35 |
|
* |
36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
< |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
38 |
> |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
|
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
|
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
479 |
|
for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { |
480 |
|
if (toposForAtom[atom1][j] == atom2) |
481 |
|
return topoDist[atom1][j]; |
482 |
< |
} |
482 |
> |
} |
483 |
|
return 0; |
484 |
|
} |
485 |
|
|
557 |
|
atomRowData.electricField.end(), V3Zero); |
558 |
|
fill(atomColData.electricField.begin(), |
559 |
|
atomColData.electricField.end(), V3Zero); |
560 |
– |
} |
561 |
– |
|
562 |
– |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
563 |
– |
fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), |
564 |
– |
0.0); |
565 |
– |
fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), |
566 |
– |
0.0); |
560 |
|
} |
561 |
|
|
562 |
|
#endif |
632 |
|
AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
633 |
|
atomColData.aMat); |
634 |
|
} |
635 |
< |
|
636 |
< |
// if needed, gather the atomic eletrostatic frames |
637 |
< |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
638 |
< |
AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
639 |
< |
atomRowData.electroFrame); |
640 |
< |
AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
641 |
< |
atomColData.electroFrame); |
635 |
> |
|
636 |
> |
// if needed, gather the atomic eletrostatic information |
637 |
> |
if (storageLayout_ & DataStorage::dslDipole) { |
638 |
> |
AtomPlanVectorRow->gather(snap_->atomData.dipole, |
639 |
> |
atomRowData.dipole); |
640 |
> |
AtomPlanVectorColumn->gather(snap_->atomData.dipole, |
641 |
> |
atomColData.dipole); |
642 |
|
} |
643 |
|
|
644 |
+ |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
645 |
+ |
AtomPlanMatrixRow->gather(snap_->atomData.quadrupole, |
646 |
+ |
atomRowData.quadrupole); |
647 |
+ |
AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole, |
648 |
+ |
atomColData.quadrupole); |
649 |
+ |
} |
650 |
+ |
|
651 |
|
// if needed, gather the atomic fluctuating charge values |
652 |
|
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
653 |
|
AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
679 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
680 |
|
} |
681 |
|
|
682 |
+ |
// this isn't necessary if we don't have polarizable atoms, but |
683 |
+ |
// we'll leave it here for now. |
684 |
|
if (storageLayout_ & DataStorage::dslElectricField) { |
685 |
|
|
686 |
|
AtomPlanVectorRow->scatter(atomRowData.electricField, |
688 |
|
|
689 |
|
int n = snap_->atomData.electricField.size(); |
690 |
|
vector<Vector3d> field_tmp(n, V3Zero); |
691 |
< |
AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); |
691 |
> |
AtomPlanVectorColumn->scatter(atomColData.electricField, |
692 |
> |
field_tmp); |
693 |
|
for (int i = 0; i < n; i++) |
694 |
|
snap_->atomData.electricField[i] += field_tmp[i]; |
695 |
|
} |
787 |
|
for (int i = 0; i < nq; i++) |
788 |
|
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
789 |
|
|
790 |
+ |
} |
791 |
+ |
|
792 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
793 |
+ |
|
794 |
+ |
int nef = snap_->atomData.electricField.size(); |
795 |
+ |
vector<Vector3d> efield_tmp(nef, V3Zero); |
796 |
+ |
|
797 |
+ |
AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp); |
798 |
+ |
for (int i = 0; i < nef; i++) { |
799 |
+ |
snap_->atomData.electricField[i] += efield_tmp[i]; |
800 |
+ |
efield_tmp[i] = 0.0; |
801 |
+ |
} |
802 |
+ |
|
803 |
+ |
AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp); |
804 |
+ |
for (int i = 0; i < nef; i++) |
805 |
+ |
snap_->atomData.electricField[i] += efield_tmp[i]; |
806 |
|
} |
807 |
|
|
808 |
+ |
|
809 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
810 |
|
|
811 |
|
vector<potVec> pot_temp(nLocal_, |
939 |
|
|
940 |
|
|
941 |
|
|
942 |
< |
int ForceMatrixDecomposition::getNAtomsInRow() { |
942 |
> |
int& ForceMatrixDecomposition::getNAtomsInRow() { |
943 |
|
#ifdef IS_MPI |
944 |
|
return nAtomsInRow_; |
945 |
|
#else |
950 |
|
/** |
951 |
|
* returns the list of atoms belonging to this group. |
952 |
|
*/ |
953 |
< |
vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
953 |
> |
vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
954 |
|
#ifdef IS_MPI |
955 |
|
return groupListRow_[cg1]; |
956 |
|
#else |
958 |
|
#endif |
959 |
|
} |
960 |
|
|
961 |
< |
vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
961 |
> |
vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
962 |
|
#ifdef IS_MPI |
963 |
|
return groupListCol_[cg2]; |
964 |
|
#else |
975 |
|
d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; |
976 |
|
#endif |
977 |
|
|
978 |
< |
snap_->wrapVector(d); |
978 |
> |
if (usePeriodicBoundaryConditions_) { |
979 |
> |
snap_->wrapVector(d); |
980 |
> |
} |
981 |
|
return d; |
982 |
|
} |
983 |
|
|
984 |
< |
Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
984 |
> |
Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
985 |
|
#ifdef IS_MPI |
986 |
|
return cgColData.velocity[cg2]; |
987 |
|
#else |
989 |
|
#endif |
990 |
|
} |
991 |
|
|
992 |
< |
Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
992 |
> |
Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
993 |
|
#ifdef IS_MPI |
994 |
|
return atomColData.velocity[atom2]; |
995 |
|
#else |
1007 |
|
#else |
1008 |
|
d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; |
1009 |
|
#endif |
1010 |
< |
|
1011 |
< |
snap_->wrapVector(d); |
1010 |
> |
if (usePeriodicBoundaryConditions_) { |
1011 |
> |
snap_->wrapVector(d); |
1012 |
> |
} |
1013 |
|
return d; |
1014 |
|
} |
1015 |
|
|
1021 |
|
#else |
1022 |
|
d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; |
1023 |
|
#endif |
1024 |
< |
|
1025 |
< |
snap_->wrapVector(d); |
1024 |
> |
if (usePeriodicBoundaryConditions_) { |
1025 |
> |
snap_->wrapVector(d); |
1026 |
> |
} |
1027 |
|
return d; |
1028 |
|
} |
1029 |
|
|
1030 |
< |
RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
1030 |
> |
RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
1031 |
|
#ifdef IS_MPI |
1032 |
|
return massFactorsRow[atom1]; |
1033 |
|
#else |
1035 |
|
#endif |
1036 |
|
} |
1037 |
|
|
1038 |
< |
RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
1038 |
> |
RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
1039 |
|
#ifdef IS_MPI |
1040 |
|
return massFactorsCol[atom2]; |
1041 |
|
#else |
1052 |
|
#else |
1053 |
|
d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; |
1054 |
|
#endif |
1055 |
< |
|
1056 |
< |
snap_->wrapVector(d); |
1055 |
> |
if (usePeriodicBoundaryConditions_) { |
1056 |
> |
snap_->wrapVector(d); |
1057 |
> |
} |
1058 |
|
return d; |
1059 |
|
} |
1060 |
|
|
1061 |
< |
vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
1061 |
> |
vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
1062 |
|
return excludesForAtom[atom1]; |
1063 |
|
} |
1064 |
|
|
1067 |
|
* the parallel decomposition. |
1068 |
|
*/ |
1069 |
|
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { |
1070 |
< |
int unique_id_1, unique_id_2, group1, group2; |
1070 |
> |
int unique_id_1, unique_id_2; |
1071 |
|
|
1072 |
|
#ifdef IS_MPI |
1073 |
|
// in MPI, we have to look up the unique IDs for each atom |
1074 |
|
unique_id_1 = AtomRowToGlobal[atom1]; |
1075 |
|
unique_id_2 = AtomColToGlobal[atom2]; |
1076 |
< |
group1 = cgRowToGlobal[cg1]; |
1077 |
< |
group2 = cgColToGlobal[cg2]; |
1076 |
> |
// group1 = cgRowToGlobal[cg1]; |
1077 |
> |
// group2 = cgColToGlobal[cg2]; |
1078 |
|
#else |
1079 |
|
unique_id_1 = AtomLocalToGlobal[atom1]; |
1080 |
|
unique_id_2 = AtomLocalToGlobal[atom2]; |
1081 |
< |
group1 = cgLocalToGlobal[cg1]; |
1082 |
< |
group2 = cgLocalToGlobal[cg2]; |
1081 |
> |
int group1 = cgLocalToGlobal[cg1]; |
1082 |
> |
int group2 = cgLocalToGlobal[cg2]; |
1083 |
|
#endif |
1084 |
|
|
1085 |
|
if (unique_id_1 == unique_id_2) return true; |
1157 |
|
idat.A2 = &(atomColData.aMat[atom2]); |
1158 |
|
} |
1159 |
|
|
1135 |
– |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
1136 |
– |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
1137 |
– |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
1138 |
– |
} |
1139 |
– |
|
1160 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
1161 |
|
idat.t1 = &(atomRowData.torque[atom1]); |
1162 |
|
idat.t2 = &(atomColData.torque[atom2]); |
1163 |
+ |
} |
1164 |
+ |
|
1165 |
+ |
if (storageLayout_ & DataStorage::dslDipole) { |
1166 |
+ |
idat.dipole1 = &(atomRowData.dipole[atom1]); |
1167 |
+ |
idat.dipole2 = &(atomColData.dipole[atom2]); |
1168 |
+ |
} |
1169 |
+ |
|
1170 |
+ |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
1171 |
+ |
idat.quadrupole1 = &(atomRowData.quadrupole[atom1]); |
1172 |
+ |
idat.quadrupole2 = &(atomColData.quadrupole[atom2]); |
1173 |
|
} |
1174 |
|
|
1175 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
1211 |
|
idat.A2 = &(snap_->atomData.aMat[atom2]); |
1212 |
|
} |
1213 |
|
|
1184 |
– |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
1185 |
– |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
1186 |
– |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
1187 |
– |
} |
1188 |
– |
|
1214 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
1215 |
|
idat.t1 = &(snap_->atomData.torque[atom1]); |
1216 |
|
idat.t2 = &(snap_->atomData.torque[atom2]); |
1217 |
|
} |
1218 |
|
|
1219 |
+ |
if (storageLayout_ & DataStorage::dslDipole) { |
1220 |
+ |
idat.dipole1 = &(snap_->atomData.dipole[atom1]); |
1221 |
+ |
idat.dipole2 = &(snap_->atomData.dipole[atom2]); |
1222 |
+ |
} |
1223 |
+ |
|
1224 |
+ |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
1225 |
+ |
idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]); |
1226 |
+ |
idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]); |
1227 |
+ |
} |
1228 |
+ |
|
1229 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
1230 |
|
idat.rho1 = &(snap_->atomData.density[atom1]); |
1231 |
|
idat.rho2 = &(snap_->atomData.density[atom2]); |
1322 |
|
groupCutoffs cuts; |
1323 |
|
bool doAllPairs = false; |
1324 |
|
|
1325 |
+ |
RealType rList_ = (largestRcut_ + skinThickness_); |
1326 |
+ |
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
1327 |
+ |
Mat3x3d box; |
1328 |
+ |
Mat3x3d invBox; |
1329 |
+ |
|
1330 |
+ |
Vector3d rs, scaled, dr; |
1331 |
+ |
Vector3i whichCell; |
1332 |
+ |
int cellIndex; |
1333 |
+ |
|
1334 |
|
#ifdef IS_MPI |
1335 |
|
cellListRow_.clear(); |
1336 |
|
cellListCol_.clear(); |
1337 |
|
#else |
1338 |
|
cellList_.clear(); |
1339 |
|
#endif |
1340 |
< |
|
1341 |
< |
RealType rList_ = (largestRcut_ + skinThickness_); |
1342 |
< |
RealType rl2 = rList_ * rList_; |
1343 |
< |
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
1344 |
< |
Mat3x3d Hmat = snap_->getHmat(); |
1345 |
< |
Vector3d Hx = Hmat.getColumn(0); |
1346 |
< |
Vector3d Hy = Hmat.getColumn(1); |
1347 |
< |
Vector3d Hz = Hmat.getColumn(2); |
1348 |
< |
|
1349 |
< |
nCells_.x() = (int) ( Hx.length() )/ rList_; |
1350 |
< |
nCells_.y() = (int) ( Hy.length() )/ rList_; |
1351 |
< |
nCells_.z() = (int) ( Hz.length() )/ rList_; |
1352 |
< |
|
1340 |
> |
|
1341 |
> |
if (!usePeriodicBoundaryConditions_) { |
1342 |
> |
box = snap_->getBoundingBox(); |
1343 |
> |
invBox = snap_->getInvBoundingBox(); |
1344 |
> |
} else { |
1345 |
> |
box = snap_->getHmat(); |
1346 |
> |
invBox = snap_->getInvHmat(); |
1347 |
> |
} |
1348 |
> |
|
1349 |
> |
Vector3d boxX = box.getColumn(0); |
1350 |
> |
Vector3d boxY = box.getColumn(1); |
1351 |
> |
Vector3d boxZ = box.getColumn(2); |
1352 |
> |
|
1353 |
> |
nCells_.x() = (int) ( boxX.length() )/ rList_; |
1354 |
> |
nCells_.y() = (int) ( boxY.length() )/ rList_; |
1355 |
> |
nCells_.z() = (int) ( boxZ.length() )/ rList_; |
1356 |
> |
|
1357 |
|
// handle small boxes where the cell offsets can end up repeating cells |
1358 |
|
|
1359 |
|
if (nCells_.x() < 3) doAllPairs = true; |
1360 |
|
if (nCells_.y() < 3) doAllPairs = true; |
1361 |
|
if (nCells_.z() < 3) doAllPairs = true; |
1362 |
< |
|
1315 |
< |
Mat3x3d invHmat = snap_->getInvHmat(); |
1316 |
< |
Vector3d rs, scaled, dr; |
1317 |
< |
Vector3i whichCell; |
1318 |
< |
int cellIndex; |
1362 |
> |
|
1363 |
|
int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
1364 |
< |
|
1364 |
> |
|
1365 |
|
#ifdef IS_MPI |
1366 |
|
cellListRow_.resize(nCtot); |
1367 |
|
cellListCol_.resize(nCtot); |
1368 |
|
#else |
1369 |
|
cellList_.resize(nCtot); |
1370 |
|
#endif |
1371 |
< |
|
1371 |
> |
|
1372 |
|
if (!doAllPairs) { |
1373 |
|
#ifdef IS_MPI |
1374 |
< |
|
1374 |
> |
|
1375 |
|
for (int i = 0; i < nGroupsInRow_; i++) { |
1376 |
|
rs = cgRowData.position[i]; |
1377 |
|
|
1378 |
|
// scaled positions relative to the box vectors |
1379 |
< |
scaled = invHmat * rs; |
1379 |
> |
scaled = invBox * rs; |
1380 |
|
|
1381 |
|
// wrap the vector back into the unit box by subtracting integer box |
1382 |
|
// numbers |
1383 |
|
for (int j = 0; j < 3; j++) { |
1384 |
|
scaled[j] -= roundMe(scaled[j]); |
1385 |
|
scaled[j] += 0.5; |
1386 |
+ |
// Handle the special case when an object is exactly on the |
1387 |
+ |
// boundary (a scaled coordinate of 1.0 is the same as |
1388 |
+ |
// scaled coordinate of 0.0) |
1389 |
+ |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1390 |
|
} |
1391 |
|
|
1392 |
|
// find xyz-indices of cell that cutoffGroup is in. |
1404 |
|
rs = cgColData.position[i]; |
1405 |
|
|
1406 |
|
// scaled positions relative to the box vectors |
1407 |
< |
scaled = invHmat * rs; |
1407 |
> |
scaled = invBox * rs; |
1408 |
|
|
1409 |
|
// wrap the vector back into the unit box by subtracting integer box |
1410 |
|
// numbers |
1411 |
|
for (int j = 0; j < 3; j++) { |
1412 |
|
scaled[j] -= roundMe(scaled[j]); |
1413 |
|
scaled[j] += 0.5; |
1414 |
+ |
// Handle the special case when an object is exactly on the |
1415 |
+ |
// boundary (a scaled coordinate of 1.0 is the same as |
1416 |
+ |
// scaled coordinate of 0.0) |
1417 |
+ |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1418 |
|
} |
1419 |
|
|
1420 |
|
// find xyz-indices of cell that cutoffGroup is in. |
1428 |
|
// add this cutoff group to the list of groups in this cell; |
1429 |
|
cellListCol_[cellIndex].push_back(i); |
1430 |
|
} |
1431 |
< |
|
1431 |
> |
|
1432 |
|
#else |
1433 |
|
for (int i = 0; i < nGroups_; i++) { |
1434 |
|
rs = snap_->cgData.position[i]; |
1435 |
|
|
1436 |
|
// scaled positions relative to the box vectors |
1437 |
< |
scaled = invHmat * rs; |
1437 |
> |
scaled = invBox * rs; |
1438 |
|
|
1439 |
|
// wrap the vector back into the unit box by subtracting integer box |
1440 |
|
// numbers |
1441 |
|
for (int j = 0; j < 3; j++) { |
1442 |
|
scaled[j] -= roundMe(scaled[j]); |
1443 |
|
scaled[j] += 0.5; |
1444 |
+ |
// Handle the special case when an object is exactly on the |
1445 |
+ |
// boundary (a scaled coordinate of 1.0 is the same as |
1446 |
+ |
// scaled coordinate of 0.0) |
1447 |
+ |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1448 |
|
} |
1449 |
|
|
1450 |
|
// find xyz-indices of cell that cutoffGroup is in. |
1503 |
|
// & column indicies and will divide labor in the |
1504 |
|
// force evaluation later. |
1505 |
|
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1506 |
< |
snap_->wrapVector(dr); |
1506 |
> |
if (usePeriodicBoundaryConditions_) { |
1507 |
> |
snap_->wrapVector(dr); |
1508 |
> |
} |
1509 |
|
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1510 |
|
if (dr.lengthSquare() < cuts.third) { |
1511 |
|
neighborList.push_back(make_pair((*j1), (*j2))); |
1527 |
|
// allows atoms within a single cutoff group to |
1528 |
|
// interact with each other. |
1529 |
|
|
1472 |
– |
|
1473 |
– |
|
1530 |
|
if (m2 != m1 || (*j2) >= (*j1) ) { |
1531 |
|
|
1532 |
|
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1533 |
< |
snap_->wrapVector(dr); |
1533 |
> |
if (usePeriodicBoundaryConditions_) { |
1534 |
> |
snap_->wrapVector(dr); |
1535 |
> |
} |
1536 |
|
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1537 |
|
if (dr.lengthSquare() < cuts.third) { |
1538 |
|
neighborList.push_back(make_pair((*j1), (*j2))); |
1551 |
|
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1552 |
|
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1553 |
|
dr = cgColData.position[j2] - cgRowData.position[j1]; |
1554 |
< |
snap_->wrapVector(dr); |
1554 |
> |
if (usePeriodicBoundaryConditions_) { |
1555 |
> |
snap_->wrapVector(dr); |
1556 |
> |
} |
1557 |
|
cuts = getGroupCutoffs( j1, j2 ); |
1558 |
|
if (dr.lengthSquare() < cuts.third) { |
1559 |
|
neighborList.push_back(make_pair(j1, j2)); |
1566 |
|
// include self group interactions j2 == j1 |
1567 |
|
for (int j2 = j1; j2 < nGroups_; j2++) { |
1568 |
|
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1569 |
< |
snap_->wrapVector(dr); |
1569 |
> |
if (usePeriodicBoundaryConditions_) { |
1570 |
> |
snap_->wrapVector(dr); |
1571 |
> |
} |
1572 |
|
cuts = getGroupCutoffs( j1, j2 ); |
1573 |
|
if (dr.lengthSquare() < cuts.third) { |
1574 |
|
neighborList.push_back(make_pair(j1, j2)); |