ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing:
branches/development/src/parallel/ForceDecomposition.cpp (file contents), Revision 1540 by gezelter, Mon Jan 17 21:34:36 2011 UTC vs.
branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 1721 by gezelter, Thu May 24 14:17:42 2012 UTC

# Line 36 | Line 36
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42 < #include "parallel/ForceDecomposition.hpp"
42 < #include "parallel/Communicator.hpp"
42 > #include "parallel/ForceMatrixDecomposition.hpp"
43   #include "math/SquareMatrix3.hpp"
44 + #include "nonbonded/NonBondedInteraction.hpp"
45 + #include "brains/SnapshotManager.hpp"
46 + #include "brains/PairList.hpp"
47  
48 + using namespace std;
49   namespace OpenMD {
50  
51 <  void ForceDecomposition::distributeInitialData() {
51 >  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52 >
53 >    // In a parallel computation, row and colum scans must visit all
54 >    // surrounding cells (not just the 14 upper triangular blocks that
55 >    // are used when the processor can see all pairs)
56   #ifdef IS_MPI
57 +    cellOffsets_.clear();
58 +    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59 +    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60 +    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                          
61 +    cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62 +    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63 +    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64 +    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65 +    cellOffsets_.push_back( Vector3i( 0, 1,-1) );      
66 +    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 +    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68 +    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69 +    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 +    cellOffsets_.push_back( Vector3i(-1, 0, 0) );      
71 +    cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72 +    cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73 +    cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74 +    cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75 +    cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76 +    cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77 +    cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78 +    cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 +    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 +    cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81 +    cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82 +    cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83 +    cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84 +    cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 + #endif    
86 +  }
87  
50    int nAtoms;
51    int nGroups;
88  
89 <    AtomCommRealI = new Communicator<Row,RealType>(nAtoms);
90 <    AtomCommVectorI = new Communicator<Row,Vector3d>(nAtoms);
91 <    AtomCommMatrixI = new Communicator<Row,Mat3x3d>(nAtoms);
89 >  /**
90 >   * distributeInitialData is essentially a copy of the older fortran
91 >   * SimulationSetup
92 >   */
93 >  void ForceMatrixDecomposition::distributeInitialData() {
94 >    snap_ = sman_->getCurrentSnapshot();
95 >    storageLayout_ = sman_->getStorageLayout();
96 >    ff_ = info_->getForceField();
97 >    nLocal_ = snap_->getNumberOfAtoms();
98 >    
99 >    nGroups_ = info_->getNLocalCutoffGroups();
100 >    // gather the information for atomtype IDs (atids):
101 >    idents = info_->getIdentArray();
102 >    AtomLocalToGlobal = info_->getGlobalAtomIndices();
103 >    cgLocalToGlobal = info_->getGlobalGroupIndices();
104 >    vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
105  
106 <    AtomCommRealJ = new Communicator<Column,RealType>(nAtoms);
58 <    AtomCommVectorJ = new Communicator<Column,Vector3d>(nAtoms);
59 <    AtomCommMatrixJ = new Communicator<Column,Mat3x3d>(nAtoms);
106 >    massFactors = info_->getMassFactors();
107  
108 <    cgCommVectorI = new Communicator<Row,Vector3d>(nGroups);
109 <    cgCommVectorJ = new Communicator<Column,Vector3d>(nGroups);
110 <    // more to come
108 >    PairList* excludes = info_->getExcludedInteractions();
109 >    PairList* oneTwo = info_->getOneTwoInteractions();
110 >    PairList* oneThree = info_->getOneThreeInteractions();
111 >    PairList* oneFour = info_->getOneFourInteractions();
112 >
113 > #ifdef IS_MPI
114 >
115 >    MPI::Intracomm row = rowComm.getComm();
116 >    MPI::Intracomm col = colComm.getComm();
117 >
118 >    AtomPlanIntRow = new Plan<int>(row, nLocal_);
119 >    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
120 >    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
121 >    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
122 >    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
123 >
124 >    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
125 >    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
126 >    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
127 >    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
128 >    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
129 >
130 >    cgPlanIntRow = new Plan<int>(row, nGroups_);
131 >    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
132 >    cgPlanIntColumn = new Plan<int>(col, nGroups_);
133 >    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
134 >
135 >    nAtomsInRow_ = AtomPlanIntRow->getSize();
136 >    nAtomsInCol_ = AtomPlanIntColumn->getSize();
137 >    nGroupsInRow_ = cgPlanIntRow->getSize();
138 >    nGroupsInCol_ = cgPlanIntColumn->getSize();
139 >
140 >    // Modify the data storage objects with the correct layouts and sizes:
141 >    atomRowData.resize(nAtomsInRow_);
142 >    atomRowData.setStorageLayout(storageLayout_);
143 >    atomColData.resize(nAtomsInCol_);
144 >    atomColData.setStorageLayout(storageLayout_);
145 >    cgRowData.resize(nGroupsInRow_);
146 >    cgRowData.setStorageLayout(DataStorage::dslPosition);
147 >    cgColData.resize(nGroupsInCol_);
148 >    cgColData.setStorageLayout(DataStorage::dslPosition);
149 >        
150 >    identsRow.resize(nAtomsInRow_);
151 >    identsCol.resize(nAtomsInCol_);
152 >    
153 >    AtomPlanIntRow->gather(idents, identsRow);
154 >    AtomPlanIntColumn->gather(idents, identsCol);
155 >    
156 >    // allocate memory for the parallel objects
157 >    atypesRow.resize(nAtomsInRow_);
158 >    atypesCol.resize(nAtomsInCol_);
159 >
160 >    for (int i = 0; i < nAtomsInRow_; i++)
161 >      atypesRow[i] = ff_->getAtomType(identsRow[i]);
162 >    for (int i = 0; i < nAtomsInCol_; i++)
163 >      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
164 >
165 >    pot_row.resize(nAtomsInRow_);
166 >    pot_col.resize(nAtomsInCol_);
167 >
168 >    AtomRowToGlobal.resize(nAtomsInRow_);
169 >    AtomColToGlobal.resize(nAtomsInCol_);
170 >    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
171 >    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
172 >
173 >    cgRowToGlobal.resize(nGroupsInRow_);
174 >    cgColToGlobal.resize(nGroupsInCol_);
175 >    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
176 >    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
177 >
178 >    massFactorsRow.resize(nAtomsInRow_);
179 >    massFactorsCol.resize(nAtomsInCol_);
180 >    AtomPlanRealRow->gather(massFactors, massFactorsRow);
181 >    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
182 >
183 >    groupListRow_.clear();
184 >    groupListRow_.resize(nGroupsInRow_);
185 >    for (int i = 0; i < nGroupsInRow_; i++) {
186 >      int gid = cgRowToGlobal[i];
187 >      for (int j = 0; j < nAtomsInRow_; j++) {
188 >        int aid = AtomRowToGlobal[j];
189 >        if (globalGroupMembership[aid] == gid)
190 >          groupListRow_[i].push_back(j);
191 >      }      
192 >    }
193 >
194 >    groupListCol_.clear();
195 >    groupListCol_.resize(nGroupsInCol_);
196 >    for (int i = 0; i < nGroupsInCol_; i++) {
197 >      int gid = cgColToGlobal[i];
198 >      for (int j = 0; j < nAtomsInCol_; j++) {
199 >        int aid = AtomColToGlobal[j];
200 >        if (globalGroupMembership[aid] == gid)
201 >          groupListCol_[i].push_back(j);
202 >      }      
203 >    }
204 >
205 >    excludesForAtom.clear();
206 >    excludesForAtom.resize(nAtomsInRow_);
207 >    toposForAtom.clear();
208 >    toposForAtom.resize(nAtomsInRow_);
209 >    topoDist.clear();
210 >    topoDist.resize(nAtomsInRow_);
211 >    for (int i = 0; i < nAtomsInRow_; i++) {
212 >      int iglob = AtomRowToGlobal[i];
213 >
214 >      for (int j = 0; j < nAtomsInCol_; j++) {
215 >        int jglob = AtomColToGlobal[j];
216 >
217 >        if (excludes->hasPair(iglob, jglob))
218 >          excludesForAtom[i].push_back(j);      
219 >        
220 >        if (oneTwo->hasPair(iglob, jglob)) {
221 >          toposForAtom[i].push_back(j);
222 >          topoDist[i].push_back(1);
223 >        } else {
224 >          if (oneThree->hasPair(iglob, jglob)) {
225 >            toposForAtom[i].push_back(j);
226 >            topoDist[i].push_back(2);
227 >          } else {
228 >            if (oneFour->hasPair(iglob, jglob)) {
229 >              toposForAtom[i].push_back(j);
230 >              topoDist[i].push_back(3);
231 >            }
232 >          }
233 >        }
234 >      }      
235 >    }
236 >
237 > #else
238 >    excludesForAtom.clear();
239 >    excludesForAtom.resize(nLocal_);
240 >    toposForAtom.clear();
241 >    toposForAtom.resize(nLocal_);
242 >    topoDist.clear();
243 >    topoDist.resize(nLocal_);
244 >
245 >    for (int i = 0; i < nLocal_; i++) {
246 >      int iglob = AtomLocalToGlobal[i];
247 >
248 >      for (int j = 0; j < nLocal_; j++) {
249 >        int jglob = AtomLocalToGlobal[j];
250 >
251 >        if (excludes->hasPair(iglob, jglob))
252 >          excludesForAtom[i].push_back(j);              
253 >        
254 >        if (oneTwo->hasPair(iglob, jglob)) {
255 >          toposForAtom[i].push_back(j);
256 >          topoDist[i].push_back(1);
257 >        } else {
258 >          if (oneThree->hasPair(iglob, jglob)) {
259 >            toposForAtom[i].push_back(j);
260 >            topoDist[i].push_back(2);
261 >          } else {
262 >            if (oneFour->hasPair(iglob, jglob)) {
263 >              toposForAtom[i].push_back(j);
264 >              topoDist[i].push_back(3);
265 >            }
266 >          }
267 >        }
268 >      }      
269 >    }
270   #endif
271 +
272 +    // allocate memory for the parallel objects
273 +    atypesLocal.resize(nLocal_);
274 +
275 +    for (int i = 0; i < nLocal_; i++)
276 +      atypesLocal[i] = ff_->getAtomType(idents[i]);
277 +
278 +    groupList_.clear();
279 +    groupList_.resize(nGroups_);
280 +    for (int i = 0; i < nGroups_; i++) {
281 +      int gid = cgLocalToGlobal[i];
282 +      for (int j = 0; j < nLocal_; j++) {
283 +        int aid = AtomLocalToGlobal[j];
284 +        if (globalGroupMembership[aid] == gid) {
285 +          groupList_[i].push_back(j);
286 +        }
287 +      }      
288 +    }
289 +
290 +
291 +    createGtypeCutoffMap();
292 +
293    }
294 +  
295 +  void ForceMatrixDecomposition::createGtypeCutoffMap() {
296      
297 +    RealType tol = 1e-6;
298 +    largestRcut_ = 0.0;
299 +    RealType rc;
300 +    int atid;
301 +    set<AtomType*> atypes = info_->getSimulatedAtomTypes();
302 +    
303 +    map<int, RealType> atypeCutoff;
304 +      
305 +    for (set<AtomType*>::iterator at = atypes.begin();
306 +         at != atypes.end(); ++at){
307 +      atid = (*at)->getIdent();
308 +      if (userChoseCutoff_)
309 +        atypeCutoff[atid] = userCutoff_;
310 +      else
311 +        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
312 +    }
313 +    
314 +    vector<RealType> gTypeCutoffs;
315 +    // first we do a single loop over the cutoff groups to find the
316 +    // largest cutoff for any atypes present in this group.
317 + #ifdef IS_MPI
318 +    vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
319 +    groupRowToGtype.resize(nGroupsInRow_);
320 +    for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
321 +      vector<int> atomListRow = getAtomsInGroupRow(cg1);
322 +      for (vector<int>::iterator ia = atomListRow.begin();
323 +           ia != atomListRow.end(); ++ia) {            
324 +        int atom1 = (*ia);
325 +        atid = identsRow[atom1];
326 +        if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
327 +          groupCutoffRow[cg1] = atypeCutoff[atid];
328 +        }
329 +      }
330  
331 +      bool gTypeFound = false;
332 +      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
333 +        if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
334 +          groupRowToGtype[cg1] = gt;
335 +          gTypeFound = true;
336 +        }
337 +      }
338 +      if (!gTypeFound) {
339 +        gTypeCutoffs.push_back( groupCutoffRow[cg1] );
340 +        groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
341 +      }
342 +      
343 +    }
344 +    vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
345 +    groupColToGtype.resize(nGroupsInCol_);
346 +    for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
347 +      vector<int> atomListCol = getAtomsInGroupColumn(cg2);
348 +      for (vector<int>::iterator jb = atomListCol.begin();
349 +           jb != atomListCol.end(); ++jb) {            
350 +        int atom2 = (*jb);
351 +        atid = identsCol[atom2];
352 +        if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
353 +          groupCutoffCol[cg2] = atypeCutoff[atid];
354 +        }
355 +      }
356 +      bool gTypeFound = false;
357 +      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
358 +        if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
359 +          groupColToGtype[cg2] = gt;
360 +          gTypeFound = true;
361 +        }
362 +      }
363 +      if (!gTypeFound) {
364 +        gTypeCutoffs.push_back( groupCutoffCol[cg2] );
365 +        groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
366 +      }
367 +    }
368 + #else
369  
370 <  void ForceDecomposition::distributeData()  {
370 >    vector<RealType> groupCutoff(nGroups_, 0.0);
371 >    groupToGtype.resize(nGroups_);
372 >    for (int cg1 = 0; cg1 < nGroups_; cg1++) {
373 >      groupCutoff[cg1] = 0.0;
374 >      vector<int> atomList = getAtomsInGroupRow(cg1);
375 >      for (vector<int>::iterator ia = atomList.begin();
376 >           ia != atomList.end(); ++ia) {            
377 >        int atom1 = (*ia);
378 >        atid = idents[atom1];
379 >        if (atypeCutoff[atid] > groupCutoff[cg1])
380 >          groupCutoff[cg1] = atypeCutoff[atid];
381 >      }
382 >      
383 >      bool gTypeFound = false;
384 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
385 >        if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
386 >          groupToGtype[cg1] = gt;
387 >          gTypeFound = true;
388 >        }
389 >      }
390 >      if (!gTypeFound) {      
391 >        gTypeCutoffs.push_back( groupCutoff[cg1] );
392 >        groupToGtype[cg1] = gTypeCutoffs.size() - 1;
393 >      }      
394 >    }
395 > #endif
396 >
397 >    // Now we find the maximum group cutoff value present in the simulation
398 >
399 >    RealType groupMax = *max_element(gTypeCutoffs.begin(),
400 >                                     gTypeCutoffs.end());
401 >
402   #ifdef IS_MPI
403 <    Snapshot* snap = sman_->getCurrentSnapshot();
403 >    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
404 >                              MPI::MAX);
405 > #endif
406      
407 +    RealType tradRcut = groupMax;
408 +
409 +    for (int i = 0; i < gTypeCutoffs.size();  i++) {
410 +      for (int j = 0; j < gTypeCutoffs.size();  j++) {      
411 +        RealType thisRcut;
412 +        switch(cutoffPolicy_) {
413 +        case TRADITIONAL:
414 +          thisRcut = tradRcut;
415 +          break;
416 +        case MIX:
417 +          thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
418 +          break;
419 +        case MAX:
420 +          thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
421 +          break;
422 +        default:
423 +          sprintf(painCave.errMsg,
424 +                  "ForceMatrixDecomposition::createGtypeCutoffMap "
425 +                  "hit an unknown cutoff policy!\n");
426 +          painCave.severity = OPENMD_ERROR;
427 +          painCave.isFatal = 1;
428 +          simError();
429 +          break;
430 +        }
431 +
432 +        pair<int,int> key = make_pair(i,j);
433 +        gTypeCutoffMap[key].first = thisRcut;
434 +        if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
435 +        gTypeCutoffMap[key].second = thisRcut*thisRcut;
436 +        gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
437 +        // sanity check
438 +        
439 +        if (userChoseCutoff_) {
440 +          if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
441 +            sprintf(painCave.errMsg,
442 +                    "ForceMatrixDecomposition::createGtypeCutoffMap "
443 +                    "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
444 +            painCave.severity = OPENMD_ERROR;
445 +            painCave.isFatal = 1;
446 +            simError();            
447 +          }
448 +        }
449 +      }
450 +    }
451 +  }
452 +
453 +
454 +  groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
455 +    int i, j;  
456 + #ifdef IS_MPI
457 +    i = groupRowToGtype[cg1];
458 +    j = groupColToGtype[cg2];
459 + #else
460 +    i = groupToGtype[cg1];
461 +    j = groupToGtype[cg2];
462 + #endif    
463 +    return gTypeCutoffMap[make_pair(i,j)];
464 +  }
465 +
466 +  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
467 +    for (int j = 0; j < toposForAtom[atom1].size(); j++) {
468 +      if (toposForAtom[atom1][j] == atom2)
469 +        return topoDist[atom1][j];
470 +    }
471 +    return 0;
472 +  }
473 +
474 +  void ForceMatrixDecomposition::zeroWorkArrays() {
475 +    pairwisePot = 0.0;
476 +    embeddingPot = 0.0;
477 +
478 + #ifdef IS_MPI
479 +    if (storageLayout_ & DataStorage::dslForce) {
480 +      fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
481 +      fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
482 +    }
483 +
484 +    if (storageLayout_ & DataStorage::dslTorque) {
485 +      fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
486 +      fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
487 +    }
488 +    
489 +    fill(pot_row.begin(), pot_row.end(),
490 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
491 +
492 +    fill(pot_col.begin(), pot_col.end(),
493 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
494 +
495 +    if (storageLayout_ & DataStorage::dslParticlePot) {    
496 +      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
497 +           0.0);
498 +      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
499 +           0.0);
500 +    }
501 +
502 +    if (storageLayout_ & DataStorage::dslDensity) {      
503 +      fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
504 +      fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
505 +    }
506 +
507 +    if (storageLayout_ & DataStorage::dslFunctional) {  
508 +      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
509 +           0.0);
510 +      fill(atomColData.functional.begin(), atomColData.functional.end(),
511 +           0.0);
512 +    }
513 +
514 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
515 +      fill(atomRowData.functionalDerivative.begin(),
516 +           atomRowData.functionalDerivative.end(), 0.0);
517 +      fill(atomColData.functionalDerivative.begin(),
518 +           atomColData.functionalDerivative.end(), 0.0);
519 +    }
520 +
521 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
522 +      fill(atomRowData.skippedCharge.begin(),
523 +           atomRowData.skippedCharge.end(), 0.0);
524 +      fill(atomColData.skippedCharge.begin(),
525 +           atomColData.skippedCharge.end(), 0.0);
526 +    }
527 +
528 +    if (storageLayout_ & DataStorage::dslFlucQForce) {      
529 +      fill(atomRowData.flucQFrc.begin(),
530 +           atomRowData.flucQFrc.end(), 0.0);
531 +      fill(atomColData.flucQFrc.begin(),
532 +           atomColData.flucQFrc.end(), 0.0);
533 +    }
534 +
535 +    if (storageLayout_ & DataStorage::dslElectricField) {    
536 +      fill(atomRowData.electricField.begin(),
537 +           atomRowData.electricField.end(), V3Zero);
538 +      fill(atomColData.electricField.begin(),
539 +           atomColData.electricField.end(), V3Zero);
540 +    }
541 +
542 +    if (storageLayout_ & DataStorage::dslFlucQForce) {    
543 +      fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(),
544 +           0.0);
545 +      fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(),
546 +           0.0);
547 +    }
548 +
549 + #endif
550 +    // even in parallel, we need to zero out the local arrays:
551 +
552 +    if (storageLayout_ & DataStorage::dslParticlePot) {      
553 +      fill(snap_->atomData.particlePot.begin(),
554 +           snap_->atomData.particlePot.end(), 0.0);
555 +    }
556 +    
557 +    if (storageLayout_ & DataStorage::dslDensity) {      
558 +      fill(snap_->atomData.density.begin(),
559 +           snap_->atomData.density.end(), 0.0);
560 +    }
561 +
562 +    if (storageLayout_ & DataStorage::dslFunctional) {
563 +      fill(snap_->atomData.functional.begin(),
564 +           snap_->atomData.functional.end(), 0.0);
565 +    }
566 +
567 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
568 +      fill(snap_->atomData.functionalDerivative.begin(),
569 +           snap_->atomData.functionalDerivative.end(), 0.0);
570 +    }
571 +
572 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
573 +      fill(snap_->atomData.skippedCharge.begin(),
574 +           snap_->atomData.skippedCharge.end(), 0.0);
575 +    }
576 +
577 +    if (storageLayout_ & DataStorage::dslElectricField) {      
578 +      fill(snap_->atomData.electricField.begin(),
579 +           snap_->atomData.electricField.end(), V3Zero);
580 +    }
581 +  }
582 +
583 +
584 +  void ForceMatrixDecomposition::distributeData()  {
585 +    snap_ = sman_->getCurrentSnapshot();
586 +    storageLayout_ = sman_->getStorageLayout();
587 + #ifdef IS_MPI
588 +    
589      // gather up the atomic positions
590 <    AtomCommVectorI->gather(snap->atomData.position,
591 <                            snap->atomIData.position);
592 <    AtomCommVectorJ->gather(snap->atomData.position,
593 <                            snap->atomJData.position);
590 >    AtomPlanVectorRow->gather(snap_->atomData.position,
591 >                              atomRowData.position);
592 >    AtomPlanVectorColumn->gather(snap_->atomData.position,
593 >                                 atomColData.position);
594      
595      // gather up the cutoff group positions
596 <    cgCommVectorI->gather(snap->cgData.position,
597 <                          snap->cgIData.position);
598 <    cgCommVectorJ->gather(snap->cgData.position,
599 <                          snap->cgJData.position);
596 >
597 >    cgPlanVectorRow->gather(snap_->cgData.position,
598 >                            cgRowData.position);
599 >
600 >    cgPlanVectorColumn->gather(snap_->cgData.position,
601 >                               cgColData.position);
602 >
603      
604      // if needed, gather the atomic rotation matrices
605 <    if (snap->atomData.getStorageLayout() & DataStorage::dslAmat) {
606 <      AtomCommMatrixI->gather(snap->atomData.aMat,
607 <                              snap->atomIData.aMat);
608 <      AtomCommMatrixJ->gather(snap->atomData.aMat,
609 <                              snap->atomJData.aMat);
605 >    if (storageLayout_ & DataStorage::dslAmat) {
606 >      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
607 >                                atomRowData.aMat);
608 >      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
609 >                                   atomColData.aMat);
610      }
611      
612      // if needed, gather the atomic eletrostatic frames
613 <    if (snap->atomData.getStorageLayout() & DataStorage::dslElectroFrame) {
614 <      AtomCommMatrixI->gather(snap->atomData.electroFrame,
615 <                              snap->atomIData.electroFrame);
616 <      AtomCommMatrixJ->gather(snap->atomData.electroFrame,
617 <                              snap->atomJData.electroFrame);
613 >    if (storageLayout_ & DataStorage::dslElectroFrame) {
614 >      AtomPlanMatrixRow->gather(snap_->atomData.electroFrame,
615 >                                atomRowData.electroFrame);
616 >      AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame,
617 >                                   atomColData.electroFrame);
618      }
619 +
620 +    // if needed, gather the atomic fluctuating charge values
621 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {
622 +      AtomPlanRealRow->gather(snap_->atomData.flucQPos,
623 +                              atomRowData.flucQPos);
624 +      AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
625 +                                 atomColData.flucQPos);
626 +    }
627 +
628   #endif      
629    }
630    
631 <  void ForceDecomposition::collectIntermediateData() {
631 >  /* collects information obtained during the pre-pair loop onto local
632 >   * data structures.
633 >   */
634 >  void ForceMatrixDecomposition::collectIntermediateData() {
635 >    snap_ = sman_->getCurrentSnapshot();
636 >    storageLayout_ = sman_->getStorageLayout();
637   #ifdef IS_MPI
105    Snapshot* snap = sman_->getCurrentSnapshot();
638      
639 <    if (snap->atomData.getStorageLayout() & DataStorage::dslDensity) {
640 <      AtomCommRealI->scatter(snap->atomIData.density,
641 <                             snap->atomData.density);
642 <      std::vector<RealType> rho_tmp;
643 <      int n = snap->getNumberOfAtoms();
644 <      rho_tmp.reserve( n );
645 <      AtomCommRealJ->scatter(snap->atomJData.density, rho_tmp);
639 >    if (storageLayout_ & DataStorage::dslDensity) {
640 >      
641 >      AtomPlanRealRow->scatter(atomRowData.density,
642 >                               snap_->atomData.density);
643 >      
644 >      int n = snap_->atomData.density.size();
645 >      vector<RealType> rho_tmp(n, 0.0);
646 >      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
647        for (int i = 0; i < n; i++)
648 <        snap->atomData.density[i] += rho_tmp[i];
648 >        snap_->atomData.density[i] += rho_tmp[i];
649      }
650 +
651 +    if (storageLayout_ & DataStorage::dslElectricField) {
652 +      
653 +      AtomPlanVectorRow->scatter(atomRowData.electricField,
654 +                                 snap_->atomData.electricField);
655 +      
656 +      int n = snap_->atomData.electricField.size();
657 +      vector<Vector3d> field_tmp(n, V3Zero);
658 +      AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp);
659 +      for (int i = 0; i < n; i++)
660 +        snap_->atomData.electricField[i] += field_tmp[i];
661 +    }
662   #endif
663    }
664 <  
665 <  void ForceDecomposition::distributeIntermediateData() {
664 >
665 >  /*
666 >   * redistributes information obtained during the pre-pair loop out to
667 >   * row and column-indexed data structures
668 >   */
669 >  void ForceMatrixDecomposition::distributeIntermediateData() {
670 >    snap_ = sman_->getCurrentSnapshot();
671 >    storageLayout_ = sman_->getStorageLayout();
672   #ifdef IS_MPI
673 <    Snapshot* snap = sman_->getCurrentSnapshot();
674 <    if (snap->atomData.getStorageLayout() & DataStorage::dslFunctional) {
675 <      AtomCommRealI->gather(snap->atomData.functional,
676 <                            snap->atomIData.functional);
677 <      AtomCommRealJ->gather(snap->atomData.functional,
127 <                            snap->atomJData.functional);
673 >    if (storageLayout_ & DataStorage::dslFunctional) {
674 >      AtomPlanRealRow->gather(snap_->atomData.functional,
675 >                              atomRowData.functional);
676 >      AtomPlanRealColumn->gather(snap_->atomData.functional,
677 >                                 atomColData.functional);
678      }
679      
680 <    if (snap->atomData.getStorageLayout() & DataStorage::dslFunctionalDerivative) {
681 <      AtomCommRealI->gather(snap->atomData.functionalDerivative,
682 <                            snap->atomIData.functionalDerivative);
683 <      AtomCommRealJ->gather(snap->atomData.functionalDerivative,
684 <                            snap->atomJData.functionalDerivative);
680 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
681 >      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
682 >                              atomRowData.functionalDerivative);
683 >      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
684 >                                 atomColData.functionalDerivative);
685      }
686   #endif
687    }
688    
689    
690 <  void ForceDecomposition::collectData() {
691 < #ifdef IS_MPI
692 <    Snapshot* snap = sman_->getCurrentSnapshot();
693 <    int n = snap->getNumberOfAtoms();
694 <
695 <    std::vector<Vector3d> frc_tmp;
146 <    frc_tmp.reserve( n );
690 >  void ForceMatrixDecomposition::collectData() {
691 >    snap_ = sman_->getCurrentSnapshot();
692 >    storageLayout_ = sman_->getStorageLayout();
693 > #ifdef IS_MPI    
694 >    int n = snap_->atomData.force.size();
695 >    vector<Vector3d> frc_tmp(n, V3Zero);
696      
697 <    AtomCommVectorI->scatter(snap->atomIData.force, frc_tmp);
698 <    for (int i = 0; i < n; i++)
699 <      snap->atomData.force[i] += frc_tmp[i];
700 <    
701 <    AtomCommVectorJ->scatter(snap->atomJData.force, frc_tmp);
153 <    for (int i = 0; i < n; i++)
154 <      snap->atomData.force[i] += frc_tmp[i];
697 >    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
698 >    for (int i = 0; i < n; i++) {
699 >      snap_->atomData.force[i] += frc_tmp[i];
700 >      frc_tmp[i] = 0.0;
701 >    }
702      
703 +    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
704 +    for (int i = 0; i < n; i++) {
705 +      snap_->atomData.force[i] += frc_tmp[i];
706 +    }
707 +        
708 +    if (storageLayout_ & DataStorage::dslTorque) {
709 +
710 +      int nt = snap_->atomData.torque.size();
711 +      vector<Vector3d> trq_tmp(nt, V3Zero);
712 +
713 +      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
714 +      for (int i = 0; i < nt; i++) {
715 +        snap_->atomData.torque[i] += trq_tmp[i];
716 +        trq_tmp[i] = 0.0;
717 +      }
718 +      
719 +      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
720 +      for (int i = 0; i < nt; i++)
721 +        snap_->atomData.torque[i] += trq_tmp[i];
722 +    }
723 +
724 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
725 +
726 +      int ns = snap_->atomData.skippedCharge.size();
727 +      vector<RealType> skch_tmp(ns, 0.0);
728 +
729 +      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
730 +      for (int i = 0; i < ns; i++) {
731 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
732 +        skch_tmp[i] = 0.0;
733 +      }
734 +      
735 +      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
736 +      for (int i = 0; i < ns; i++)
737 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
738 +            
739 +    }
740      
741 <    if (snap->atomData.getStorageLayout() & DataStorage::dslTorque) {
742 <      std::vector<Vector3d> trq_tmp;
743 <      trq_tmp.reserve( n );
741 >    if (storageLayout_ & DataStorage::dslFlucQForce) {
742 >
743 >      int nq = snap_->atomData.flucQFrc.size();
744 >      vector<RealType> fqfrc_tmp(nq, 0.0);
745 >
746 >      AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
747 >      for (int i = 0; i < nq; i++) {
748 >        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
749 >        fqfrc_tmp[i] = 0.0;
750 >      }
751        
752 <      AtomCommVectorI->scatter(snap->atomIData.torque, trq_tmp);
753 <      for (int i = 0; i < n; i++)
754 <        snap->atomData.torque[i] += trq_tmp[i];
752 >      AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
753 >      for (int i = 0; i < nq; i++)
754 >        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
755 >            
756 >    }
757 >
758 >    nLocal_ = snap_->getNumberOfAtoms();
759 >
760 >    vector<potVec> pot_temp(nLocal_,
761 >                            Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
762 >
763 >    // scatter/gather pot_row into the members of my column
764 >          
765 >    AtomPlanPotRow->scatter(pot_row, pot_temp);
766 >
767 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
768 >      pairwisePot += pot_temp[ii];
769 >    
770 >    fill(pot_temp.begin(), pot_temp.end(),
771 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
772        
773 <      AtomCommVectorJ->scatter(snap->atomJData.torque, trq_tmp);
774 <      for (int i = 0; i < n; i++)
775 <        snap->atomData.torque[i] += trq_tmp[i];
773 >    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
774 >    
775 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
776 >      pairwisePot += pot_temp[ii];    
777 >    
778 >    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
779 >      RealType ploc1 = pairwisePot[ii];
780 >      RealType ploc2 = 0.0;
781 >      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
782 >      pairwisePot[ii] = ploc2;
783      }
784 +
785 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
786 +      RealType ploc1 = embeddingPot[ii];
787 +      RealType ploc2 = 0.0;
788 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
789 +      embeddingPot[ii] = ploc2;
790 +    }
791 +
792 + #endif
793 +
794 +  }
795 +
796 +  int ForceMatrixDecomposition::getNAtomsInRow() {  
797 + #ifdef IS_MPI
798 +    return nAtomsInRow_;
799 + #else
800 +    return nLocal_;
801 + #endif
802 +  }
803 +
804 +  /**
805 +   * returns the list of atoms belonging to this group.  
806 +   */
807 +  vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
808 + #ifdef IS_MPI
809 +    return groupListRow_[cg1];
810 + #else
811 +    return groupList_[cg1];
812 + #endif
813 +  }
814 +
815 +  vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
816 + #ifdef IS_MPI
817 +    return groupListCol_[cg2];
818 + #else
819 +    return groupList_[cg2];
820 + #endif
821 +  }
822 +  
823 +  Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
824 +    Vector3d d;
825      
826 <    // Still need pot!
826 > #ifdef IS_MPI
827 >    d = cgColData.position[cg2] - cgRowData.position[cg1];
828 > #else
829 >    d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
830 > #endif
831      
832 +    snap_->wrapVector(d);
833 +    return d;    
834 +  }
835 +
836 +
837 +  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
838 +
839 +    Vector3d d;
840 +    
841 + #ifdef IS_MPI
842 +    d = cgRowData.position[cg1] - atomRowData.position[atom1];
843 + #else
844 +    d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
845 + #endif
846 +
847 +    snap_->wrapVector(d);
848 +    return d;    
849 +  }
850 +  
851 +  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
852 +    Vector3d d;
853 +    
854 + #ifdef IS_MPI
855 +    d = cgColData.position[cg2] - atomColData.position[atom2];
856 + #else
857 +    d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
858 + #endif
859 +    
860 +    snap_->wrapVector(d);
861 +    return d;    
862 +  }
863 +
864 +  RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
865 + #ifdef IS_MPI
866 +    return massFactorsRow[atom1];
867 + #else
868 +    return massFactors[atom1];
869 + #endif
870 +  }
871 +
872 +  RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
873 + #ifdef IS_MPI
874 +    return massFactorsCol[atom2];
875 + #else
876 +    return massFactors[atom2];
877 + #endif
878 +
879 +  }
880 +    
881 +  Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
882 +    Vector3d d;
883 +    
884 + #ifdef IS_MPI
885 +    d = atomColData.position[atom2] - atomRowData.position[atom1];
886 + #else
887 +    d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
888 + #endif
889 +
890 +    snap_->wrapVector(d);
891 +    return d;    
892 +  }
893 +
894 +  vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
895 +    return excludesForAtom[atom1];
896 +  }
897 +
898 +  /**
899 +   * We need to exclude some overcounted interactions that result from
900 +   * the parallel decomposition.
901 +   */
902 +  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
903 +    int unique_id_1, unique_id_2;
904 +        
905 + #ifdef IS_MPI
906 +    // in MPI, we have to look up the unique IDs for each atom
907 +    unique_id_1 = AtomRowToGlobal[atom1];
908 +    unique_id_2 = AtomColToGlobal[atom2];
909 + #else
910 +    unique_id_1 = AtomLocalToGlobal[atom1];
911 +    unique_id_2 = AtomLocalToGlobal[atom2];
912 + #endif  
913 +
914 +    if (unique_id_1 == unique_id_2) return true;
915 +
916 + #ifdef IS_MPI
917 +    // this prevents us from doing the pair on multiple processors
918 +    if (unique_id_1 < unique_id_2) {
919 +      if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
920 +    } else {
921 +      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
922 +    }
923 + #endif
924 +    
925 +    return false;
926 +  }
927 +
928 +  /**
929 +   * We need to handle the interactions for atoms who are involved in
930 +   * the same rigid body as well as some short range interactions
931 +   * (bonds, bends, torsions) differently from other interactions.
932 +   * We'll still visit the pairwise routines, but with a flag that
933 +   * tells those routines to exclude the pair from direct long range
934 +   * interactions.  Some indirect interactions (notably reaction
935 +   * field) must still be handled for these pairs.
936 +   */
937 +  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
938 +
939 +    // excludesForAtom was constructed to use row/column indices in the MPI
940 +    // version, and to use local IDs in the non-MPI version:
941 +    
942 +    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
943 +         i != excludesForAtom[atom1].end(); ++i) {
944 +      if ( (*i) == atom2 ) return true;
945 +    }
946 +
947 +    return false;
948 +  }
949 +
950 +
951 +  void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
952 + #ifdef IS_MPI
953 +    atomRowData.force[atom1] += fg;
954 + #else
955 +    snap_->atomData.force[atom1] += fg;
956 + #endif
957 +  }
958 +
959 +  void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
960 + #ifdef IS_MPI
961 +    atomColData.force[atom2] += fg;
962 + #else
963 +    snap_->atomData.force[atom2] += fg;
964 + #endif
965 +  }
966 +
967 +    // filling interaction blocks with pointers
968 +  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
969 +                                                     int atom1, int atom2) {
970 +
971 +    idat.excluded = excludeAtomPair(atom1, atom2);
972 +  
973 + #ifdef IS_MPI
974 +    idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
975 +    //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
976 +    //                         ff_->getAtomType(identsCol[atom2]) );
977 +    
978 +    if (storageLayout_ & DataStorage::dslAmat) {
979 +      idat.A1 = &(atomRowData.aMat[atom1]);
980 +      idat.A2 = &(atomColData.aMat[atom2]);
981 +    }
982 +    
983 +    if (storageLayout_ & DataStorage::dslElectroFrame) {
984 +      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
985 +      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
986 +    }
987 +
988 +    if (storageLayout_ & DataStorage::dslTorque) {
989 +      idat.t1 = &(atomRowData.torque[atom1]);
990 +      idat.t2 = &(atomColData.torque[atom2]);
991 +    }
992 +
993 +    if (storageLayout_ & DataStorage::dslDensity) {
994 +      idat.rho1 = &(atomRowData.density[atom1]);
995 +      idat.rho2 = &(atomColData.density[atom2]);
996 +    }
997 +
998 +    if (storageLayout_ & DataStorage::dslFunctional) {
999 +      idat.frho1 = &(atomRowData.functional[atom1]);
1000 +      idat.frho2 = &(atomColData.functional[atom2]);
1001 +    }
1002 +
1003 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1004 +      idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1005 +      idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1006 +    }
1007 +
1008 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1009 +      idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1010 +      idat.particlePot2 = &(atomColData.particlePot[atom2]);
1011 +    }
1012 +
1013 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1014 +      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1015 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1016 +    }
1017 +
1018 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1019 +      idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1020 +      idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1021 +    }
1022 +
1023 + #else
1024 +    
1025 +
1026 +    // cerr << "atoms = " << atom1 << " " << atom2 << "\n";
1027 +    // cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n";
1028 +    // cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n";
1029 +
1030 +    idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
1031 +    //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
1032 +    //                         ff_->getAtomType(idents[atom2]) );
1033 +
1034 +    if (storageLayout_ & DataStorage::dslAmat) {
1035 +      idat.A1 = &(snap_->atomData.aMat[atom1]);
1036 +      idat.A2 = &(snap_->atomData.aMat[atom2]);
1037 +    }
1038  
1039 +    if (storageLayout_ & DataStorage::dslElectroFrame) {
1040 +      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
1041 +      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
1042 +    }
1043  
1044 +    if (storageLayout_ & DataStorage::dslTorque) {
1045 +      idat.t1 = &(snap_->atomData.torque[atom1]);
1046 +      idat.t2 = &(snap_->atomData.torque[atom2]);
1047 +    }
1048 +
1049 +    if (storageLayout_ & DataStorage::dslDensity) {    
1050 +      idat.rho1 = &(snap_->atomData.density[atom1]);
1051 +      idat.rho2 = &(snap_->atomData.density[atom2]);
1052 +    }
1053 +
1054 +    if (storageLayout_ & DataStorage::dslFunctional) {
1055 +      idat.frho1 = &(snap_->atomData.functional[atom1]);
1056 +      idat.frho2 = &(snap_->atomData.functional[atom2]);
1057 +    }
1058 +
1059 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1060 +      idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1061 +      idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1062 +    }
1063 +
1064 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1065 +      idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1066 +      idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1067 +    }
1068 +
1069 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
1070 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1071 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1072 +    }
1073 +
1074 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1075 +      idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1076 +      idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1077 +    }
1078 +
1079   #endif
1080    }
1081 +
1082    
1083 +  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
1084 + #ifdef IS_MPI
1085 +    pot_row[atom1] += RealType(0.5) *  *(idat.pot);
1086 +    pot_col[atom2] += RealType(0.5) *  *(idat.pot);
1087 +
1088 +    atomRowData.force[atom1] += *(idat.f1);
1089 +    atomColData.force[atom2] -= *(idat.f1);
1090 +
1091 +    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1092 +      atomRowData.flucQFrc[atom1] += *(idat.dVdFQ1);
1093 +      atomColData.flucQFrc[atom2] += *(idat.dVdFQ2);
1094 +    }
1095 +
1096 +    if (storageLayout_ & DataStorage::dslElectricField) {              
1097 +      atomRowData.electricField[atom1] += *(idat.eField1);
1098 +      atomColData.electricField[atom2] += *(idat.eField2);
1099 +    }
1100 +
1101 +    // should particle pot be done here also?
1102 + #else
1103 +    pairwisePot += *(idat.pot);
1104 +
1105 +    snap_->atomData.force[atom1] += *(idat.f1);
1106 +    snap_->atomData.force[atom2] -= *(idat.f1);
1107 +
1108 +    if (idat.doParticlePot) {
1109 +      snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1110 +      snap_->atomData.particlePot[atom2] -= *(idat.vpair) * *(idat.sw);
1111 +    }
1112 +    
1113 +    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1114 +      snap_->atomData.flucQFrc[atom1] += *(idat.dVdFQ1);
1115 +      snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1116 +    }
1117 +
1118 +    if (storageLayout_ & DataStorage::dslElectricField) {              
1119 +      snap_->atomData.electricField[atom1] += *(idat.eField1);
1120 +      snap_->atomData.electricField[atom2] += *(idat.eField2);
1121 +    }
1122 +
1123 + #endif
1124 +    
1125 +  }
1126 +
1127 +  /*
1128 +   * buildNeighborList
1129 +   *
1130 +   * first element of pair is row-indexed CutoffGroup
1131 +   * second element of pair is column-indexed CutoffGroup
1132 +   */
1133 +  vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1134 +      
1135 +    vector<pair<int, int> > neighborList;
1136 +    groupCutoffs cuts;
1137 +    bool doAllPairs = false;
1138 +
1139 + #ifdef IS_MPI
1140 +    cellListRow_.clear();
1141 +    cellListCol_.clear();
1142 + #else
1143 +    cellList_.clear();
1144 + #endif
1145 +
1146 +    RealType rList_ = (largestRcut_ + skinThickness_);
1147 +    RealType rl2 = rList_ * rList_;
1148 +    Snapshot* snap_ = sman_->getCurrentSnapshot();
1149 +    Mat3x3d Hmat = snap_->getHmat();
1150 +    Vector3d Hx = Hmat.getColumn(0);
1151 +    Vector3d Hy = Hmat.getColumn(1);
1152 +    Vector3d Hz = Hmat.getColumn(2);
1153 +
1154 +    nCells_.x() = (int) ( Hx.length() )/ rList_;
1155 +    nCells_.y() = (int) ( Hy.length() )/ rList_;
1156 +    nCells_.z() = (int) ( Hz.length() )/ rList_;
1157 +
1158 +    // handle small boxes where the cell offsets can end up repeating cells
1159 +    
1160 +    if (nCells_.x() < 3) doAllPairs = true;
1161 +    if (nCells_.y() < 3) doAllPairs = true;
1162 +    if (nCells_.z() < 3) doAllPairs = true;
1163 +
1164 +    Mat3x3d invHmat = snap_->getInvHmat();
1165 +    Vector3d rs, scaled, dr;
1166 +    Vector3i whichCell;
1167 +    int cellIndex;
1168 +    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1169 +
1170 + #ifdef IS_MPI
1171 +    cellListRow_.resize(nCtot);
1172 +    cellListCol_.resize(nCtot);
1173 + #else
1174 +    cellList_.resize(nCtot);
1175 + #endif
1176 +
1177 +    if (!doAllPairs) {
1178 + #ifdef IS_MPI
1179 +
1180 +      for (int i = 0; i < nGroupsInRow_; i++) {
1181 +        rs = cgRowData.position[i];
1182 +        
1183 +        // scaled positions relative to the box vectors
1184 +        scaled = invHmat * rs;
1185 +        
1186 +        // wrap the vector back into the unit box by subtracting integer box
1187 +        // numbers
1188 +        for (int j = 0; j < 3; j++) {
1189 +          scaled[j] -= roundMe(scaled[j]);
1190 +          scaled[j] += 0.5;
1191 +        }
1192 +        
1193 +        // find xyz-indices of cell that cutoffGroup is in.
1194 +        whichCell.x() = nCells_.x() * scaled.x();
1195 +        whichCell.y() = nCells_.y() * scaled.y();
1196 +        whichCell.z() = nCells_.z() * scaled.z();
1197 +        
1198 +        // find single index of this cell:
1199 +        cellIndex = Vlinear(whichCell, nCells_);
1200 +        
1201 +        // add this cutoff group to the list of groups in this cell;
1202 +        cellListRow_[cellIndex].push_back(i);
1203 +      }
1204 +      for (int i = 0; i < nGroupsInCol_; i++) {
1205 +        rs = cgColData.position[i];
1206 +        
1207 +        // scaled positions relative to the box vectors
1208 +        scaled = invHmat * rs;
1209 +        
1210 +        // wrap the vector back into the unit box by subtracting integer box
1211 +        // numbers
1212 +        for (int j = 0; j < 3; j++) {
1213 +          scaled[j] -= roundMe(scaled[j]);
1214 +          scaled[j] += 0.5;
1215 +        }
1216 +        
1217 +        // find xyz-indices of cell that cutoffGroup is in.
1218 +        whichCell.x() = nCells_.x() * scaled.x();
1219 +        whichCell.y() = nCells_.y() * scaled.y();
1220 +        whichCell.z() = nCells_.z() * scaled.z();
1221 +        
1222 +        // find single index of this cell:
1223 +        cellIndex = Vlinear(whichCell, nCells_);
1224 +        
1225 +        // add this cutoff group to the list of groups in this cell;
1226 +        cellListCol_[cellIndex].push_back(i);
1227 +      }
1228 +    
1229 + #else
1230 +      for (int i = 0; i < nGroups_; i++) {
1231 +        rs = snap_->cgData.position[i];
1232 +        
1233 +        // scaled positions relative to the box vectors
1234 +        scaled = invHmat * rs;
1235 +        
1236 +        // wrap the vector back into the unit box by subtracting integer box
1237 +        // numbers
1238 +        for (int j = 0; j < 3; j++) {
1239 +          scaled[j] -= roundMe(scaled[j]);
1240 +          scaled[j] += 0.5;
1241 +        }
1242 +        
1243 +        // find xyz-indices of cell that cutoffGroup is in.
1244 +        whichCell.x() = nCells_.x() * scaled.x();
1245 +        whichCell.y() = nCells_.y() * scaled.y();
1246 +        whichCell.z() = nCells_.z() * scaled.z();
1247 +        
1248 +        // find single index of this cell:
1249 +        cellIndex = Vlinear(whichCell, nCells_);
1250 +        
1251 +        // add this cutoff group to the list of groups in this cell;
1252 +        cellList_[cellIndex].push_back(i);
1253 +      }
1254 +
1255 + #endif
1256 +
1257 +      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1258 +        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1259 +          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1260 +            Vector3i m1v(m1x, m1y, m1z);
1261 +            int m1 = Vlinear(m1v, nCells_);
1262 +            
1263 +            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1264 +                 os != cellOffsets_.end(); ++os) {
1265 +              
1266 +              Vector3i m2v = m1v + (*os);
1267 +            
1268 +
1269 +              if (m2v.x() >= nCells_.x()) {
1270 +                m2v.x() = 0;          
1271 +              } else if (m2v.x() < 0) {
1272 +                m2v.x() = nCells_.x() - 1;
1273 +              }
1274 +              
1275 +              if (m2v.y() >= nCells_.y()) {
1276 +                m2v.y() = 0;          
1277 +              } else if (m2v.y() < 0) {
1278 +                m2v.y() = nCells_.y() - 1;
1279 +              }
1280 +              
1281 +              if (m2v.z() >= nCells_.z()) {
1282 +                m2v.z() = 0;          
1283 +              } else if (m2v.z() < 0) {
1284 +                m2v.z() = nCells_.z() - 1;
1285 +              }
1286 +
1287 +              int m2 = Vlinear (m2v, nCells_);
1288 +              
1289 + #ifdef IS_MPI
1290 +              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1291 +                   j1 != cellListRow_[m1].end(); ++j1) {
1292 +                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1293 +                     j2 != cellListCol_[m2].end(); ++j2) {
1294 +                  
1295 +                  // In parallel, we need to visit *all* pairs of row
1296 +                  // & column indicies and will divide labor in the
1297 +                  // force evaluation later.
1298 +                  dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1299 +                  snap_->wrapVector(dr);
1300 +                  cuts = getGroupCutoffs( (*j1), (*j2) );
1301 +                  if (dr.lengthSquare() < cuts.third) {
1302 +                    neighborList.push_back(make_pair((*j1), (*j2)));
1303 +                  }                  
1304 +                }
1305 +              }
1306 + #else
1307 +              for (vector<int>::iterator j1 = cellList_[m1].begin();
1308 +                   j1 != cellList_[m1].end(); ++j1) {
1309 +                for (vector<int>::iterator j2 = cellList_[m2].begin();
1310 +                     j2 != cellList_[m2].end(); ++j2) {
1311 +    
1312 +                  // Always do this if we're in different cells or if
1313 +                  // we're in the same cell and the global index of
1314 +                  // the j2 cutoff group is greater than or equal to
1315 +                  // the j1 cutoff group.  Note that Rappaport's code
1316 +                  // has a "less than" conditional here, but that
1317 +                  // deals with atom-by-atom computation.  OpenMD
1318 +                  // allows atoms within a single cutoff group to
1319 +                  // interact with each other.
1320 +
1321 +
1322 +
1323 +                  if (m2 != m1 || (*j2) >= (*j1) ) {
1324 +
1325 +                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1326 +                    snap_->wrapVector(dr);
1327 +                    cuts = getGroupCutoffs( (*j1), (*j2) );
1328 +                    if (dr.lengthSquare() < cuts.third) {
1329 +                      neighborList.push_back(make_pair((*j1), (*j2)));
1330 +                    }
1331 +                  }
1332 +                }
1333 +              }
1334 + #endif
1335 +            }
1336 +          }
1337 +        }
1338 +      }
1339 +    } else {
1340 +      // branch to do all cutoff group pairs
1341 + #ifdef IS_MPI
1342 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1343 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {    
1344 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1345 +          snap_->wrapVector(dr);
1346 +          cuts = getGroupCutoffs( j1, j2 );
1347 +          if (dr.lengthSquare() < cuts.third) {
1348 +            neighborList.push_back(make_pair(j1, j2));
1349 +          }
1350 +        }
1351 +      }      
1352 + #else
1353 +      // include all groups here.
1354 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1355 +        // include self group interactions j2 == j1
1356 +        for (int j2 = j1; j2 < nGroups_; j2++) {
1357 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1358 +          snap_->wrapVector(dr);
1359 +          cuts = getGroupCutoffs( j1, j2 );
1360 +          if (dr.lengthSquare() < cuts.third) {
1361 +            neighborList.push_back(make_pair(j1, j2));
1362 +          }
1363 +        }    
1364 +      }
1365 + #endif
1366 +    }
1367 +      
1368 +    // save the local cutoff group positions for the check that is
1369 +    // done on each loop:
1370 +    saved_CG_positions_.clear();
1371 +    for (int i = 0; i < nGroups_; i++)
1372 +      saved_CG_positions_.push_back(snap_->cgData.position[i]);
1373 +    
1374 +    return neighborList;
1375 +  }
1376   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines