50 |
|
|
51 |
|
ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
52 |
|
|
53 |
< |
// In a parallel computation, row and colum scans must visit all |
54 |
< |
// surrounding cells (not just the 14 upper triangular blocks that |
55 |
< |
// are used when the processor can see all pairs) |
56 |
< |
#ifdef IS_MPI |
53 |
> |
// Row and colum scans must visit all surrounding cells |
54 |
|
cellOffsets_.clear(); |
55 |
|
cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
56 |
|
cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
79 |
|
cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
80 |
|
cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
81 |
|
cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
85 |
– |
#endif |
82 |
|
} |
83 |
|
|
84 |
|
|
115 |
|
|
116 |
|
#ifdef IS_MPI |
117 |
|
|
118 |
< |
MPI::Intracomm row = rowComm.getComm(); |
119 |
< |
MPI::Intracomm col = colComm.getComm(); |
118 |
> |
MPI_Comm row = rowComm.getComm(); |
119 |
> |
MPI_Comm col = colComm.getComm(); |
120 |
|
|
121 |
|
AtomPlanIntRow = new Plan<int>(row, nLocal_); |
122 |
|
AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
302 |
|
groupList_[i].push_back(j); |
303 |
|
} |
304 |
|
} |
305 |
< |
} |
310 |
< |
|
311 |
< |
|
312 |
< |
createGtypeCutoffMap(); |
313 |
< |
|
305 |
> |
} |
306 |
|
} |
315 |
– |
|
316 |
– |
void ForceMatrixDecomposition::createGtypeCutoffMap() { |
317 |
– |
|
318 |
– |
GrCut.clear(); |
319 |
– |
GrCutSq.clear(); |
320 |
– |
GrlistSq.clear(); |
321 |
– |
|
322 |
– |
RealType tol = 1e-6; |
323 |
– |
largestRcut_ = 0.0; |
324 |
– |
int atid; |
325 |
– |
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
326 |
– |
|
327 |
– |
map<int, RealType> atypeCutoff; |
328 |
– |
|
329 |
– |
for (set<AtomType*>::iterator at = atypes.begin(); |
330 |
– |
at != atypes.end(); ++at){ |
331 |
– |
atid = (*at)->getIdent(); |
332 |
– |
if (userChoseCutoff_) |
333 |
– |
atypeCutoff[atid] = userCutoff_; |
334 |
– |
else |
335 |
– |
atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
336 |
– |
} |
337 |
– |
|
338 |
– |
vector<RealType> gTypeCutoffs; |
339 |
– |
// first we do a single loop over the cutoff groups to find the |
340 |
– |
// largest cutoff for any atypes present in this group. |
341 |
– |
#ifdef IS_MPI |
342 |
– |
vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); |
343 |
– |
groupRowToGtype.resize(nGroupsInRow_); |
344 |
– |
for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { |
345 |
– |
vector<int> atomListRow = getAtomsInGroupRow(cg1); |
346 |
– |
for (vector<int>::iterator ia = atomListRow.begin(); |
347 |
– |
ia != atomListRow.end(); ++ia) { |
348 |
– |
int atom1 = (*ia); |
349 |
– |
atid = identsRow[atom1]; |
350 |
– |
if (atypeCutoff[atid] > groupCutoffRow[cg1]) { |
351 |
– |
groupCutoffRow[cg1] = atypeCutoff[atid]; |
352 |
– |
} |
353 |
– |
} |
354 |
– |
|
355 |
– |
bool gTypeFound = false; |
356 |
– |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
357 |
– |
if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { |
358 |
– |
groupRowToGtype[cg1] = gt; |
359 |
– |
gTypeFound = true; |
360 |
– |
} |
361 |
– |
} |
362 |
– |
if (!gTypeFound) { |
363 |
– |
gTypeCutoffs.push_back( groupCutoffRow[cg1] ); |
364 |
– |
groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; |
365 |
– |
} |
366 |
– |
|
367 |
– |
} |
368 |
– |
vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); |
369 |
– |
groupColToGtype.resize(nGroupsInCol_); |
370 |
– |
for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { |
371 |
– |
vector<int> atomListCol = getAtomsInGroupColumn(cg2); |
372 |
– |
for (vector<int>::iterator jb = atomListCol.begin(); |
373 |
– |
jb != atomListCol.end(); ++jb) { |
374 |
– |
int atom2 = (*jb); |
375 |
– |
atid = identsCol[atom2]; |
376 |
– |
if (atypeCutoff[atid] > groupCutoffCol[cg2]) { |
377 |
– |
groupCutoffCol[cg2] = atypeCutoff[atid]; |
378 |
– |
} |
379 |
– |
} |
380 |
– |
bool gTypeFound = false; |
381 |
– |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
382 |
– |
if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { |
383 |
– |
groupColToGtype[cg2] = gt; |
384 |
– |
gTypeFound = true; |
385 |
– |
} |
386 |
– |
} |
387 |
– |
if (!gTypeFound) { |
388 |
– |
gTypeCutoffs.push_back( groupCutoffCol[cg2] ); |
389 |
– |
groupColToGtype[cg2] = gTypeCutoffs.size() - 1; |
390 |
– |
} |
391 |
– |
} |
392 |
– |
#else |
393 |
– |
|
394 |
– |
vector<RealType> groupCutoff(nGroups_, 0.0); |
395 |
– |
groupToGtype.resize(nGroups_); |
396 |
– |
for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
397 |
– |
groupCutoff[cg1] = 0.0; |
398 |
– |
vector<int> atomList = getAtomsInGroupRow(cg1); |
399 |
– |
for (vector<int>::iterator ia = atomList.begin(); |
400 |
– |
ia != atomList.end(); ++ia) { |
401 |
– |
int atom1 = (*ia); |
402 |
– |
atid = idents[atom1]; |
403 |
– |
if (atypeCutoff[atid] > groupCutoff[cg1]) |
404 |
– |
groupCutoff[cg1] = atypeCutoff[atid]; |
405 |
– |
} |
406 |
– |
|
407 |
– |
bool gTypeFound = false; |
408 |
– |
for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
409 |
– |
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
410 |
– |
groupToGtype[cg1] = gt; |
411 |
– |
gTypeFound = true; |
412 |
– |
} |
413 |
– |
} |
414 |
– |
if (!gTypeFound) { |
415 |
– |
gTypeCutoffs.push_back( groupCutoff[cg1] ); |
416 |
– |
groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
417 |
– |
} |
418 |
– |
} |
419 |
– |
#endif |
420 |
– |
|
421 |
– |
// Now we find the maximum group cutoff value present in the simulation |
422 |
– |
|
423 |
– |
RealType groupMax = *max_element(gTypeCutoffs.begin(), |
424 |
– |
gTypeCutoffs.end()); |
425 |
– |
|
426 |
– |
#ifdef IS_MPI |
427 |
– |
MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, |
428 |
– |
MPI::MAX); |
429 |
– |
#endif |
307 |
|
|
431 |
– |
RealType tradRcut = groupMax; |
432 |
– |
|
433 |
– |
GrCut.resize( gTypeCutoffs.size() ); |
434 |
– |
GrCutSq.resize( gTypeCutoffs.size() ); |
435 |
– |
GrlistSq.resize( gTypeCutoffs.size() ); |
436 |
– |
|
437 |
– |
|
438 |
– |
for (unsigned int i = 0; i < gTypeCutoffs.size(); i++) { |
439 |
– |
GrCut[i].resize( gTypeCutoffs.size() , 0.0); |
440 |
– |
GrCutSq[i].resize( gTypeCutoffs.size(), 0.0 ); |
441 |
– |
GrlistSq[i].resize( gTypeCutoffs.size(), 0.0 ); |
442 |
– |
|
443 |
– |
for (unsigned int j = 0; j < gTypeCutoffs.size(); j++) { |
444 |
– |
RealType thisRcut; |
445 |
– |
switch(cutoffPolicy_) { |
446 |
– |
case TRADITIONAL: |
447 |
– |
thisRcut = tradRcut; |
448 |
– |
break; |
449 |
– |
case MIX: |
450 |
– |
thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); |
451 |
– |
break; |
452 |
– |
case MAX: |
453 |
– |
thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); |
454 |
– |
break; |
455 |
– |
default: |
456 |
– |
sprintf(painCave.errMsg, |
457 |
– |
"ForceMatrixDecomposition::createGtypeCutoffMap " |
458 |
– |
"hit an unknown cutoff policy!\n"); |
459 |
– |
painCave.severity = OPENMD_ERROR; |
460 |
– |
painCave.isFatal = 1; |
461 |
– |
simError(); |
462 |
– |
break; |
463 |
– |
} |
464 |
– |
|
465 |
– |
GrCut[i][j] = thisRcut; |
466 |
– |
if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
467 |
– |
GrCutSq[i][j] = thisRcut * thisRcut; |
468 |
– |
GrlistSq[i][j] = pow(thisRcut + skinThickness_, 2); |
469 |
– |
|
470 |
– |
// pair<int,int> key = make_pair(i,j); |
471 |
– |
// gTypeCutoffMap[key].first = thisRcut; |
472 |
– |
// gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
473 |
– |
// sanity check |
474 |
– |
|
475 |
– |
if (userChoseCutoff_) { |
476 |
– |
if (abs(GrCut[i][j] - userCutoff_) > 0.0001) { |
477 |
– |
sprintf(painCave.errMsg, |
478 |
– |
"ForceMatrixDecomposition::createGtypeCutoffMap " |
479 |
– |
"user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
480 |
– |
painCave.severity = OPENMD_ERROR; |
481 |
– |
painCave.isFatal = 1; |
482 |
– |
simError(); |
483 |
– |
} |
484 |
– |
} |
485 |
– |
} |
486 |
– |
} |
487 |
– |
} |
488 |
– |
|
489 |
– |
void ForceMatrixDecomposition::getGroupCutoffs(int &cg1, int &cg2, RealType &rcut, RealType &rcutsq, RealType &rlistsq) { |
490 |
– |
int i, j; |
491 |
– |
#ifdef IS_MPI |
492 |
– |
i = groupRowToGtype[cg1]; |
493 |
– |
j = groupColToGtype[cg2]; |
494 |
– |
#else |
495 |
– |
i = groupToGtype[cg1]; |
496 |
– |
j = groupToGtype[cg2]; |
497 |
– |
#endif |
498 |
– |
rcut = GrCut[i][j]; |
499 |
– |
rcutsq = GrCutSq[i][j]; |
500 |
– |
rlistsq = GrlistSq[i][j]; |
501 |
– |
return; |
502 |
– |
//return gTypeCutoffMap[make_pair(i,j)]; |
503 |
– |
} |
504 |
– |
|
308 |
|
int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
309 |
|
for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { |
310 |
|
if (toposForAtom[atom1][j] == atom2) |
389 |
|
atomColData.electricField.end(), V3Zero); |
390 |
|
} |
391 |
|
|
392 |
+ |
if (storageLayout_ & DataStorage::dslSitePotential) { |
393 |
+ |
fill(atomRowData.sitePotential.begin(), |
394 |
+ |
atomRowData.sitePotential.end(), 0.0); |
395 |
+ |
fill(atomColData.sitePotential.begin(), |
396 |
+ |
atomColData.sitePotential.end(), 0.0); |
397 |
+ |
} |
398 |
+ |
|
399 |
|
#endif |
400 |
|
// even in parallel, we need to zero out the local arrays: |
401 |
|
|
428 |
|
fill(snap_->atomData.electricField.begin(), |
429 |
|
snap_->atomData.electricField.end(), V3Zero); |
430 |
|
} |
431 |
+ |
if (storageLayout_ & DataStorage::dslSitePotential) { |
432 |
+ |
fill(snap_->atomData.sitePotential.begin(), |
433 |
+ |
snap_->atomData.sitePotential.end(), 0.0); |
434 |
+ |
} |
435 |
|
} |
436 |
|
|
437 |
|
|
438 |
|
void ForceMatrixDecomposition::distributeData() { |
439 |
|
snap_ = sman_->getCurrentSnapshot(); |
440 |
|
storageLayout_ = sman_->getStorageLayout(); |
441 |
+ |
|
442 |
+ |
bool needsCG = true; |
443 |
+ |
if(info_->getNCutoffGroups() != info_->getNAtoms()) |
444 |
+ |
needsCG = false; |
445 |
+ |
|
446 |
|
#ifdef IS_MPI |
447 |
|
|
448 |
|
// gather up the atomic positions |
453 |
|
|
454 |
|
// gather up the cutoff group positions |
455 |
|
|
456 |
< |
cgPlanVectorRow->gather(snap_->cgData.position, |
457 |
< |
cgRowData.position); |
458 |
< |
|
459 |
< |
cgPlanVectorColumn->gather(snap_->cgData.position, |
460 |
< |
cgColData.position); |
461 |
< |
|
456 |
> |
if (needsCG) { |
457 |
> |
cgPlanVectorRow->gather(snap_->cgData.position, |
458 |
> |
cgRowData.position); |
459 |
> |
|
460 |
> |
cgPlanVectorColumn->gather(snap_->cgData.position, |
461 |
> |
cgColData.position); |
462 |
> |
} |
463 |
|
|
464 |
|
|
465 |
|
if (needVelocities_) { |
466 |
|
// gather up the atomic velocities |
467 |
|
AtomPlanVectorColumn->gather(snap_->atomData.velocity, |
468 |
|
atomColData.velocity); |
469 |
< |
|
470 |
< |
cgPlanVectorColumn->gather(snap_->cgData.velocity, |
471 |
< |
cgColData.velocity); |
469 |
> |
|
470 |
> |
if (needsCG) { |
471 |
> |
cgPlanVectorColumn->gather(snap_->cgData.velocity, |
472 |
> |
cgColData.velocity); |
473 |
> |
} |
474 |
|
} |
475 |
|
|
476 |
|
|
654 |
|
snap_->atomData.electricField[i] += efield_tmp[i]; |
655 |
|
} |
656 |
|
|
657 |
+ |
if (storageLayout_ & DataStorage::dslSitePotential) { |
658 |
|
|
659 |
+ |
int nsp = snap_->atomData.sitePotential.size(); |
660 |
+ |
vector<RealType> sp_tmp(nsp, 0.0); |
661 |
+ |
|
662 |
+ |
AtomPlanRealRow->scatter(atomRowData.sitePotential, sp_tmp); |
663 |
+ |
for (int i = 0; i < nsp; i++) { |
664 |
+ |
snap_->atomData.sitePotential[i] += sp_tmp[i]; |
665 |
+ |
sp_tmp[i] = 0.0; |
666 |
+ |
} |
667 |
+ |
|
668 |
+ |
AtomPlanRealColumn->scatter(atomColData.sitePotential, sp_tmp); |
669 |
+ |
for (int i = 0; i < nsp; i++) |
670 |
+ |
snap_->atomData.sitePotential[i] += sp_tmp[i]; |
671 |
+ |
} |
672 |
+ |
|
673 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
674 |
|
|
675 |
|
vector<potVec> pot_temp(nLocal_, |
753 |
|
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
754 |
|
RealType ploc1 = pairwisePot[ii]; |
755 |
|
RealType ploc2 = 0.0; |
756 |
< |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
756 |
> |
MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
757 |
|
pairwisePot[ii] = ploc2; |
758 |
|
} |
759 |
|
|
760 |
|
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
761 |
|
RealType ploc1 = excludedPot[ii]; |
762 |
|
RealType ploc2 = 0.0; |
763 |
< |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
763 |
> |
MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
764 |
|
excludedPot[ii] = ploc2; |
765 |
|
} |
766 |
|
|
767 |
|
// Here be dragons. |
768 |
< |
MPI::Intracomm col = colComm.getComm(); |
768 |
> |
MPI_Comm col = colComm.getComm(); |
769 |
|
|
770 |
< |
col.Allreduce(MPI::IN_PLACE, |
770 |
> |
MPI_Allreduce(MPI_IN_PLACE, |
771 |
|
&snap_->frameData.conductiveHeatFlux[0], 3, |
772 |
< |
MPI::REALTYPE, MPI::SUM); |
772 |
> |
MPI_REALTYPE, MPI_SUM, col); |
773 |
|
|
774 |
|
|
775 |
|
#endif |
788 |
|
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
789 |
|
RealType ploc1 = embeddingPot[ii]; |
790 |
|
RealType ploc2 = 0.0; |
791 |
< |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
791 |
> |
MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
792 |
|
embeddingPot[ii] = ploc2; |
793 |
|
} |
794 |
|
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
795 |
|
RealType ploc1 = excludedSelfPot[ii]; |
796 |
|
RealType ploc2 = 0.0; |
797 |
< |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
797 |
> |
MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
798 |
|
excludedSelfPot[ii] = ploc2; |
799 |
|
} |
800 |
|
#endif |
1007 |
|
|
1008 |
|
// filling interaction blocks with pointers |
1009 |
|
void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
1010 |
< |
int atom1, int atom2) { |
1010 |
> |
int atom1, int atom2, |
1011 |
> |
bool newAtom1) { |
1012 |
|
|
1013 |
|
idat.excluded = excludeAtomPair(atom1, atom2); |
1014 |
< |
|
1014 |
> |
|
1015 |
> |
if (newAtom1) { |
1016 |
> |
|
1017 |
|
#ifdef IS_MPI |
1018 |
< |
//idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
1019 |
< |
idat.atid1 = identsRow[atom1]; |
1018 |
> |
idat.atid1 = identsRow[atom1]; |
1019 |
> |
idat.atid2 = identsCol[atom2]; |
1020 |
> |
|
1021 |
> |
if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) { |
1022 |
> |
idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]); |
1023 |
> |
} else { |
1024 |
> |
idat.sameRegion = false; |
1025 |
> |
} |
1026 |
> |
|
1027 |
> |
if (storageLayout_ & DataStorage::dslAmat) { |
1028 |
> |
idat.A1 = &(atomRowData.aMat[atom1]); |
1029 |
> |
idat.A2 = &(atomColData.aMat[atom2]); |
1030 |
> |
} |
1031 |
> |
|
1032 |
> |
if (storageLayout_ & DataStorage::dslTorque) { |
1033 |
> |
idat.t1 = &(atomRowData.torque[atom1]); |
1034 |
> |
idat.t2 = &(atomColData.torque[atom2]); |
1035 |
> |
} |
1036 |
> |
|
1037 |
> |
if (storageLayout_ & DataStorage::dslDipole) { |
1038 |
> |
idat.dipole1 = &(atomRowData.dipole[atom1]); |
1039 |
> |
idat.dipole2 = &(atomColData.dipole[atom2]); |
1040 |
> |
} |
1041 |
> |
|
1042 |
> |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
1043 |
> |
idat.quadrupole1 = &(atomRowData.quadrupole[atom1]); |
1044 |
> |
idat.quadrupole2 = &(atomColData.quadrupole[atom2]); |
1045 |
> |
} |
1046 |
> |
|
1047 |
> |
if (storageLayout_ & DataStorage::dslDensity) { |
1048 |
> |
idat.rho1 = &(atomRowData.density[atom1]); |
1049 |
> |
idat.rho2 = &(atomColData.density[atom2]); |
1050 |
> |
} |
1051 |
> |
|
1052 |
> |
if (storageLayout_ & DataStorage::dslFunctional) { |
1053 |
> |
idat.frho1 = &(atomRowData.functional[atom1]); |
1054 |
> |
idat.frho2 = &(atomColData.functional[atom2]); |
1055 |
> |
} |
1056 |
> |
|
1057 |
> |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
1058 |
> |
idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); |
1059 |
> |
idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); |
1060 |
> |
} |
1061 |
> |
|
1062 |
> |
if (storageLayout_ & DataStorage::dslParticlePot) { |
1063 |
> |
idat.particlePot1 = &(atomRowData.particlePot[atom1]); |
1064 |
> |
idat.particlePot2 = &(atomColData.particlePot[atom2]); |
1065 |
> |
} |
1066 |
> |
|
1067 |
> |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1068 |
> |
idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
1069 |
> |
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
1070 |
> |
} |
1071 |
> |
|
1072 |
> |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1073 |
> |
idat.flucQ1 = &(atomRowData.flucQPos[atom1]); |
1074 |
> |
idat.flucQ2 = &(atomColData.flucQPos[atom2]); |
1075 |
> |
} |
1076 |
> |
|
1077 |
> |
#else |
1078 |
> |
|
1079 |
> |
idat.atid1 = idents[atom1]; |
1080 |
> |
idat.atid2 = idents[atom2]; |
1081 |
> |
|
1082 |
> |
if (regions[atom1] >= 0 && regions[atom2] >= 0) { |
1083 |
> |
idat.sameRegion = (regions[atom1] == regions[atom2]); |
1084 |
> |
} else { |
1085 |
> |
idat.sameRegion = false; |
1086 |
> |
} |
1087 |
> |
|
1088 |
> |
if (storageLayout_ & DataStorage::dslAmat) { |
1089 |
> |
idat.A1 = &(snap_->atomData.aMat[atom1]); |
1090 |
> |
idat.A2 = &(snap_->atomData.aMat[atom2]); |
1091 |
> |
} |
1092 |
> |
|
1093 |
> |
if (storageLayout_ & DataStorage::dslTorque) { |
1094 |
> |
idat.t1 = &(snap_->atomData.torque[atom1]); |
1095 |
> |
idat.t2 = &(snap_->atomData.torque[atom2]); |
1096 |
> |
} |
1097 |
> |
|
1098 |
> |
if (storageLayout_ & DataStorage::dslDipole) { |
1099 |
> |
idat.dipole1 = &(snap_->atomData.dipole[atom1]); |
1100 |
> |
idat.dipole2 = &(snap_->atomData.dipole[atom2]); |
1101 |
> |
} |
1102 |
> |
|
1103 |
> |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
1104 |
> |
idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]); |
1105 |
> |
idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]); |
1106 |
> |
} |
1107 |
> |
|
1108 |
> |
if (storageLayout_ & DataStorage::dslDensity) { |
1109 |
> |
idat.rho1 = &(snap_->atomData.density[atom1]); |
1110 |
> |
idat.rho2 = &(snap_->atomData.density[atom2]); |
1111 |
> |
} |
1112 |
> |
|
1113 |
> |
if (storageLayout_ & DataStorage::dslFunctional) { |
1114 |
> |
idat.frho1 = &(snap_->atomData.functional[atom1]); |
1115 |
> |
idat.frho2 = &(snap_->atomData.functional[atom2]); |
1116 |
> |
} |
1117 |
> |
|
1118 |
> |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
1119 |
> |
idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); |
1120 |
> |
idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); |
1121 |
> |
} |
1122 |
> |
|
1123 |
> |
if (storageLayout_ & DataStorage::dslParticlePot) { |
1124 |
> |
idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); |
1125 |
> |
idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
1126 |
> |
} |
1127 |
> |
|
1128 |
> |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1129 |
> |
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
1130 |
> |
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
1131 |
> |
} |
1132 |
> |
|
1133 |
> |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1134 |
> |
idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); |
1135 |
> |
idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); |
1136 |
> |
} |
1137 |
> |
#endif |
1138 |
> |
|
1139 |
> |
} else { |
1140 |
> |
// atom1 is not new, so don't bother updating properties of that atom: |
1141 |
> |
#ifdef IS_MPI |
1142 |
|
idat.atid2 = identsCol[atom2]; |
1143 |
|
|
1144 |
|
if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) { |
1148 |
|
} |
1149 |
|
|
1150 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
1189 |
– |
idat.A1 = &(atomRowData.aMat[atom1]); |
1151 |
|
idat.A2 = &(atomColData.aMat[atom2]); |
1152 |
|
} |
1153 |
|
|
1154 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
1194 |
– |
idat.t1 = &(atomRowData.torque[atom1]); |
1155 |
|
idat.t2 = &(atomColData.torque[atom2]); |
1156 |
|
} |
1157 |
|
|
1158 |
|
if (storageLayout_ & DataStorage::dslDipole) { |
1199 |
– |
idat.dipole1 = &(atomRowData.dipole[atom1]); |
1159 |
|
idat.dipole2 = &(atomColData.dipole[atom2]); |
1160 |
|
} |
1161 |
|
|
1162 |
|
if (storageLayout_ & DataStorage::dslQuadrupole) { |
1204 |
– |
idat.quadrupole1 = &(atomRowData.quadrupole[atom1]); |
1163 |
|
idat.quadrupole2 = &(atomColData.quadrupole[atom2]); |
1164 |
|
} |
1165 |
|
|
1166 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
1209 |
– |
idat.rho1 = &(atomRowData.density[atom1]); |
1167 |
|
idat.rho2 = &(atomColData.density[atom2]); |
1168 |
|
} |
1169 |
|
|
1170 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
1214 |
– |
idat.frho1 = &(atomRowData.functional[atom1]); |
1171 |
|
idat.frho2 = &(atomColData.functional[atom2]); |
1172 |
|
} |
1173 |
|
|
1174 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
1219 |
– |
idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); |
1175 |
|
idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); |
1176 |
|
} |
1177 |
|
|
1178 |
|
if (storageLayout_ & DataStorage::dslParticlePot) { |
1224 |
– |
idat.particlePot1 = &(atomRowData.particlePot[atom1]); |
1179 |
|
idat.particlePot2 = &(atomColData.particlePot[atom2]); |
1180 |
|
} |
1181 |
|
|
1182 |
|
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1229 |
– |
idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
1183 |
|
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
1184 |
|
} |
1185 |
|
|
1186 |
< |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1234 |
< |
idat.flucQ1 = &(atomRowData.flucQPos[atom1]); |
1186 |
> |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1187 |
|
idat.flucQ2 = &(atomColData.flucQPos[atom2]); |
1188 |
|
} |
1189 |
|
|
1190 |
< |
#else |
1239 |
< |
|
1240 |
< |
//idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
1241 |
< |
idat.atid1 = idents[atom1]; |
1190 |
> |
#else |
1191 |
|
idat.atid2 = idents[atom2]; |
1192 |
|
|
1193 |
|
if (regions[atom1] >= 0 && regions[atom2] >= 0) { |
1197 |
|
} |
1198 |
|
|
1199 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
1251 |
– |
idat.A1 = &(snap_->atomData.aMat[atom1]); |
1200 |
|
idat.A2 = &(snap_->atomData.aMat[atom2]); |
1201 |
|
} |
1202 |
|
|
1203 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
1256 |
– |
idat.t1 = &(snap_->atomData.torque[atom1]); |
1204 |
|
idat.t2 = &(snap_->atomData.torque[atom2]); |
1205 |
|
} |
1206 |
|
|
1207 |
|
if (storageLayout_ & DataStorage::dslDipole) { |
1261 |
– |
idat.dipole1 = &(snap_->atomData.dipole[atom1]); |
1208 |
|
idat.dipole2 = &(snap_->atomData.dipole[atom2]); |
1209 |
|
} |
1210 |
|
|
1211 |
|
if (storageLayout_ & DataStorage::dslQuadrupole) { |
1266 |
– |
idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]); |
1212 |
|
idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]); |
1213 |
|
} |
1214 |
|
|
1215 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
1271 |
– |
idat.rho1 = &(snap_->atomData.density[atom1]); |
1216 |
|
idat.rho2 = &(snap_->atomData.density[atom2]); |
1217 |
|
} |
1218 |
|
|
1219 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
1276 |
– |
idat.frho1 = &(snap_->atomData.functional[atom1]); |
1220 |
|
idat.frho2 = &(snap_->atomData.functional[atom2]); |
1221 |
|
} |
1222 |
|
|
1223 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
1281 |
– |
idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); |
1224 |
|
idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); |
1225 |
|
} |
1226 |
|
|
1227 |
|
if (storageLayout_ & DataStorage::dslParticlePot) { |
1286 |
– |
idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); |
1228 |
|
idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
1229 |
|
} |
1230 |
|
|
1231 |
|
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1291 |
– |
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
1232 |
|
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
1233 |
|
} |
1234 |
|
|
1235 |
|
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1296 |
– |
idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); |
1236 |
|
idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); |
1237 |
|
} |
1238 |
|
|
1239 |
|
#endif |
1240 |
+ |
} |
1241 |
|
} |
1302 |
– |
|
1242 |
|
|
1243 |
< |
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
1243 |
> |
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, |
1244 |
> |
int atom1, int atom2) { |
1245 |
|
#ifdef IS_MPI |
1246 |
|
pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1247 |
|
pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1261 |
|
atomColData.electricField[atom2] += *(idat.eField2); |
1262 |
|
} |
1263 |
|
|
1264 |
+ |
if (storageLayout_ & DataStorage::dslSitePotential) { |
1265 |
+ |
atomRowData.sitePotential[atom1] += *(idat.sPot1); |
1266 |
+ |
atomColData.sitePotential[atom2] += *(idat.sPot2); |
1267 |
+ |
} |
1268 |
+ |
|
1269 |
|
#else |
1270 |
|
pairwisePot += *(idat.pot); |
1271 |
|
excludedPot += *(idat.excludedPot); |
1292 |
|
snap_->atomData.electricField[atom2] += *(idat.eField2); |
1293 |
|
} |
1294 |
|
|
1295 |
+ |
if (storageLayout_ & DataStorage::dslSitePotential) { |
1296 |
+ |
snap_->atomData.sitePotential[atom1] += *(idat.sPot1); |
1297 |
+ |
snap_->atomData.sitePotential[atom2] += *(idat.sPot2); |
1298 |
+ |
} |
1299 |
+ |
|
1300 |
|
#endif |
1301 |
|
|
1302 |
|
} |
1304 |
|
/* |
1305 |
|
* buildNeighborList |
1306 |
|
* |
1307 |
< |
* first element of pair is row-indexed CutoffGroup |
1308 |
< |
* second element of pair is column-indexed CutoffGroup |
1307 |
> |
* Constructs the Verlet neighbor list for a force-matrix |
1308 |
> |
* decomposition. In this case, each processor is responsible for |
1309 |
> |
* row-site interactions with column-sites. |
1310 |
> |
* |
1311 |
> |
* neighborList is returned as a packed array of neighboring |
1312 |
> |
* column-ordered CutoffGroups. The starting position in |
1313 |
> |
* neighborList for each row-ordered CutoffGroup is given by the |
1314 |
> |
* returned vector point. |
1315 |
|
*/ |
1316 |
< |
void ForceMatrixDecomposition::buildNeighborList(vector<pair<int,int> >& neighborList) { |
1317 |
< |
|
1316 |
> |
void ForceMatrixDecomposition::buildNeighborList(vector<int>& neighborList, |
1317 |
> |
vector<int>& point) { |
1318 |
|
neighborList.clear(); |
1319 |
< |
groupCutoffs cuts; |
1319 |
> |
point.clear(); |
1320 |
> |
int len = 0; |
1321 |
> |
|
1322 |
|
bool doAllPairs = false; |
1323 |
|
|
1366 |
– |
RealType rList_ = (largestRcut_ + skinThickness_); |
1367 |
– |
RealType rcut, rcutsq, rlistsq; |
1324 |
|
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
1325 |
|
Mat3x3d box; |
1326 |
|
Mat3x3d invBox; |
1332 |
|
#ifdef IS_MPI |
1333 |
|
cellListRow_.clear(); |
1334 |
|
cellListCol_.clear(); |
1335 |
+ |
point.resize(nGroupsInRow_+1); |
1336 |
|
#else |
1337 |
|
cellList_.clear(); |
1338 |
+ |
point.resize(nGroups_+1); |
1339 |
|
#endif |
1340 |
|
|
1341 |
|
if (!usePeriodicBoundaryConditions_) { |
1346 |
|
invBox = snap_->getInvHmat(); |
1347 |
|
} |
1348 |
|
|
1349 |
< |
Vector3d boxX = box.getColumn(0); |
1350 |
< |
Vector3d boxY = box.getColumn(1); |
1351 |
< |
Vector3d boxZ = box.getColumn(2); |
1349 |
> |
Vector3d A = box.getColumn(0); |
1350 |
> |
Vector3d B = box.getColumn(1); |
1351 |
> |
Vector3d C = box.getColumn(2); |
1352 |
> |
|
1353 |
> |
// Required for triclinic cells |
1354 |
> |
Vector3d AxB = cross(A, B); |
1355 |
> |
Vector3d BxC = cross(B, C); |
1356 |
> |
Vector3d CxA = cross(C, A); |
1357 |
> |
|
1358 |
> |
// unit vectors perpendicular to the faces of the triclinic cell: |
1359 |
> |
AxB.normalize(); |
1360 |
> |
BxC.normalize(); |
1361 |
> |
CxA.normalize(); |
1362 |
> |
|
1363 |
> |
// A set of perpendicular lengths in triclinic cells: |
1364 |
> |
RealType Wa = abs(dot(A, BxC)); |
1365 |
> |
RealType Wb = abs(dot(B, CxA)); |
1366 |
> |
RealType Wc = abs(dot(C, AxB)); |
1367 |
|
|
1368 |
< |
nCells_.x() = (int) ( boxX.length() )/ rList_; |
1369 |
< |
nCells_.y() = (int) ( boxY.length() )/ rList_; |
1370 |
< |
nCells_.z() = (int) ( boxZ.length() )/ rList_; |
1368 |
> |
nCells_.x() = int( Wa / rList_ ); |
1369 |
> |
nCells_.y() = int( Wb / rList_ ); |
1370 |
> |
nCells_.z() = int( Wc / rList_ ); |
1371 |
|
|
1372 |
|
// handle small boxes where the cell offsets can end up repeating cells |
1400 |
– |
|
1373 |
|
if (nCells_.x() < 3) doAllPairs = true; |
1374 |
|
if (nCells_.y() < 3) doAllPairs = true; |
1375 |
|
if (nCells_.z() < 3) doAllPairs = true; |
1384 |
|
#endif |
1385 |
|
|
1386 |
|
if (!doAllPairs) { |
1387 |
+ |
|
1388 |
|
#ifdef IS_MPI |
1389 |
|
|
1390 |
|
for (int i = 0; i < nGroupsInRow_; i++) { |
1443 |
|
// add this cutoff group to the list of groups in this cell; |
1444 |
|
cellListCol_[cellIndex].push_back(i); |
1445 |
|
} |
1446 |
< |
|
1446 |
> |
|
1447 |
|
#else |
1448 |
|
for (int i = 0; i < nGroups_; i++) { |
1449 |
|
rs = snap_->cgData.position[i]; |
1463 |
|
} |
1464 |
|
|
1465 |
|
// find xyz-indices of cell that cutoffGroup is in. |
1466 |
< |
whichCell.x() = nCells_.x() * scaled.x(); |
1467 |
< |
whichCell.y() = nCells_.y() * scaled.y(); |
1468 |
< |
whichCell.z() = nCells_.z() * scaled.z(); |
1466 |
> |
whichCell.x() = int(nCells_.x() * scaled.x()); |
1467 |
> |
whichCell.y() = int(nCells_.y() * scaled.y()); |
1468 |
> |
whichCell.z() = int(nCells_.z() * scaled.z()); |
1469 |
|
|
1470 |
|
// find single index of this cell: |
1471 |
|
cellIndex = Vlinear(whichCell, nCells_); |
1476 |
|
|
1477 |
|
#endif |
1478 |
|
|
1479 |
< |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1480 |
< |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1481 |
< |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1482 |
< |
Vector3i m1v(m1x, m1y, m1z); |
1510 |
< |
int m1 = Vlinear(m1v, nCells_); |
1511 |
< |
|
1512 |
< |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1513 |
< |
os != cellOffsets_.end(); ++os) { |
1514 |
< |
|
1515 |
< |
Vector3i m2v = m1v + (*os); |
1516 |
< |
|
1479 |
> |
#ifdef IS_MPI |
1480 |
> |
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1481 |
> |
rs = cgRowData.position[j1]; |
1482 |
> |
#else |
1483 |
|
|
1484 |
< |
if (m2v.x() >= nCells_.x()) { |
1485 |
< |
m2v.x() = 0; |
1486 |
< |
} else if (m2v.x() < 0) { |
1487 |
< |
m2v.x() = nCells_.x() - 1; |
1488 |
< |
} |
1489 |
< |
|
1490 |
< |
if (m2v.y() >= nCells_.y()) { |
1491 |
< |
m2v.y() = 0; |
1492 |
< |
} else if (m2v.y() < 0) { |
1493 |
< |
m2v.y() = nCells_.y() - 1; |
1494 |
< |
} |
1495 |
< |
|
1496 |
< |
if (m2v.z() >= nCells_.z()) { |
1497 |
< |
m2v.z() = 0; |
1498 |
< |
} else if (m2v.z() < 0) { |
1499 |
< |
m2v.z() = nCells_.z() - 1; |
1500 |
< |
} |
1484 |
> |
for (int j1 = 0; j1 < nGroups_; j1++) { |
1485 |
> |
rs = snap_->cgData.position[j1]; |
1486 |
> |
#endif |
1487 |
> |
point[j1] = len; |
1488 |
> |
|
1489 |
> |
// scaled positions relative to the box vectors |
1490 |
> |
scaled = invBox * rs; |
1491 |
> |
|
1492 |
> |
// wrap the vector back into the unit box by subtracting integer box |
1493 |
> |
// numbers |
1494 |
> |
for (int j = 0; j < 3; j++) { |
1495 |
> |
scaled[j] -= roundMe(scaled[j]); |
1496 |
> |
scaled[j] += 0.5; |
1497 |
> |
// Handle the special case when an object is exactly on the |
1498 |
> |
// boundary (a scaled coordinate of 1.0 is the same as |
1499 |
> |
// scaled coordinate of 0.0) |
1500 |
> |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1501 |
> |
} |
1502 |
> |
|
1503 |
> |
// find xyz-indices of cell that cutoffGroup is in. |
1504 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
1505 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
1506 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
1507 |
> |
|
1508 |
> |
// find single index of this cell: |
1509 |
> |
int m1 = Vlinear(whichCell, nCells_); |
1510 |
|
|
1511 |
< |
int m2 = Vlinear (m2v, nCells_); |
1511 |
> |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1512 |
> |
os != cellOffsets_.end(); ++os) { |
1513 |
|
|
1514 |
+ |
Vector3i m2v = whichCell + (*os); |
1515 |
+ |
|
1516 |
+ |
if (m2v.x() >= nCells_.x()) { |
1517 |
+ |
m2v.x() = 0; |
1518 |
+ |
} else if (m2v.x() < 0) { |
1519 |
+ |
m2v.x() = nCells_.x() - 1; |
1520 |
+ |
} |
1521 |
+ |
|
1522 |
+ |
if (m2v.y() >= nCells_.y()) { |
1523 |
+ |
m2v.y() = 0; |
1524 |
+ |
} else if (m2v.y() < 0) { |
1525 |
+ |
m2v.y() = nCells_.y() - 1; |
1526 |
+ |
} |
1527 |
+ |
|
1528 |
+ |
if (m2v.z() >= nCells_.z()) { |
1529 |
+ |
m2v.z() = 0; |
1530 |
+ |
} else if (m2v.z() < 0) { |
1531 |
+ |
m2v.z() = nCells_.z() - 1; |
1532 |
+ |
} |
1533 |
+ |
int m2 = Vlinear (m2v, nCells_); |
1534 |
|
#ifdef IS_MPI |
1535 |
< |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1536 |
< |
j1 != cellListRow_[m1].end(); ++j1) { |
1537 |
< |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1538 |
< |
j2 != cellListCol_[m2].end(); ++j2) { |
1539 |
< |
|
1540 |
< |
// In parallel, we need to visit *all* pairs of row |
1541 |
< |
// & column indicies and will divide labor in the |
1542 |
< |
// force evaluation later. |
1543 |
< |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1544 |
< |
if (usePeriodicBoundaryConditions_) { |
1545 |
< |
snap_->wrapVector(dr); |
1546 |
< |
} |
1547 |
< |
getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq ); |
1548 |
< |
if (dr.lengthSquare() < rlistsq) { |
1549 |
< |
neighborList.push_back(make_pair((*j1), (*j2))); |
1554 |
< |
} |
1555 |
< |
} |
1556 |
< |
} |
1535 |
> |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1536 |
> |
j2 != cellListCol_[m2].end(); ++j2) { |
1537 |
> |
|
1538 |
> |
// In parallel, we need to visit *all* pairs of row |
1539 |
> |
// & column indicies and will divide labor in the |
1540 |
> |
// force evaluation later. |
1541 |
> |
dr = cgColData.position[(*j2)] - rs; |
1542 |
> |
if (usePeriodicBoundaryConditions_) { |
1543 |
> |
snap_->wrapVector(dr); |
1544 |
> |
} |
1545 |
> |
if (dr.lengthSquare() < rListSq_) { |
1546 |
> |
neighborList.push_back( (*j2) ); |
1547 |
> |
++len; |
1548 |
> |
} |
1549 |
> |
} |
1550 |
|
#else |
1551 |
< |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1552 |
< |
j1 != cellList_[m1].end(); ++j1) { |
1553 |
< |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1554 |
< |
j2 != cellList_[m2].end(); ++j2) { |
1555 |
< |
|
1556 |
< |
// Always do this if we're in different cells or if |
1557 |
< |
// we're in the same cell and the global index of |
1558 |
< |
// the j2 cutoff group is greater than or equal to |
1559 |
< |
// the j1 cutoff group. Note that Rappaport's code |
1560 |
< |
// has a "less than" conditional here, but that |
1561 |
< |
// deals with atom-by-atom computation. OpenMD |
1562 |
< |
// allows atoms within a single cutoff group to |
1563 |
< |
// interact with each other. |
1564 |
< |
|
1565 |
< |
if (m2 != m1 || (*j2) >= (*j1) ) { |
1566 |
< |
|
1567 |
< |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1575 |
< |
if (usePeriodicBoundaryConditions_) { |
1576 |
< |
snap_->wrapVector(dr); |
1577 |
< |
} |
1578 |
< |
getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq ); |
1579 |
< |
if (dr.lengthSquare() < rlistsq) { |
1580 |
< |
neighborList.push_back(make_pair((*j1), (*j2))); |
1581 |
< |
} |
1582 |
< |
} |
1583 |
< |
} |
1551 |
> |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1552 |
> |
j2 != cellList_[m2].end(); ++j2) { |
1553 |
> |
|
1554 |
> |
// Always do this if we're in different cells or if |
1555 |
> |
// we're in the same cell and the global index of |
1556 |
> |
// the j2 cutoff group is greater than or equal to |
1557 |
> |
// the j1 cutoff group. Note that Rappaport's code |
1558 |
> |
// has a "less than" conditional here, but that |
1559 |
> |
// deals with atom-by-atom computation. OpenMD |
1560 |
> |
// allows atoms within a single cutoff group to |
1561 |
> |
// interact with each other. |
1562 |
> |
|
1563 |
> |
if ( (*j2) >= j1 ) { |
1564 |
> |
|
1565 |
> |
dr = snap_->cgData.position[(*j2)] - rs; |
1566 |
> |
if (usePeriodicBoundaryConditions_) { |
1567 |
> |
snap_->wrapVector(dr); |
1568 |
|
} |
1569 |
< |
#endif |
1569 |
> |
if ( dr.lengthSquare() < rListSq_) { |
1570 |
> |
neighborList.push_back( (*j2) ); |
1571 |
> |
++len; |
1572 |
> |
} |
1573 |
|
} |
1574 |
< |
} |
1574 |
> |
} |
1575 |
> |
#endif |
1576 |
|
} |
1577 |
< |
} |
1577 |
> |
} |
1578 |
|
} else { |
1579 |
|
// branch to do all cutoff group pairs |
1580 |
|
#ifdef IS_MPI |
1581 |
|
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1582 |
+ |
point[j1] = len; |
1583 |
+ |
rs = cgRowData.position[j1]; |
1584 |
|
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1585 |
< |
dr = cgColData.position[j2] - cgRowData.position[j1]; |
1585 |
> |
dr = cgColData.position[j2] - rs; |
1586 |
|
if (usePeriodicBoundaryConditions_) { |
1587 |
|
snap_->wrapVector(dr); |
1588 |
|
} |
1589 |
< |
getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq); |
1590 |
< |
if (dr.lengthSquare() < rlistsq) { |
1591 |
< |
neighborList.push_back(make_pair(j1, j2)); |
1589 |
> |
if (dr.lengthSquare() < rListSq_) { |
1590 |
> |
neighborList.push_back( j2 ); |
1591 |
> |
++len; |
1592 |
|
} |
1593 |
|
} |
1594 |
|
} |
1595 |
|
#else |
1596 |
|
// include all groups here. |
1597 |
|
for (int j1 = 0; j1 < nGroups_; j1++) { |
1598 |
+ |
point[j1] = len; |
1599 |
+ |
rs = snap_->cgData.position[j1]; |
1600 |
|
// include self group interactions j2 == j1 |
1601 |
|
for (int j2 = j1; j2 < nGroups_; j2++) { |
1602 |
< |
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1602 |
> |
dr = snap_->cgData.position[j2] - rs; |
1603 |
|
if (usePeriodicBoundaryConditions_) { |
1604 |
|
snap_->wrapVector(dr); |
1605 |
|
} |
1606 |
< |
getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq ); |
1607 |
< |
if (dr.lengthSquare() < rlistsq) { |
1608 |
< |
neighborList.push_back(make_pair(j1, j2)); |
1606 |
> |
if (dr.lengthSquare() < rListSq_) { |
1607 |
> |
neighborList.push_back( j2 ); |
1608 |
> |
++len; |
1609 |
|
} |
1610 |
|
} |
1611 |
|
} |
1612 |
|
#endif |
1613 |
|
} |
1614 |
< |
|
1614 |
> |
|
1615 |
> |
#ifdef IS_MPI |
1616 |
> |
point[nGroupsInRow_] = len; |
1617 |
> |
#else |
1618 |
> |
point[nGroups_] = len; |
1619 |
> |
#endif |
1620 |
> |
|
1621 |
|
// save the local cutoff group positions for the check that is |
1622 |
|
// done on each loop: |
1623 |
|
saved_CG_positions_.clear(); |
1624 |
+ |
saved_CG_positions_.reserve(nGroups_); |
1625 |
|
for (int i = 0; i < nGroups_; i++) |
1626 |
|
saved_CG_positions_.push_back(snap_->cgData.position[i]); |
1627 |
|
} |