53 |
|
// surrounding cells (not just the 14 upper triangular blocks that |
54 |
|
// are used when the processor can see all pairs) |
55 |
|
#ifdef IS_MPI |
56 |
< |
cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
57 |
< |
cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
58 |
< |
cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
59 |
< |
cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
60 |
< |
cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
61 |
< |
cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
56 |
> |
cellOffsets_.clear(); |
57 |
|
cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
58 |
|
cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
59 |
< |
cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
59 |
> |
cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
60 |
> |
cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
61 |
> |
cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
62 |
|
cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
66 |
– |
cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 |
– |
cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
63 |
|
cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
64 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
65 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
66 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
67 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
68 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
69 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
70 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
71 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
72 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
73 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
74 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
75 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
76 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
77 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
78 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
79 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
80 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
81 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
82 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
83 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
84 |
|
#endif |
85 |
|
} |
86 |
|
|
233 |
|
} |
234 |
|
} |
235 |
|
|
236 |
< |
#endif |
222 |
< |
|
223 |
< |
// allocate memory for the parallel objects |
224 |
< |
atypesLocal.resize(nLocal_); |
225 |
< |
|
226 |
< |
for (int i = 0; i < nLocal_; i++) |
227 |
< |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
228 |
< |
|
229 |
< |
groupList_.clear(); |
230 |
< |
groupList_.resize(nGroups_); |
231 |
< |
for (int i = 0; i < nGroups_; i++) { |
232 |
< |
int gid = cgLocalToGlobal[i]; |
233 |
< |
for (int j = 0; j < nLocal_; j++) { |
234 |
< |
int aid = AtomLocalToGlobal[j]; |
235 |
< |
if (globalGroupMembership[aid] == gid) { |
236 |
< |
groupList_[i].push_back(j); |
237 |
< |
} |
238 |
< |
} |
239 |
< |
} |
240 |
< |
|
236 |
> |
#else |
237 |
|
excludesForAtom.clear(); |
238 |
|
excludesForAtom.resize(nLocal_); |
239 |
|
toposForAtom.clear(); |
266 |
|
} |
267 |
|
} |
268 |
|
} |
269 |
< |
|
269 |
> |
#endif |
270 |
> |
|
271 |
> |
// allocate memory for the parallel objects |
272 |
> |
atypesLocal.resize(nLocal_); |
273 |
> |
|
274 |
> |
for (int i = 0; i < nLocal_; i++) |
275 |
> |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
276 |
> |
|
277 |
> |
groupList_.clear(); |
278 |
> |
groupList_.resize(nGroups_); |
279 |
> |
for (int i = 0; i < nGroups_; i++) { |
280 |
> |
int gid = cgLocalToGlobal[i]; |
281 |
> |
for (int j = 0; j < nLocal_; j++) { |
282 |
> |
int aid = AtomLocalToGlobal[j]; |
283 |
> |
if (globalGroupMembership[aid] == gid) { |
284 |
> |
groupList_[i].push_back(j); |
285 |
> |
} |
286 |
> |
} |
287 |
> |
} |
288 |
> |
|
289 |
> |
|
290 |
|
createGtypeCutoffMap(); |
291 |
|
|
292 |
|
} |
684 |
|
} |
685 |
|
|
686 |
|
AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
687 |
< |
for (int i = 0; i < ns; i++) |
687 |
> |
for (int i = 0; i < ns; i++) |
688 |
|
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
689 |
+ |
|
690 |
|
} |
691 |
|
|
692 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
716 |
|
pairwisePot[ii] = ploc2; |
717 |
|
} |
718 |
|
|
719 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
720 |
+ |
RealType ploc1 = embeddingPot[ii]; |
721 |
+ |
RealType ploc2 = 0.0; |
722 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
723 |
+ |
embeddingPot[ii] = ploc2; |
724 |
+ |
} |
725 |
+ |
|
726 |
|
#endif |
727 |
|
|
728 |
|
} |
835 |
|
*/ |
836 |
|
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
837 |
|
int unique_id_1, unique_id_2; |
838 |
< |
|
838 |
> |
|
839 |
|
#ifdef IS_MPI |
840 |
|
// in MPI, we have to look up the unique IDs for each atom |
841 |
|
unique_id_1 = AtomRowToGlobal[atom1]; |
842 |
|
unique_id_2 = AtomColToGlobal[atom2]; |
843 |
+ |
#else |
844 |
+ |
unique_id_1 = AtomLocalToGlobal[atom1]; |
845 |
+ |
unique_id_2 = AtomLocalToGlobal[atom2]; |
846 |
+ |
#endif |
847 |
|
|
820 |
– |
// this situation should only arise in MPI simulations |
848 |
|
if (unique_id_1 == unique_id_2) return true; |
849 |
< |
|
849 |
> |
|
850 |
> |
#ifdef IS_MPI |
851 |
|
// this prevents us from doing the pair on multiple processors |
852 |
|
if (unique_id_1 < unique_id_2) { |
853 |
|
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
854 |
|
} else { |
855 |
< |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
855 |
> |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
856 |
|
} |
857 |
|
#endif |
858 |
+ |
|
859 |
|
return false; |
860 |
|
} |
861 |
|
|
869 |
|
* field) must still be handled for these pairs. |
870 |
|
*/ |
871 |
|
bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
872 |
< |
int unique_id_2; |
873 |
< |
#ifdef IS_MPI |
874 |
< |
// in MPI, we have to look up the unique IDs for the row atom. |
846 |
< |
unique_id_2 = AtomColToGlobal[atom2]; |
847 |
< |
#else |
848 |
< |
// in the normal loop, the atom numbers are unique |
849 |
< |
unique_id_2 = atom2; |
850 |
< |
#endif |
872 |
> |
|
873 |
> |
// excludesForAtom was constructed to use row/column indices in the MPI |
874 |
> |
// version, and to use local IDs in the non-MPI version: |
875 |
|
|
876 |
|
for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
877 |
|
i != excludesForAtom[atom1].end(); ++i) { |
878 |
< |
if ( (*i) == unique_id_2 ) return true; |
878 |
> |
if ( (*i) == atom2 ) return true; |
879 |
|
} |
880 |
|
|
881 |
|
return false; |
1115 |
|
// add this cutoff group to the list of groups in this cell; |
1116 |
|
cellListCol_[cellIndex].push_back(i); |
1117 |
|
} |
1118 |
+ |
|
1119 |
|
#else |
1120 |
|
for (int i = 0; i < nGroups_; i++) { |
1121 |
|
rs = snap_->cgData.position[i]; |
1141 |
|
// add this cutoff group to the list of groups in this cell; |
1142 |
|
cellList_[cellIndex].push_back(i); |
1143 |
|
} |
1144 |
+ |
|
1145 |
|
#endif |
1146 |
|
|
1147 |
|
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1154 |
|
os != cellOffsets_.end(); ++os) { |
1155 |
|
|
1156 |
|
Vector3i m2v = m1v + (*os); |
1157 |
< |
|
1157 |
> |
|
1158 |
> |
|
1159 |
|
if (m2v.x() >= nCells_.x()) { |
1160 |
|
m2v.x() = 0; |
1161 |
|
} else if (m2v.x() < 0) { |
1173 |
|
} else if (m2v.z() < 0) { |
1174 |
|
m2v.z() = nCells_.z() - 1; |
1175 |
|
} |
1176 |
< |
|
1176 |
> |
|
1177 |
|
int m2 = Vlinear (m2v, nCells_); |
1178 |
|
|
1179 |
|
#ifdef IS_MPI |
1182 |
|
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1183 |
|
j2 != cellListCol_[m2].end(); ++j2) { |
1184 |
|
|
1185 |
< |
// In parallel, we need to visit *all* pairs of row & |
1186 |
< |
// column indicies and will truncate later on. |
1185 |
> |
// In parallel, we need to visit *all* pairs of row |
1186 |
> |
// & column indicies and will divide labor in the |
1187 |
> |
// force evaluation later. |
1188 |
|
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1189 |
|
snap_->wrapVector(dr); |
1190 |
|
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1194 |
|
} |
1195 |
|
} |
1196 |
|
#else |
1169 |
– |
|
1197 |
|
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1198 |
|
j1 != cellList_[m1].end(); ++j1) { |
1199 |
|
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1200 |
|
j2 != cellList_[m2].end(); ++j2) { |
1201 |
< |
|
1201 |
> |
|
1202 |
|
// Always do this if we're in different cells or if |
1203 |
< |
// we're in the same cell and the global index of the |
1204 |
< |
// j2 cutoff group is less than the j1 cutoff group |
1205 |
< |
|
1206 |
< |
if (m2 != m1 || (*j2) < (*j1)) { |
1203 |
> |
// we're in the same cell and the global index of |
1204 |
> |
// the j2 cutoff group is greater than or equal to |
1205 |
> |
// the j1 cutoff group. Note that Rappaport's code |
1206 |
> |
// has a "less than" conditional here, but that |
1207 |
> |
// deals with atom-by-atom computation. OpenMD |
1208 |
> |
// allows atoms within a single cutoff group to |
1209 |
> |
// interact with each other. |
1210 |
> |
|
1211 |
> |
|
1212 |
> |
|
1213 |
> |
if (m2 != m1 || (*j2) >= (*j1) ) { |
1214 |
> |
|
1215 |
|
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1216 |
|
snap_->wrapVector(dr); |
1217 |
|
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1230 |
|
// branch to do all cutoff group pairs |
1231 |
|
#ifdef IS_MPI |
1232 |
|
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1233 |
< |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1233 |
> |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1234 |
|
dr = cgColData.position[j2] - cgRowData.position[j1]; |
1235 |
|
snap_->wrapVector(dr); |
1236 |
|
cuts = getGroupCutoffs( j1, j2 ); |
1238 |
|
neighborList.push_back(make_pair(j1, j2)); |
1239 |
|
} |
1240 |
|
} |
1241 |
< |
} |
1241 |
> |
} |
1242 |
|
#else |
1243 |
< |
for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1244 |
< |
for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1243 |
> |
// include all groups here. |
1244 |
> |
for (int j1 = 0; j1 < nGroups_; j1++) { |
1245 |
> |
// include self group interactions j2 == j1 |
1246 |
> |
for (int j2 = j1; j2 < nGroups_; j2++) { |
1247 |
|
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1248 |
|
snap_->wrapVector(dr); |
1249 |
|
cuts = getGroupCutoffs( j1, j2 ); |
1250 |
|
if (dr.lengthSquare() < cuts.third) { |
1251 |
|
neighborList.push_back(make_pair(j1, j2)); |
1252 |
|
} |
1253 |
< |
} |
1254 |
< |
} |
1253 |
> |
} |
1254 |
> |
} |
1255 |
|
#endif |
1256 |
|
} |
1257 |
|
|