36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
#include "parallel/ForceMatrixDecomposition.hpp" |
43 |
|
#include "math/SquareMatrix3.hpp" |
48 |
|
using namespace std; |
49 |
|
namespace OpenMD { |
50 |
|
|
51 |
+ |
ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
52 |
+ |
|
53 |
+ |
// In a parallel computation, row and colum scans must visit all |
54 |
+ |
// surrounding cells (not just the 14 upper triangular blocks that |
55 |
+ |
// are used when the processor can see all pairs) |
56 |
+ |
#ifdef IS_MPI |
57 |
+ |
cellOffsets_.clear(); |
58 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
59 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
60 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
61 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
62 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
63 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
64 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
65 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
66 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
68 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
69 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
70 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
71 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
72 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
73 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
74 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
75 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
76 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
77 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
78 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
79 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
80 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
81 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
82 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
83 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
84 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
85 |
+ |
#endif |
86 |
+ |
} |
87 |
+ |
|
88 |
+ |
|
89 |
|
/** |
90 |
|
* distributeInitialData is essentially a copy of the older fortran |
91 |
|
* SimulationSetup |
92 |
|
*/ |
54 |
– |
|
93 |
|
void ForceMatrixDecomposition::distributeInitialData() { |
94 |
|
snap_ = sman_->getCurrentSnapshot(); |
95 |
|
storageLayout_ = sman_->getStorageLayout(); |
96 |
|
ff_ = info_->getForceField(); |
97 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
98 |
< |
|
98 |
> |
|
99 |
|
nGroups_ = info_->getNLocalCutoffGroups(); |
100 |
|
// gather the information for atomtype IDs (atids): |
101 |
|
idents = info_->getIdentArray(); |
109 |
|
PairList* oneTwo = info_->getOneTwoInteractions(); |
110 |
|
PairList* oneThree = info_->getOneThreeInteractions(); |
111 |
|
PairList* oneFour = info_->getOneFourInteractions(); |
112 |
< |
|
112 |
> |
|
113 |
> |
if (needVelocities_) |
114 |
> |
snap_->cgData.setStorageLayout(DataStorage::dslPosition | |
115 |
> |
DataStorage::dslVelocity); |
116 |
> |
else |
117 |
> |
snap_->cgData.setStorageLayout(DataStorage::dslPosition); |
118 |
> |
|
119 |
|
#ifdef IS_MPI |
120 |
|
|
121 |
< |
AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
122 |
< |
AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
79 |
< |
AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
80 |
< |
AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
81 |
< |
AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
121 |
> |
MPI::Intracomm row = rowComm.getComm(); |
122 |
> |
MPI::Intracomm col = colComm.getComm(); |
123 |
|
|
124 |
< |
AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
125 |
< |
AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
126 |
< |
AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
127 |
< |
AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
128 |
< |
AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
124 |
> |
AtomPlanIntRow = new Plan<int>(row, nLocal_); |
125 |
> |
AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
126 |
> |
AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
127 |
> |
AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
128 |
> |
AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
129 |
|
|
130 |
< |
cgCommIntRow = new Communicator<Row,int>(nGroups_); |
131 |
< |
cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
132 |
< |
cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
133 |
< |
cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
130 |
> |
AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
131 |
> |
AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
132 |
> |
AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
133 |
> |
AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
134 |
> |
AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
135 |
|
|
136 |
< |
nAtomsInRow_ = AtomCommIntRow->getSize(); |
137 |
< |
nAtomsInCol_ = AtomCommIntColumn->getSize(); |
138 |
< |
nGroupsInRow_ = cgCommIntRow->getSize(); |
139 |
< |
nGroupsInCol_ = cgCommIntColumn->getSize(); |
136 |
> |
cgPlanIntRow = new Plan<int>(row, nGroups_); |
137 |
> |
cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
138 |
> |
cgPlanIntColumn = new Plan<int>(col, nGroups_); |
139 |
> |
cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
140 |
|
|
141 |
+ |
nAtomsInRow_ = AtomPlanIntRow->getSize(); |
142 |
+ |
nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
143 |
+ |
nGroupsInRow_ = cgPlanIntRow->getSize(); |
144 |
+ |
nGroupsInCol_ = cgPlanIntColumn->getSize(); |
145 |
+ |
|
146 |
|
// Modify the data storage objects with the correct layouts and sizes: |
147 |
|
atomRowData.resize(nAtomsInRow_); |
148 |
|
atomRowData.setStorageLayout(storageLayout_); |
151 |
|
cgRowData.resize(nGroupsInRow_); |
152 |
|
cgRowData.setStorageLayout(DataStorage::dslPosition); |
153 |
|
cgColData.resize(nGroupsInCol_); |
154 |
< |
cgColData.setStorageLayout(DataStorage::dslPosition); |
155 |
< |
|
154 |
> |
if (needVelocities_) |
155 |
> |
// we only need column velocities if we need them. |
156 |
> |
cgColData.setStorageLayout(DataStorage::dslPosition | |
157 |
> |
DataStorage::dslVelocity); |
158 |
> |
else |
159 |
> |
cgColData.setStorageLayout(DataStorage::dslPosition); |
160 |
> |
|
161 |
|
identsRow.resize(nAtomsInRow_); |
162 |
|
identsCol.resize(nAtomsInCol_); |
163 |
|
|
164 |
< |
AtomCommIntRow->gather(idents, identsRow); |
165 |
< |
AtomCommIntColumn->gather(idents, identsCol); |
164 |
> |
AtomPlanIntRow->gather(idents, identsRow); |
165 |
> |
AtomPlanIntColumn->gather(idents, identsCol); |
166 |
|
|
167 |
|
// allocate memory for the parallel objects |
168 |
|
atypesRow.resize(nAtomsInRow_); |
176 |
|
pot_row.resize(nAtomsInRow_); |
177 |
|
pot_col.resize(nAtomsInCol_); |
178 |
|
|
179 |
+ |
expot_row.resize(nAtomsInRow_); |
180 |
+ |
expot_col.resize(nAtomsInCol_); |
181 |
+ |
|
182 |
|
AtomRowToGlobal.resize(nAtomsInRow_); |
183 |
|
AtomColToGlobal.resize(nAtomsInCol_); |
184 |
< |
AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
185 |
< |
AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
186 |
< |
|
184 |
> |
AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
185 |
> |
AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
186 |
> |
|
187 |
|
cgRowToGlobal.resize(nGroupsInRow_); |
188 |
|
cgColToGlobal.resize(nGroupsInCol_); |
189 |
< |
cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
190 |
< |
cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
189 |
> |
cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
190 |
> |
cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
191 |
|
|
192 |
|
massFactorsRow.resize(nAtomsInRow_); |
193 |
|
massFactorsCol.resize(nAtomsInCol_); |
194 |
< |
AtomCommRealRow->gather(massFactors, massFactorsRow); |
195 |
< |
AtomCommRealColumn->gather(massFactors, massFactorsCol); |
194 |
> |
AtomPlanRealRow->gather(massFactors, massFactorsRow); |
195 |
> |
AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
196 |
|
|
197 |
|
groupListRow_.clear(); |
198 |
|
groupListRow_.resize(nGroupsInRow_); |
248 |
|
} |
249 |
|
} |
250 |
|
|
251 |
< |
#endif |
197 |
< |
|
198 |
< |
// allocate memory for the parallel objects |
199 |
< |
atypesLocal.resize(nLocal_); |
200 |
< |
|
201 |
< |
for (int i = 0; i < nLocal_; i++) |
202 |
< |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
203 |
< |
|
204 |
< |
groupList_.clear(); |
205 |
< |
groupList_.resize(nGroups_); |
206 |
< |
for (int i = 0; i < nGroups_; i++) { |
207 |
< |
int gid = cgLocalToGlobal[i]; |
208 |
< |
for (int j = 0; j < nLocal_; j++) { |
209 |
< |
int aid = AtomLocalToGlobal[j]; |
210 |
< |
if (globalGroupMembership[aid] == gid) { |
211 |
< |
groupList_[i].push_back(j); |
212 |
< |
} |
213 |
< |
} |
214 |
< |
} |
215 |
< |
|
251 |
> |
#else |
252 |
|
excludesForAtom.clear(); |
253 |
|
excludesForAtom.resize(nLocal_); |
254 |
|
toposForAtom.clear(); |
281 |
|
} |
282 |
|
} |
283 |
|
} |
284 |
< |
|
284 |
> |
#endif |
285 |
> |
|
286 |
> |
// allocate memory for the parallel objects |
287 |
> |
atypesLocal.resize(nLocal_); |
288 |
> |
|
289 |
> |
for (int i = 0; i < nLocal_; i++) |
290 |
> |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
291 |
> |
|
292 |
> |
groupList_.clear(); |
293 |
> |
groupList_.resize(nGroups_); |
294 |
> |
for (int i = 0; i < nGroups_; i++) { |
295 |
> |
int gid = cgLocalToGlobal[i]; |
296 |
> |
for (int j = 0; j < nLocal_; j++) { |
297 |
> |
int aid = AtomLocalToGlobal[j]; |
298 |
> |
if (globalGroupMembership[aid] == gid) { |
299 |
> |
groupList_[i].push_back(j); |
300 |
> |
} |
301 |
> |
} |
302 |
> |
} |
303 |
> |
|
304 |
> |
|
305 |
|
createGtypeCutoffMap(); |
306 |
|
|
307 |
|
} |
309 |
|
void ForceMatrixDecomposition::createGtypeCutoffMap() { |
310 |
|
|
311 |
|
RealType tol = 1e-6; |
312 |
+ |
largestRcut_ = 0.0; |
313 |
|
RealType rc; |
314 |
|
int atid; |
315 |
|
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
316 |
+ |
|
317 |
|
map<int, RealType> atypeCutoff; |
318 |
|
|
319 |
|
for (set<AtomType*>::iterator at = atypes.begin(); |
321 |
|
atid = (*at)->getIdent(); |
322 |
|
if (userChoseCutoff_) |
323 |
|
atypeCutoff[atid] = userCutoff_; |
324 |
< |
else |
324 |
> |
else |
325 |
|
atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
326 |
|
} |
327 |
< |
|
327 |
> |
|
328 |
|
vector<RealType> gTypeCutoffs; |
329 |
|
// first we do a single loop over the cutoff groups to find the |
330 |
|
// largest cutoff for any atypes present in this group. |
384 |
|
vector<RealType> groupCutoff(nGroups_, 0.0); |
385 |
|
groupToGtype.resize(nGroups_); |
386 |
|
for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
329 |
– |
|
387 |
|
groupCutoff[cg1] = 0.0; |
388 |
|
vector<int> atomList = getAtomsInGroupRow(cg1); |
332 |
– |
|
389 |
|
for (vector<int>::iterator ia = atomList.begin(); |
390 |
|
ia != atomList.end(); ++ia) { |
391 |
|
int atom1 = (*ia); |
392 |
|
atid = idents[atom1]; |
393 |
< |
if (atypeCutoff[atid] > groupCutoff[cg1]) { |
393 |
> |
if (atypeCutoff[atid] > groupCutoff[cg1]) |
394 |
|
groupCutoff[cg1] = atypeCutoff[atid]; |
339 |
– |
} |
395 |
|
} |
396 |
< |
|
396 |
> |
|
397 |
|
bool gTypeFound = false; |
398 |
|
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
399 |
|
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
401 |
|
gTypeFound = true; |
402 |
|
} |
403 |
|
} |
404 |
< |
if (!gTypeFound) { |
404 |
> |
if (!gTypeFound) { |
405 |
|
gTypeCutoffs.push_back( groupCutoff[cg1] ); |
406 |
|
groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
407 |
|
} |
445 |
|
|
446 |
|
pair<int,int> key = make_pair(i,j); |
447 |
|
gTypeCutoffMap[key].first = thisRcut; |
393 |
– |
|
448 |
|
if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
395 |
– |
|
449 |
|
gTypeCutoffMap[key].second = thisRcut*thisRcut; |
397 |
– |
|
450 |
|
gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
399 |
– |
|
451 |
|
// sanity check |
452 |
|
|
453 |
|
if (userChoseCutoff_) { |
464 |
|
} |
465 |
|
} |
466 |
|
|
416 |
– |
|
467 |
|
groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
468 |
|
int i, j; |
469 |
|
#ifdef IS_MPI |
487 |
|
void ForceMatrixDecomposition::zeroWorkArrays() { |
488 |
|
pairwisePot = 0.0; |
489 |
|
embeddingPot = 0.0; |
490 |
+ |
excludedPot = 0.0; |
491 |
+ |
excludedSelfPot = 0.0; |
492 |
|
|
493 |
|
#ifdef IS_MPI |
494 |
|
if (storageLayout_ & DataStorage::dslForce) { |
507 |
|
fill(pot_col.begin(), pot_col.end(), |
508 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
509 |
|
|
510 |
+ |
fill(expot_row.begin(), expot_row.end(), |
511 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
512 |
+ |
|
513 |
+ |
fill(expot_col.begin(), expot_col.end(), |
514 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
515 |
+ |
|
516 |
|
if (storageLayout_ & DataStorage::dslParticlePot) { |
517 |
|
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
518 |
|
0.0); |
546 |
|
atomColData.skippedCharge.end(), 0.0); |
547 |
|
} |
548 |
|
|
549 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
550 |
+ |
fill(atomRowData.flucQFrc.begin(), |
551 |
+ |
atomRowData.flucQFrc.end(), 0.0); |
552 |
+ |
fill(atomColData.flucQFrc.begin(), |
553 |
+ |
atomColData.flucQFrc.end(), 0.0); |
554 |
+ |
} |
555 |
+ |
|
556 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
557 |
+ |
fill(atomRowData.electricField.begin(), |
558 |
+ |
atomRowData.electricField.end(), V3Zero); |
559 |
+ |
fill(atomColData.electricField.begin(), |
560 |
+ |
atomColData.electricField.end(), V3Zero); |
561 |
+ |
} |
562 |
+ |
|
563 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
564 |
+ |
fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), |
565 |
+ |
0.0); |
566 |
+ |
fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), |
567 |
+ |
0.0); |
568 |
+ |
} |
569 |
+ |
|
570 |
|
#endif |
571 |
|
// even in parallel, we need to zero out the local arrays: |
572 |
|
|
579 |
|
fill(snap_->atomData.density.begin(), |
580 |
|
snap_->atomData.density.end(), 0.0); |
581 |
|
} |
582 |
+ |
|
583 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
584 |
|
fill(snap_->atomData.functional.begin(), |
585 |
|
snap_->atomData.functional.end(), 0.0); |
586 |
|
} |
587 |
+ |
|
588 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
589 |
|
fill(snap_->atomData.functionalDerivative.begin(), |
590 |
|
snap_->atomData.functionalDerivative.end(), 0.0); |
591 |
|
} |
592 |
+ |
|
593 |
|
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
594 |
|
fill(snap_->atomData.skippedCharge.begin(), |
595 |
|
snap_->atomData.skippedCharge.end(), 0.0); |
596 |
|
} |
597 |
< |
|
597 |
> |
|
598 |
> |
if (storageLayout_ & DataStorage::dslElectricField) { |
599 |
> |
fill(snap_->atomData.electricField.begin(), |
600 |
> |
snap_->atomData.electricField.end(), V3Zero); |
601 |
> |
} |
602 |
|
} |
603 |
|
|
604 |
|
|
608 |
|
#ifdef IS_MPI |
609 |
|
|
610 |
|
// gather up the atomic positions |
611 |
< |
AtomCommVectorRow->gather(snap_->atomData.position, |
611 |
> |
AtomPlanVectorRow->gather(snap_->atomData.position, |
612 |
|
atomRowData.position); |
613 |
< |
AtomCommVectorColumn->gather(snap_->atomData.position, |
613 |
> |
AtomPlanVectorColumn->gather(snap_->atomData.position, |
614 |
|
atomColData.position); |
615 |
|
|
616 |
|
// gather up the cutoff group positions |
617 |
< |
cgCommVectorRow->gather(snap_->cgData.position, |
617 |
> |
|
618 |
> |
cgPlanVectorRow->gather(snap_->cgData.position, |
619 |
|
cgRowData.position); |
620 |
< |
cgCommVectorColumn->gather(snap_->cgData.position, |
620 |
> |
|
621 |
> |
cgPlanVectorColumn->gather(snap_->cgData.position, |
622 |
|
cgColData.position); |
623 |
+ |
|
624 |
+ |
|
625 |
+ |
|
626 |
+ |
if (needVelocities_) { |
627 |
+ |
// gather up the atomic velocities |
628 |
+ |
AtomPlanVectorColumn->gather(snap_->atomData.velocity, |
629 |
+ |
atomColData.velocity); |
630 |
+ |
|
631 |
+ |
cgPlanVectorColumn->gather(snap_->cgData.velocity, |
632 |
+ |
cgColData.velocity); |
633 |
+ |
} |
634 |
+ |
|
635 |
|
|
636 |
|
// if needed, gather the atomic rotation matrices |
637 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
638 |
< |
AtomCommMatrixRow->gather(snap_->atomData.aMat, |
638 |
> |
AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
639 |
|
atomRowData.aMat); |
640 |
< |
AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
640 |
> |
AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
641 |
|
atomColData.aMat); |
642 |
|
} |
643 |
|
|
644 |
|
// if needed, gather the atomic eletrostatic frames |
645 |
|
if (storageLayout_ & DataStorage::dslElectroFrame) { |
646 |
< |
AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
646 |
> |
AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
647 |
|
atomRowData.electroFrame); |
648 |
< |
AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
648 |
> |
AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
649 |
|
atomColData.electroFrame); |
650 |
|
} |
651 |
|
|
652 |
+ |
// if needed, gather the atomic fluctuating charge values |
653 |
+ |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
654 |
+ |
AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
655 |
+ |
atomRowData.flucQPos); |
656 |
+ |
AtomPlanRealColumn->gather(snap_->atomData.flucQPos, |
657 |
+ |
atomColData.flucQPos); |
658 |
+ |
} |
659 |
+ |
|
660 |
|
#endif |
661 |
|
} |
662 |
|
|
670 |
|
|
671 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
672 |
|
|
673 |
< |
AtomCommRealRow->scatter(atomRowData.density, |
673 |
> |
AtomPlanRealRow->scatter(atomRowData.density, |
674 |
|
snap_->atomData.density); |
675 |
|
|
676 |
|
int n = snap_->atomData.density.size(); |
677 |
|
vector<RealType> rho_tmp(n, 0.0); |
678 |
< |
AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
678 |
> |
AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
679 |
|
for (int i = 0; i < n; i++) |
680 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
681 |
|
} |
682 |
+ |
|
683 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
684 |
+ |
|
685 |
+ |
AtomPlanVectorRow->scatter(atomRowData.electricField, |
686 |
+ |
snap_->atomData.electricField); |
687 |
+ |
|
688 |
+ |
int n = snap_->atomData.electricField.size(); |
689 |
+ |
vector<Vector3d> field_tmp(n, V3Zero); |
690 |
+ |
AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); |
691 |
+ |
for (int i = 0; i < n; i++) |
692 |
+ |
snap_->atomData.electricField[i] += field_tmp[i]; |
693 |
+ |
} |
694 |
|
#endif |
695 |
|
} |
696 |
|
|
703 |
|
storageLayout_ = sman_->getStorageLayout(); |
704 |
|
#ifdef IS_MPI |
705 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
706 |
< |
AtomCommRealRow->gather(snap_->atomData.functional, |
706 |
> |
AtomPlanRealRow->gather(snap_->atomData.functional, |
707 |
|
atomRowData.functional); |
708 |
< |
AtomCommRealColumn->gather(snap_->atomData.functional, |
708 |
> |
AtomPlanRealColumn->gather(snap_->atomData.functional, |
709 |
|
atomColData.functional); |
710 |
|
} |
711 |
|
|
712 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
713 |
< |
AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
713 |
> |
AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
714 |
|
atomRowData.functionalDerivative); |
715 |
< |
AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
715 |
> |
AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
716 |
|
atomColData.functionalDerivative); |
717 |
|
} |
718 |
|
#endif |
726 |
|
int n = snap_->atomData.force.size(); |
727 |
|
vector<Vector3d> frc_tmp(n, V3Zero); |
728 |
|
|
729 |
< |
AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
729 |
> |
AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
730 |
|
for (int i = 0; i < n; i++) { |
731 |
|
snap_->atomData.force[i] += frc_tmp[i]; |
732 |
|
frc_tmp[i] = 0.0; |
733 |
|
} |
734 |
|
|
735 |
< |
AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
736 |
< |
for (int i = 0; i < n; i++) |
735 |
> |
AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
736 |
> |
for (int i = 0; i < n; i++) { |
737 |
|
snap_->atomData.force[i] += frc_tmp[i]; |
738 |
+ |
} |
739 |
|
|
740 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
741 |
|
|
742 |
|
int nt = snap_->atomData.torque.size(); |
743 |
|
vector<Vector3d> trq_tmp(nt, V3Zero); |
744 |
|
|
745 |
< |
AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
745 |
> |
AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
746 |
|
for (int i = 0; i < nt; i++) { |
747 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
748 |
|
trq_tmp[i] = 0.0; |
749 |
|
} |
750 |
|
|
751 |
< |
AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
751 |
> |
AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
752 |
|
for (int i = 0; i < nt; i++) |
753 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
754 |
|
} |
758 |
|
int ns = snap_->atomData.skippedCharge.size(); |
759 |
|
vector<RealType> skch_tmp(ns, 0.0); |
760 |
|
|
761 |
< |
AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
761 |
> |
AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
762 |
|
for (int i = 0; i < ns; i++) { |
763 |
|
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
764 |
|
skch_tmp[i] = 0.0; |
765 |
|
} |
766 |
|
|
767 |
< |
AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
768 |
< |
for (int i = 0; i < ns; i++) |
767 |
> |
AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
768 |
> |
for (int i = 0; i < ns; i++) |
769 |
|
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
770 |
+ |
|
771 |
|
} |
772 |
|
|
773 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
774 |
+ |
|
775 |
+ |
int nq = snap_->atomData.flucQFrc.size(); |
776 |
+ |
vector<RealType> fqfrc_tmp(nq, 0.0); |
777 |
+ |
|
778 |
+ |
AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); |
779 |
+ |
for (int i = 0; i < nq; i++) { |
780 |
+ |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
781 |
+ |
fqfrc_tmp[i] = 0.0; |
782 |
+ |
} |
783 |
+ |
|
784 |
+ |
AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); |
785 |
+ |
for (int i = 0; i < nq; i++) |
786 |
+ |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
787 |
+ |
|
788 |
+ |
} |
789 |
+ |
|
790 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
791 |
|
|
792 |
|
vector<potVec> pot_temp(nLocal_, |
793 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
794 |
+ |
vector<potVec> expot_temp(nLocal_, |
795 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
796 |
|
|
797 |
|
// scatter/gather pot_row into the members of my column |
798 |
|
|
799 |
< |
AtomCommPotRow->scatter(pot_row, pot_temp); |
799 |
> |
AtomPlanPotRow->scatter(pot_row, pot_temp); |
800 |
> |
AtomPlanPotRow->scatter(expot_row, expot_temp); |
801 |
|
|
802 |
< |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
802 |
> |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
803 |
|
pairwisePot += pot_temp[ii]; |
804 |
< |
|
804 |
> |
|
805 |
> |
for (int ii = 0; ii < expot_temp.size(); ii++ ) |
806 |
> |
excludedPot += expot_temp[ii]; |
807 |
> |
|
808 |
> |
if (storageLayout_ & DataStorage::dslParticlePot) { |
809 |
> |
// This is the pairwise contribution to the particle pot. The |
810 |
> |
// embedding contribution is added in each of the low level |
811 |
> |
// non-bonded routines. In single processor, this is done in |
812 |
> |
// unpackInteractionData, not in collectData. |
813 |
> |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
814 |
> |
for (int i = 0; i < nLocal_; i++) { |
815 |
> |
// factor of two is because the total potential terms are divided |
816 |
> |
// by 2 in parallel due to row/ column scatter |
817 |
> |
snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
818 |
> |
} |
819 |
> |
} |
820 |
> |
} |
821 |
> |
|
822 |
|
fill(pot_temp.begin(), pot_temp.end(), |
823 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
824 |
+ |
fill(expot_temp.begin(), expot_temp.end(), |
825 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
826 |
|
|
827 |
< |
AtomCommPotColumn->scatter(pot_col, pot_temp); |
827 |
> |
AtomPlanPotColumn->scatter(pot_col, pot_temp); |
828 |
> |
AtomPlanPotColumn->scatter(expot_col, expot_temp); |
829 |
|
|
830 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
831 |
|
pairwisePot += pot_temp[ii]; |
832 |
+ |
|
833 |
+ |
for (int ii = 0; ii < expot_temp.size(); ii++ ) |
834 |
+ |
excludedPot += expot_temp[ii]; |
835 |
+ |
|
836 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
837 |
+ |
// This is the pairwise contribution to the particle pot. The |
838 |
+ |
// embedding contribution is added in each of the low level |
839 |
+ |
// non-bonded routines. In single processor, this is done in |
840 |
+ |
// unpackInteractionData, not in collectData. |
841 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
842 |
+ |
for (int i = 0; i < nLocal_; i++) { |
843 |
+ |
// factor of two is because the total potential terms are divided |
844 |
+ |
// by 2 in parallel due to row/ column scatter |
845 |
+ |
snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
846 |
+ |
} |
847 |
+ |
} |
848 |
+ |
} |
849 |
+ |
|
850 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
851 |
+ |
int npp = snap_->atomData.particlePot.size(); |
852 |
+ |
vector<RealType> ppot_temp(npp, 0.0); |
853 |
+ |
|
854 |
+ |
// This is the direct or embedding contribution to the particle |
855 |
+ |
// pot. |
856 |
+ |
|
857 |
+ |
AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); |
858 |
+ |
for (int i = 0; i < npp; i++) { |
859 |
+ |
snap_->atomData.particlePot[i] += ppot_temp[i]; |
860 |
+ |
} |
861 |
+ |
|
862 |
+ |
fill(ppot_temp.begin(), ppot_temp.end(), 0.0); |
863 |
+ |
|
864 |
+ |
AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); |
865 |
+ |
for (int i = 0; i < npp; i++) { |
866 |
+ |
snap_->atomData.particlePot[i] += ppot_temp[i]; |
867 |
+ |
} |
868 |
+ |
} |
869 |
+ |
|
870 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
871 |
+ |
RealType ploc1 = pairwisePot[ii]; |
872 |
+ |
RealType ploc2 = 0.0; |
873 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
874 |
+ |
pairwisePot[ii] = ploc2; |
875 |
+ |
} |
876 |
+ |
|
877 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
878 |
+ |
RealType ploc1 = excludedPot[ii]; |
879 |
+ |
RealType ploc2 = 0.0; |
880 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
881 |
+ |
excludedPot[ii] = ploc2; |
882 |
+ |
} |
883 |
+ |
|
884 |
+ |
// Here be dragons. |
885 |
+ |
MPI::Intracomm col = colComm.getComm(); |
886 |
+ |
|
887 |
+ |
col.Allreduce(MPI::IN_PLACE, |
888 |
+ |
&snap_->frameData.conductiveHeatFlux[0], 3, |
889 |
+ |
MPI::REALTYPE, MPI::SUM); |
890 |
+ |
|
891 |
+ |
|
892 |
|
#endif |
893 |
|
|
894 |
|
} |
895 |
|
|
896 |
+ |
/** |
897 |
+ |
* Collects information obtained during the post-pair (and embedding |
898 |
+ |
* functional) loops onto local data structures. |
899 |
+ |
*/ |
900 |
+ |
void ForceMatrixDecomposition::collectSelfData() { |
901 |
+ |
snap_ = sman_->getCurrentSnapshot(); |
902 |
+ |
storageLayout_ = sman_->getStorageLayout(); |
903 |
+ |
|
904 |
+ |
#ifdef IS_MPI |
905 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
906 |
+ |
RealType ploc1 = embeddingPot[ii]; |
907 |
+ |
RealType ploc2 = 0.0; |
908 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
909 |
+ |
embeddingPot[ii] = ploc2; |
910 |
+ |
} |
911 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
912 |
+ |
RealType ploc1 = excludedSelfPot[ii]; |
913 |
+ |
RealType ploc2 = 0.0; |
914 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
915 |
+ |
excludedSelfPot[ii] = ploc2; |
916 |
+ |
} |
917 |
+ |
#endif |
918 |
+ |
|
919 |
+ |
} |
920 |
+ |
|
921 |
+ |
|
922 |
+ |
|
923 |
|
int ForceMatrixDecomposition::getNAtomsInRow() { |
924 |
|
#ifdef IS_MPI |
925 |
|
return nAtomsInRow_; |
960 |
|
return d; |
961 |
|
} |
962 |
|
|
963 |
+ |
Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
964 |
+ |
#ifdef IS_MPI |
965 |
+ |
return cgColData.velocity[cg2]; |
966 |
+ |
#else |
967 |
+ |
return snap_->cgData.velocity[cg2]; |
968 |
+ |
#endif |
969 |
+ |
} |
970 |
|
|
971 |
+ |
Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
972 |
+ |
#ifdef IS_MPI |
973 |
+ |
return atomColData.velocity[atom2]; |
974 |
+ |
#else |
975 |
+ |
return snap_->atomData.velocity[atom2]; |
976 |
+ |
#endif |
977 |
+ |
} |
978 |
+ |
|
979 |
+ |
|
980 |
|
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ |
981 |
|
|
982 |
|
Vector3d d; |
1042 |
|
* We need to exclude some overcounted interactions that result from |
1043 |
|
* the parallel decomposition. |
1044 |
|
*/ |
1045 |
< |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
1046 |
< |
int unique_id_1, unique_id_2; |
1047 |
< |
|
1045 |
> |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { |
1046 |
> |
int unique_id_1, unique_id_2, group1, group2; |
1047 |
> |
|
1048 |
|
#ifdef IS_MPI |
1049 |
|
// in MPI, we have to look up the unique IDs for each atom |
1050 |
|
unique_id_1 = AtomRowToGlobal[atom1]; |
1051 |
|
unique_id_2 = AtomColToGlobal[atom2]; |
1052 |
< |
|
1053 |
< |
// this situation should only arise in MPI simulations |
1052 |
> |
group1 = cgRowToGlobal[cg1]; |
1053 |
> |
group2 = cgColToGlobal[cg2]; |
1054 |
> |
#else |
1055 |
> |
unique_id_1 = AtomLocalToGlobal[atom1]; |
1056 |
> |
unique_id_2 = AtomLocalToGlobal[atom2]; |
1057 |
> |
group1 = cgLocalToGlobal[cg1]; |
1058 |
> |
group2 = cgLocalToGlobal[cg2]; |
1059 |
> |
#endif |
1060 |
> |
|
1061 |
|
if (unique_id_1 == unique_id_2) return true; |
1062 |
< |
|
1062 |
> |
|
1063 |
> |
#ifdef IS_MPI |
1064 |
|
// this prevents us from doing the pair on multiple processors |
1065 |
|
if (unique_id_1 < unique_id_2) { |
1066 |
|
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
1067 |
|
} else { |
1068 |
< |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1068 |
> |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1069 |
|
} |
1070 |
+ |
#endif |
1071 |
+ |
|
1072 |
+ |
#ifndef IS_MPI |
1073 |
+ |
if (group1 == group2) { |
1074 |
+ |
if (unique_id_1 < unique_id_2) return true; |
1075 |
+ |
} |
1076 |
|
#endif |
1077 |
+ |
|
1078 |
|
return false; |
1079 |
|
} |
1080 |
|
|
1088 |
|
* field) must still be handled for these pairs. |
1089 |
|
*/ |
1090 |
|
bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
1091 |
< |
int unique_id_2; |
1091 |
> |
|
1092 |
> |
// excludesForAtom was constructed to use row/column indices in the MPI |
1093 |
> |
// version, and to use local IDs in the non-MPI version: |
1094 |
|
|
813 |
– |
#ifdef IS_MPI |
814 |
– |
// in MPI, we have to look up the unique IDs for the row atom. |
815 |
– |
unique_id_2 = AtomColToGlobal[atom2]; |
816 |
– |
#else |
817 |
– |
// in the normal loop, the atom numbers are unique |
818 |
– |
unique_id_2 = atom2; |
819 |
– |
#endif |
820 |
– |
|
1095 |
|
for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
1096 |
|
i != excludesForAtom[atom1].end(); ++i) { |
1097 |
< |
if ( (*i) == unique_id_2 ) return true; |
1097 |
> |
if ( (*i) == atom2 ) return true; |
1098 |
|
} |
1099 |
|
|
1100 |
|
return false; |
1168 |
|
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
1169 |
|
} |
1170 |
|
|
1171 |
< |
#else |
1171 |
> |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1172 |
> |
idat.flucQ1 = &(atomRowData.flucQPos[atom1]); |
1173 |
> |
idat.flucQ2 = &(atomColData.flucQPos[atom2]); |
1174 |
> |
} |
1175 |
|
|
1176 |
+ |
#else |
1177 |
+ |
|
1178 |
|
idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
900 |
– |
//idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
901 |
– |
// ff_->getAtomType(idents[atom2]) ); |
1179 |
|
|
1180 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
1181 |
|
idat.A1 = &(snap_->atomData.aMat[atom1]); |
1216 |
|
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
1217 |
|
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
1218 |
|
} |
1219 |
+ |
|
1220 |
+ |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1221 |
+ |
idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); |
1222 |
+ |
idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); |
1223 |
+ |
} |
1224 |
+ |
|
1225 |
|
#endif |
1226 |
|
} |
1227 |
|
|
1228 |
|
|
1229 |
|
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
1230 |
|
#ifdef IS_MPI |
1231 |
< |
pot_row[atom1] += 0.5 * *(idat.pot); |
1232 |
< |
pot_col[atom2] += 0.5 * *(idat.pot); |
1231 |
> |
pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1232 |
> |
pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1233 |
> |
expot_row[atom1] += RealType(0.5) * *(idat.excludedPot); |
1234 |
> |
expot_col[atom2] += RealType(0.5) * *(idat.excludedPot); |
1235 |
|
|
1236 |
|
atomRowData.force[atom1] += *(idat.f1); |
1237 |
|
atomColData.force[atom2] -= *(idat.f1); |
1238 |
+ |
|
1239 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
1240 |
+ |
atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1241 |
+ |
atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1242 |
+ |
} |
1243 |
+ |
|
1244 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
1245 |
+ |
atomRowData.electricField[atom1] += *(idat.eField1); |
1246 |
+ |
atomColData.electricField[atom2] += *(idat.eField2); |
1247 |
+ |
} |
1248 |
+ |
|
1249 |
|
#else |
1250 |
|
pairwisePot += *(idat.pot); |
1251 |
+ |
excludedPot += *(idat.excludedPot); |
1252 |
|
|
1253 |
|
snap_->atomData.force[atom1] += *(idat.f1); |
1254 |
|
snap_->atomData.force[atom2] -= *(idat.f1); |
1255 |
+ |
|
1256 |
+ |
if (idat.doParticlePot) { |
1257 |
+ |
// This is the pairwise contribution to the particle pot. The |
1258 |
+ |
// embedding contribution is added in each of the low level |
1259 |
+ |
// non-bonded routines. In parallel, this calculation is done |
1260 |
+ |
// in collectData, not in unpackInteractionData. |
1261 |
+ |
snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
1262 |
+ |
snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); |
1263 |
+ |
} |
1264 |
+ |
|
1265 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
1266 |
+ |
snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1267 |
+ |
snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1268 |
+ |
} |
1269 |
+ |
|
1270 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
1271 |
+ |
snap_->atomData.electricField[atom1] += *(idat.eField1); |
1272 |
+ |
snap_->atomData.electricField[atom2] += *(idat.eField2); |
1273 |
+ |
} |
1274 |
+ |
|
1275 |
|
#endif |
1276 |
|
|
1277 |
|
} |
1353 |
|
// add this cutoff group to the list of groups in this cell; |
1354 |
|
cellListRow_[cellIndex].push_back(i); |
1355 |
|
} |
1039 |
– |
|
1356 |
|
for (int i = 0; i < nGroupsInCol_; i++) { |
1357 |
|
rs = cgColData.position[i]; |
1358 |
|
|
1377 |
|
// add this cutoff group to the list of groups in this cell; |
1378 |
|
cellListCol_[cellIndex].push_back(i); |
1379 |
|
} |
1380 |
+ |
|
1381 |
|
#else |
1382 |
|
for (int i = 0; i < nGroups_; i++) { |
1383 |
|
rs = snap_->cgData.position[i]; |
1398 |
|
whichCell.z() = nCells_.z() * scaled.z(); |
1399 |
|
|
1400 |
|
// find single index of this cell: |
1401 |
< |
cellIndex = Vlinear(whichCell, nCells_); |
1401 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1402 |
|
|
1403 |
|
// add this cutoff group to the list of groups in this cell; |
1404 |
|
cellList_[cellIndex].push_back(i); |
1405 |
|
} |
1406 |
+ |
|
1407 |
|
#endif |
1408 |
|
|
1409 |
|
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1416 |
|
os != cellOffsets_.end(); ++os) { |
1417 |
|
|
1418 |
|
Vector3i m2v = m1v + (*os); |
1419 |
< |
|
1419 |
> |
|
1420 |
> |
|
1421 |
|
if (m2v.x() >= nCells_.x()) { |
1422 |
|
m2v.x() = 0; |
1423 |
|
} else if (m2v.x() < 0) { |
1435 |
|
} else if (m2v.z() < 0) { |
1436 |
|
m2v.z() = nCells_.z() - 1; |
1437 |
|
} |
1438 |
< |
|
1438 |
> |
|
1439 |
|
int m2 = Vlinear (m2v, nCells_); |
1440 |
|
|
1441 |
|
#ifdef IS_MPI |
1444 |
|
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1445 |
|
j2 != cellListCol_[m2].end(); ++j2) { |
1446 |
|
|
1447 |
< |
// Always do this if we're in different cells or if |
1448 |
< |
// we're in the same cell and the global index of the |
1449 |
< |
// j2 cutoff group is less than the j1 cutoff group |
1450 |
< |
|
1451 |
< |
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1452 |
< |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1453 |
< |
snap_->wrapVector(dr); |
1454 |
< |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1455 |
< |
if (dr.lengthSquare() < cuts.third) { |
1137 |
< |
neighborList.push_back(make_pair((*j1), (*j2))); |
1138 |
< |
} |
1139 |
< |
} |
1447 |
> |
// In parallel, we need to visit *all* pairs of row |
1448 |
> |
// & column indicies and will divide labor in the |
1449 |
> |
// force evaluation later. |
1450 |
> |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1451 |
> |
snap_->wrapVector(dr); |
1452 |
> |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1453 |
> |
if (dr.lengthSquare() < cuts.third) { |
1454 |
> |
neighborList.push_back(make_pair((*j1), (*j2))); |
1455 |
> |
} |
1456 |
|
} |
1457 |
|
} |
1458 |
|
#else |
1143 |
– |
|
1459 |
|
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1460 |
|
j1 != cellList_[m1].end(); ++j1) { |
1461 |
|
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1462 |
|
j2 != cellList_[m2].end(); ++j2) { |
1463 |
< |
|
1463 |
> |
|
1464 |
|
// Always do this if we're in different cells or if |
1465 |
< |
// we're in the same cell and the global index of the |
1466 |
< |
// j2 cutoff group is less than the j1 cutoff group |
1467 |
< |
|
1468 |
< |
if (m2 != m1 || (*j2) < (*j1)) { |
1465 |
> |
// we're in the same cell and the global index of |
1466 |
> |
// the j2 cutoff group is greater than or equal to |
1467 |
> |
// the j1 cutoff group. Note that Rappaport's code |
1468 |
> |
// has a "less than" conditional here, but that |
1469 |
> |
// deals with atom-by-atom computation. OpenMD |
1470 |
> |
// allows atoms within a single cutoff group to |
1471 |
> |
// interact with each other. |
1472 |
> |
|
1473 |
> |
|
1474 |
> |
|
1475 |
> |
if (m2 != m1 || (*j2) >= (*j1) ) { |
1476 |
> |
|
1477 |
|
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1478 |
|
snap_->wrapVector(dr); |
1479 |
|
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1492 |
|
// branch to do all cutoff group pairs |
1493 |
|
#ifdef IS_MPI |
1494 |
|
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1495 |
< |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1495 |
> |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1496 |
|
dr = cgColData.position[j2] - cgRowData.position[j1]; |
1497 |
|
snap_->wrapVector(dr); |
1498 |
|
cuts = getGroupCutoffs( j1, j2 ); |
1500 |
|
neighborList.push_back(make_pair(j1, j2)); |
1501 |
|
} |
1502 |
|
} |
1503 |
< |
} |
1503 |
> |
} |
1504 |
|
#else |
1505 |
< |
for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1506 |
< |
for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1505 |
> |
// include all groups here. |
1506 |
> |
for (int j1 = 0; j1 < nGroups_; j1++) { |
1507 |
> |
// include self group interactions j2 == j1 |
1508 |
> |
for (int j2 = j1; j2 < nGroups_; j2++) { |
1509 |
|
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1510 |
|
snap_->wrapVector(dr); |
1511 |
|
cuts = getGroupCutoffs( j1, j2 ); |
1512 |
|
if (dr.lengthSquare() < cuts.third) { |
1513 |
|
neighborList.push_back(make_pair(j1, j2)); |
1514 |
|
} |
1515 |
< |
} |
1516 |
< |
} |
1515 |
> |
} |
1516 |
> |
} |
1517 |
|
#endif |
1518 |
|
} |
1519 |
|
|