
+ | 
#ifdef IS_MPI | 
| 1588 | 
+ | 
      for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | 
| 1589 | 
+ | 
        point[j1] = len; | 
| 1590 | 
+ | 
        rs = cgRowData.position[j1]; | 
| 1591 | 
+ | 
        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {     | 
| 1592 | 
+ | 
          dr = cgColData.position[j2] - rs; | 
| 1593 | 
+ | 
          if (usePeriodicBoundaryConditions_) { | 
| 1594 | 
+ | 
            snap_->wrapVector(dr); | 
| 1595 | 
  | 
          } | 
| 1596 | 
+ | 
          if (dr.lengthSquare() < rListSq_) { | 
| 1597 | 
+ | 
            neighborList.push_back( j2 ); | 
| 1598 | 
+ | 
            ++len; | 
| 1599 | 
+ | 
          } | 
| 1600 | 
  | 
        } | 
| 1601 | 
+ | 
      }       | 
| 1602 | 
+ | 
#else | 
| 1603 | 
+ | 
      // include all groups here. | 
| 1604 | 
+ | 
      for (int j1 = 0; j1 < nGroups_; j1++) { | 
| 1605 | 
+ | 
        point[j1] = len; | 
| 1606 | 
+ | 
        rs = snap_->cgData.position[j1]; | 
| 1607 | 
+ | 
        // include self group interactions j2 == j1 | 
| 1608 | 
+ | 
        for (int j2 = j1; j2 < nGroups_; j2++) { | 
| 1609 | 
+ | 
          dr = snap_->cgData.position[j2] - rs; | 
| 1610 | 
+ | 
          if (usePeriodicBoundaryConditions_) { | 
| 1611 | 
+ | 
            snap_->wrapVector(dr); | 
| 1612 | 
+ | 
          } | 
| 1613 | 
+ | 
          if (dr.lengthSquare() < rListSq_) { | 
| 1614 | 
+ | 
            neighborList.push_back( j2 ); | 
| 1615 | 
+ | 
            ++len; | 
| 1616 | 
+ | 
          } | 
| 1617 | 
+ | 
        }     | 
| 1618 | 
  | 
      } | 
| 1619 | 
+ | 
#endif | 
| 1620 | 
  | 
    } | 
| 1621 | 
< | 
    return neighborList; | 
| 1621 | 
> | 
 | 
| 1622 | 
> | 
#ifdef IS_MPI | 
| 1623 | 
> | 
    point[nGroupsInRow_] = len; | 
| 1624 | 
> | 
#else | 
| 1625 | 
> | 
    point[nGroups_] = len; | 
| 1626 | 
> | 
#endif | 
| 1627 | 
> | 
   | 
| 1628 | 
> | 
    // save the local cutoff group positions for the check that is | 
| 1629 | 
> | 
    // done on each loop: | 
| 1630 | 
> | 
    saved_CG_positions_.clear(); | 
| 1631 | 
> | 
    saved_CG_positions_.reserve(nGroups_); | 
| 1632 | 
> | 
    for (int i = 0; i < nGroups_; i++) | 
| 1633 | 
> | 
      saved_CG_positions_.push_back(snap_->cgData.position[i]); | 
| 1634 | 
  | 
  } | 
| 1635 | 
  | 
} //end namespace OpenMD |