36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
#include "parallel/ForceMatrixDecomposition.hpp" |
43 |
|
#include "math/SquareMatrix3.hpp" |
48 |
|
using namespace std; |
49 |
|
namespace OpenMD { |
50 |
|
|
51 |
+ |
ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
52 |
+ |
|
53 |
+ |
// In a parallel computation, row and colum scans must visit all |
54 |
+ |
// surrounding cells (not just the 14 upper triangular blocks that |
55 |
+ |
// are used when the processor can see all pairs) |
56 |
+ |
#ifdef IS_MPI |
57 |
+ |
cellOffsets_.clear(); |
58 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
59 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
60 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
61 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
62 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
63 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
64 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
65 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
66 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
68 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
69 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
70 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
71 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
72 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
73 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
74 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
75 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
76 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
77 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
78 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
79 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
80 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
81 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
82 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
83 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
84 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
85 |
+ |
#endif |
86 |
+ |
} |
87 |
+ |
|
88 |
+ |
|
89 |
|
/** |
90 |
|
* distributeInitialData is essentially a copy of the older fortran |
91 |
|
* SimulationSetup |
92 |
|
*/ |
54 |
– |
|
93 |
|
void ForceMatrixDecomposition::distributeInitialData() { |
94 |
|
snap_ = sman_->getCurrentSnapshot(); |
95 |
|
storageLayout_ = sman_->getStorageLayout(); |
112 |
|
|
113 |
|
#ifdef IS_MPI |
114 |
|
|
115 |
< |
AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
116 |
< |
AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
79 |
< |
AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
80 |
< |
AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
81 |
< |
AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
115 |
> |
MPI::Intracomm row = rowComm.getComm(); |
116 |
> |
MPI::Intracomm col = colComm.getComm(); |
117 |
|
|
118 |
< |
AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
119 |
< |
AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
120 |
< |
AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
121 |
< |
AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
122 |
< |
AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
118 |
> |
AtomPlanIntRow = new Plan<int>(row, nLocal_); |
119 |
> |
AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
120 |
> |
AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
121 |
> |
AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
122 |
> |
AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
123 |
|
|
124 |
< |
cgCommIntRow = new Communicator<Row,int>(nGroups_); |
125 |
< |
cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
126 |
< |
cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
127 |
< |
cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
124 |
> |
AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
125 |
> |
AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
126 |
> |
AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
127 |
> |
AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
128 |
> |
AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
129 |
|
|
130 |
< |
nAtomsInRow_ = AtomCommIntRow->getSize(); |
131 |
< |
nAtomsInCol_ = AtomCommIntColumn->getSize(); |
132 |
< |
nGroupsInRow_ = cgCommIntRow->getSize(); |
133 |
< |
nGroupsInCol_ = cgCommIntColumn->getSize(); |
130 |
> |
cgPlanIntRow = new Plan<int>(row, nGroups_); |
131 |
> |
cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
132 |
> |
cgPlanIntColumn = new Plan<int>(col, nGroups_); |
133 |
> |
cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
134 |
|
|
135 |
+ |
nAtomsInRow_ = AtomPlanIntRow->getSize(); |
136 |
+ |
nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
137 |
+ |
nGroupsInRow_ = cgPlanIntRow->getSize(); |
138 |
+ |
nGroupsInCol_ = cgPlanIntColumn->getSize(); |
139 |
+ |
|
140 |
|
// Modify the data storage objects with the correct layouts and sizes: |
141 |
|
atomRowData.resize(nAtomsInRow_); |
142 |
|
atomRowData.setStorageLayout(storageLayout_); |
150 |
|
identsRow.resize(nAtomsInRow_); |
151 |
|
identsCol.resize(nAtomsInCol_); |
152 |
|
|
153 |
< |
AtomCommIntRow->gather(idents, identsRow); |
154 |
< |
AtomCommIntColumn->gather(idents, identsCol); |
153 |
> |
AtomPlanIntRow->gather(idents, identsRow); |
154 |
> |
AtomPlanIntColumn->gather(idents, identsCol); |
155 |
|
|
156 |
|
// allocate memory for the parallel objects |
157 |
+ |
atypesRow.resize(nAtomsInRow_); |
158 |
+ |
atypesCol.resize(nAtomsInCol_); |
159 |
+ |
|
160 |
+ |
for (int i = 0; i < nAtomsInRow_; i++) |
161 |
+ |
atypesRow[i] = ff_->getAtomType(identsRow[i]); |
162 |
+ |
for (int i = 0; i < nAtomsInCol_; i++) |
163 |
+ |
atypesCol[i] = ff_->getAtomType(identsCol[i]); |
164 |
+ |
|
165 |
+ |
pot_row.resize(nAtomsInRow_); |
166 |
+ |
pot_col.resize(nAtomsInCol_); |
167 |
+ |
|
168 |
|
AtomRowToGlobal.resize(nAtomsInRow_); |
169 |
|
AtomColToGlobal.resize(nAtomsInCol_); |
170 |
+ |
AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
171 |
+ |
AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
172 |
+ |
|
173 |
|
cgRowToGlobal.resize(nGroupsInRow_); |
174 |
|
cgColToGlobal.resize(nGroupsInCol_); |
175 |
+ |
cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
176 |
+ |
cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
177 |
+ |
|
178 |
|
massFactorsRow.resize(nAtomsInRow_); |
179 |
|
massFactorsCol.resize(nAtomsInCol_); |
180 |
< |
pot_row.resize(nAtomsInRow_); |
181 |
< |
pot_col.resize(nAtomsInCol_); |
180 |
> |
AtomPlanRealRow->gather(massFactors, massFactorsRow); |
181 |
> |
AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
182 |
|
|
125 |
– |
AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
126 |
– |
AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
127 |
– |
|
128 |
– |
cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
129 |
– |
cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
130 |
– |
|
131 |
– |
AtomCommRealRow->gather(massFactors, massFactorsRow); |
132 |
– |
AtomCommRealColumn->gather(massFactors, massFactorsCol); |
133 |
– |
|
183 |
|
groupListRow_.clear(); |
184 |
|
groupListRow_.resize(nGroupsInRow_); |
185 |
|
for (int i = 0; i < nGroupsInRow_; i++) { |
230 |
|
topoDist[i].push_back(3); |
231 |
|
} |
232 |
|
} |
184 |
– |
} |
185 |
– |
} |
186 |
– |
} |
187 |
– |
|
188 |
– |
#endif |
189 |
– |
|
190 |
– |
groupList_.clear(); |
191 |
– |
groupList_.resize(nGroups_); |
192 |
– |
for (int i = 0; i < nGroups_; i++) { |
193 |
– |
int gid = cgLocalToGlobal[i]; |
194 |
– |
for (int j = 0; j < nLocal_; j++) { |
195 |
– |
int aid = AtomLocalToGlobal[j]; |
196 |
– |
if (globalGroupMembership[aid] == gid) { |
197 |
– |
groupList_[i].push_back(j); |
233 |
|
} |
234 |
|
} |
235 |
|
} |
236 |
|
|
237 |
+ |
#else |
238 |
|
excludesForAtom.clear(); |
239 |
|
excludesForAtom.resize(nLocal_); |
240 |
|
toposForAtom.clear(); |
267 |
|
} |
268 |
|
} |
269 |
|
} |
270 |
< |
|
270 |
> |
#endif |
271 |
> |
|
272 |
> |
// allocate memory for the parallel objects |
273 |
> |
atypesLocal.resize(nLocal_); |
274 |
> |
|
275 |
> |
for (int i = 0; i < nLocal_; i++) |
276 |
> |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
277 |
> |
|
278 |
> |
groupList_.clear(); |
279 |
> |
groupList_.resize(nGroups_); |
280 |
> |
for (int i = 0; i < nGroups_; i++) { |
281 |
> |
int gid = cgLocalToGlobal[i]; |
282 |
> |
for (int j = 0; j < nLocal_; j++) { |
283 |
> |
int aid = AtomLocalToGlobal[j]; |
284 |
> |
if (globalGroupMembership[aid] == gid) { |
285 |
> |
groupList_[i].push_back(j); |
286 |
> |
} |
287 |
> |
} |
288 |
> |
} |
289 |
> |
|
290 |
> |
|
291 |
|
createGtypeCutoffMap(); |
292 |
|
|
293 |
|
} |
295 |
|
void ForceMatrixDecomposition::createGtypeCutoffMap() { |
296 |
|
|
297 |
|
RealType tol = 1e-6; |
298 |
+ |
largestRcut_ = 0.0; |
299 |
|
RealType rc; |
300 |
|
int atid; |
301 |
|
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
302 |
+ |
|
303 |
|
map<int, RealType> atypeCutoff; |
304 |
|
|
305 |
|
for (set<AtomType*>::iterator at = atypes.begin(); |
307 |
|
atid = (*at)->getIdent(); |
308 |
|
if (userChoseCutoff_) |
309 |
|
atypeCutoff[atid] = userCutoff_; |
310 |
< |
else |
310 |
> |
else |
311 |
|
atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
312 |
|
} |
313 |
< |
|
313 |
> |
|
314 |
|
vector<RealType> gTypeCutoffs; |
315 |
|
// first we do a single loop over the cutoff groups to find the |
316 |
|
// largest cutoff for any atypes present in this group. |
370 |
|
vector<RealType> groupCutoff(nGroups_, 0.0); |
371 |
|
groupToGtype.resize(nGroups_); |
372 |
|
for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
315 |
– |
|
373 |
|
groupCutoff[cg1] = 0.0; |
374 |
|
vector<int> atomList = getAtomsInGroupRow(cg1); |
318 |
– |
|
375 |
|
for (vector<int>::iterator ia = atomList.begin(); |
376 |
|
ia != atomList.end(); ++ia) { |
377 |
|
int atom1 = (*ia); |
378 |
|
atid = idents[atom1]; |
379 |
< |
if (atypeCutoff[atid] > groupCutoff[cg1]) { |
379 |
> |
if (atypeCutoff[atid] > groupCutoff[cg1]) |
380 |
|
groupCutoff[cg1] = atypeCutoff[atid]; |
325 |
– |
} |
381 |
|
} |
382 |
< |
|
382 |
> |
|
383 |
|
bool gTypeFound = false; |
384 |
|
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
385 |
|
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
387 |
|
gTypeFound = true; |
388 |
|
} |
389 |
|
} |
390 |
< |
if (!gTypeFound) { |
390 |
> |
if (!gTypeFound) { |
391 |
|
gTypeCutoffs.push_back( groupCutoff[cg1] ); |
392 |
|
groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
393 |
|
} |
396 |
|
|
397 |
|
// Now we find the maximum group cutoff value present in the simulation |
398 |
|
|
399 |
< |
RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); |
399 |
> |
RealType groupMax = *max_element(gTypeCutoffs.begin(), |
400 |
> |
gTypeCutoffs.end()); |
401 |
|
|
402 |
|
#ifdef IS_MPI |
403 |
< |
MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); |
403 |
> |
MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, |
404 |
> |
MPI::MAX); |
405 |
|
#endif |
406 |
|
|
407 |
|
RealType tradRcut = groupMax; |
431 |
|
|
432 |
|
pair<int,int> key = make_pair(i,j); |
433 |
|
gTypeCutoffMap[key].first = thisRcut; |
377 |
– |
|
434 |
|
if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
379 |
– |
|
435 |
|
gTypeCutoffMap[key].second = thisRcut*thisRcut; |
381 |
– |
|
436 |
|
gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
383 |
– |
|
437 |
|
// sanity check |
438 |
|
|
439 |
|
if (userChoseCutoff_) { |
493 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
494 |
|
|
495 |
|
if (storageLayout_ & DataStorage::dslParticlePot) { |
496 |
< |
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); |
497 |
< |
fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); |
496 |
> |
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
497 |
> |
0.0); |
498 |
> |
fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), |
499 |
> |
0.0); |
500 |
|
} |
501 |
|
|
502 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
505 |
|
} |
506 |
|
|
507 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
508 |
< |
fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); |
509 |
< |
fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); |
508 |
> |
fill(atomRowData.functional.begin(), atomRowData.functional.end(), |
509 |
> |
0.0); |
510 |
> |
fill(atomColData.functional.begin(), atomColData.functional.end(), |
511 |
> |
0.0); |
512 |
|
} |
513 |
|
|
514 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
525 |
|
atomColData.skippedCharge.end(), 0.0); |
526 |
|
} |
527 |
|
|
528 |
< |
#else |
529 |
< |
|
528 |
> |
if (storageLayout_ & DataStorage::dslElectricField) { |
529 |
> |
fill(atomRowData.electricField.begin(), |
530 |
> |
atomRowData.electricField.end(), V3Zero); |
531 |
> |
fill(atomColData.electricField.begin(), |
532 |
> |
atomColData.electricField.end(), V3Zero); |
533 |
> |
} |
534 |
> |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
535 |
> |
fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), |
536 |
> |
0.0); |
537 |
> |
fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), |
538 |
> |
0.0); |
539 |
> |
} |
540 |
> |
|
541 |
> |
#endif |
542 |
> |
// even in parallel, we need to zero out the local arrays: |
543 |
> |
|
544 |
|
if (storageLayout_ & DataStorage::dslParticlePot) { |
545 |
|
fill(snap_->atomData.particlePot.begin(), |
546 |
|
snap_->atomData.particlePot.end(), 0.0); |
550 |
|
fill(snap_->atomData.density.begin(), |
551 |
|
snap_->atomData.density.end(), 0.0); |
552 |
|
} |
553 |
+ |
|
554 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
555 |
|
fill(snap_->atomData.functional.begin(), |
556 |
|
snap_->atomData.functional.end(), 0.0); |
557 |
|
} |
558 |
+ |
|
559 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
560 |
|
fill(snap_->atomData.functionalDerivative.begin(), |
561 |
|
snap_->atomData.functionalDerivative.end(), 0.0); |
562 |
|
} |
563 |
+ |
|
564 |
|
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
565 |
|
fill(snap_->atomData.skippedCharge.begin(), |
566 |
|
snap_->atomData.skippedCharge.end(), 0.0); |
567 |
|
} |
568 |
< |
#endif |
569 |
< |
|
568 |
> |
|
569 |
> |
if (storageLayout_ & DataStorage::dslElectricField) { |
570 |
> |
fill(snap_->atomData.electricField.begin(), |
571 |
> |
snap_->atomData.electricField.end(), V3Zero); |
572 |
> |
} |
573 |
|
} |
574 |
|
|
575 |
|
|
579 |
|
#ifdef IS_MPI |
580 |
|
|
581 |
|
// gather up the atomic positions |
582 |
< |
AtomCommVectorRow->gather(snap_->atomData.position, |
582 |
> |
AtomPlanVectorRow->gather(snap_->atomData.position, |
583 |
|
atomRowData.position); |
584 |
< |
AtomCommVectorColumn->gather(snap_->atomData.position, |
584 |
> |
AtomPlanVectorColumn->gather(snap_->atomData.position, |
585 |
|
atomColData.position); |
586 |
|
|
587 |
|
// gather up the cutoff group positions |
588 |
< |
cgCommVectorRow->gather(snap_->cgData.position, |
588 |
> |
|
589 |
> |
cgPlanVectorRow->gather(snap_->cgData.position, |
590 |
|
cgRowData.position); |
591 |
< |
cgCommVectorColumn->gather(snap_->cgData.position, |
591 |
> |
|
592 |
> |
cgPlanVectorColumn->gather(snap_->cgData.position, |
593 |
|
cgColData.position); |
594 |
+ |
|
595 |
|
|
596 |
|
// if needed, gather the atomic rotation matrices |
597 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
598 |
< |
AtomCommMatrixRow->gather(snap_->atomData.aMat, |
598 |
> |
AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
599 |
|
atomRowData.aMat); |
600 |
< |
AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
600 |
> |
AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
601 |
|
atomColData.aMat); |
602 |
|
} |
603 |
|
|
604 |
|
// if needed, gather the atomic eletrostatic frames |
605 |
|
if (storageLayout_ & DataStorage::dslElectroFrame) { |
606 |
< |
AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
606 |
> |
AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
607 |
|
atomRowData.electroFrame); |
608 |
< |
AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
608 |
> |
AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
609 |
|
atomColData.electroFrame); |
610 |
|
} |
611 |
+ |
|
612 |
+ |
// if needed, gather the atomic fluctuating charge values |
613 |
+ |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
614 |
+ |
AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
615 |
+ |
atomRowData.flucQPos); |
616 |
+ |
AtomPlanRealColumn->gather(snap_->atomData.flucQPos, |
617 |
+ |
atomColData.flucQPos); |
618 |
+ |
} |
619 |
+ |
|
620 |
|
#endif |
621 |
|
} |
622 |
|
|
630 |
|
|
631 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
632 |
|
|
633 |
< |
AtomCommRealRow->scatter(atomRowData.density, |
633 |
> |
AtomPlanRealRow->scatter(atomRowData.density, |
634 |
|
snap_->atomData.density); |
635 |
|
|
636 |
|
int n = snap_->atomData.density.size(); |
637 |
|
vector<RealType> rho_tmp(n, 0.0); |
638 |
< |
AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
638 |
> |
AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
639 |
|
for (int i = 0; i < n; i++) |
640 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
641 |
|
} |
642 |
+ |
|
643 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
644 |
+ |
|
645 |
+ |
AtomPlanVectorRow->scatter(atomRowData.electricField, |
646 |
+ |
snap_->atomData.electricField); |
647 |
+ |
|
648 |
+ |
int n = snap_->atomData.electricField.size(); |
649 |
+ |
vector<Vector3d> field_tmp(n, V3Zero); |
650 |
+ |
AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); |
651 |
+ |
for (int i = 0; i < n; i++) |
652 |
+ |
snap_->atomData.electricField[i] += field_tmp[i]; |
653 |
+ |
} |
654 |
|
#endif |
655 |
|
} |
656 |
|
|
663 |
|
storageLayout_ = sman_->getStorageLayout(); |
664 |
|
#ifdef IS_MPI |
665 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
666 |
< |
AtomCommRealRow->gather(snap_->atomData.functional, |
666 |
> |
AtomPlanRealRow->gather(snap_->atomData.functional, |
667 |
|
atomRowData.functional); |
668 |
< |
AtomCommRealColumn->gather(snap_->atomData.functional, |
668 |
> |
AtomPlanRealColumn->gather(snap_->atomData.functional, |
669 |
|
atomColData.functional); |
670 |
|
} |
671 |
|
|
672 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
673 |
< |
AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
673 |
> |
AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
674 |
|
atomRowData.functionalDerivative); |
675 |
< |
AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
675 |
> |
AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
676 |
|
atomColData.functionalDerivative); |
677 |
|
} |
678 |
|
#endif |
686 |
|
int n = snap_->atomData.force.size(); |
687 |
|
vector<Vector3d> frc_tmp(n, V3Zero); |
688 |
|
|
689 |
< |
AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
689 |
> |
AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
690 |
|
for (int i = 0; i < n; i++) { |
691 |
|
snap_->atomData.force[i] += frc_tmp[i]; |
692 |
|
frc_tmp[i] = 0.0; |
693 |
|
} |
694 |
|
|
695 |
< |
AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
696 |
< |
for (int i = 0; i < n; i++) |
695 |
> |
AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
696 |
> |
for (int i = 0; i < n; i++) { |
697 |
|
snap_->atomData.force[i] += frc_tmp[i]; |
698 |
< |
|
699 |
< |
|
698 |
> |
} |
699 |
> |
|
700 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
701 |
|
|
702 |
|
int nt = snap_->atomData.torque.size(); |
703 |
|
vector<Vector3d> trq_tmp(nt, V3Zero); |
704 |
|
|
705 |
< |
AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
705 |
> |
AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
706 |
|
for (int i = 0; i < nt; i++) { |
707 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
708 |
|
trq_tmp[i] = 0.0; |
709 |
|
} |
710 |
|
|
711 |
< |
AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
711 |
> |
AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
712 |
|
for (int i = 0; i < nt; i++) |
713 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
714 |
|
} |
718 |
|
int ns = snap_->atomData.skippedCharge.size(); |
719 |
|
vector<RealType> skch_tmp(ns, 0.0); |
720 |
|
|
721 |
< |
AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
721 |
> |
AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
722 |
|
for (int i = 0; i < ns; i++) { |
723 |
< |
snap_->atomData.skippedCharge[i] = skch_tmp[i]; |
723 |
> |
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
724 |
|
skch_tmp[i] = 0.0; |
725 |
|
} |
726 |
|
|
727 |
< |
AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
728 |
< |
for (int i = 0; i < ns; i++) |
727 |
> |
AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
728 |
> |
for (int i = 0; i < ns; i++) |
729 |
|
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
730 |
+ |
|
731 |
|
} |
732 |
|
|
733 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
734 |
+ |
|
735 |
+ |
int nq = snap_->atomData.flucQFrc.size(); |
736 |
+ |
vector<RealType> fqfrc_tmp(nq, 0.0); |
737 |
+ |
|
738 |
+ |
AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); |
739 |
+ |
for (int i = 0; i < nq; i++) { |
740 |
+ |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
741 |
+ |
fqfrc_tmp[i] = 0.0; |
742 |
+ |
} |
743 |
+ |
|
744 |
+ |
AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); |
745 |
+ |
for (int i = 0; i < nq; i++) |
746 |
+ |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
747 |
+ |
|
748 |
+ |
} |
749 |
+ |
|
750 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
751 |
|
|
752 |
|
vector<potVec> pot_temp(nLocal_, |
754 |
|
|
755 |
|
// scatter/gather pot_row into the members of my column |
756 |
|
|
757 |
< |
AtomCommPotRow->scatter(pot_row, pot_temp); |
757 |
> |
AtomPlanPotRow->scatter(pot_row, pot_temp); |
758 |
|
|
759 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
760 |
|
pairwisePot += pot_temp[ii]; |
762 |
|
fill(pot_temp.begin(), pot_temp.end(), |
763 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
764 |
|
|
765 |
< |
AtomCommPotColumn->scatter(pot_col, pot_temp); |
765 |
> |
AtomPlanPotColumn->scatter(pot_col, pot_temp); |
766 |
|
|
767 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
768 |
|
pairwisePot += pot_temp[ii]; |
769 |
+ |
|
770 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
771 |
+ |
RealType ploc1 = pairwisePot[ii]; |
772 |
+ |
RealType ploc2 = 0.0; |
773 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
774 |
+ |
pairwisePot[ii] = ploc2; |
775 |
+ |
} |
776 |
+ |
|
777 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
778 |
+ |
RealType ploc1 = embeddingPot[ii]; |
779 |
+ |
RealType ploc2 = 0.0; |
780 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
781 |
+ |
embeddingPot[ii] = ploc2; |
782 |
+ |
} |
783 |
+ |
|
784 |
|
#endif |
785 |
|
|
786 |
|
} |
893 |
|
*/ |
894 |
|
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
895 |
|
int unique_id_1, unique_id_2; |
896 |
< |
|
896 |
> |
|
897 |
|
#ifdef IS_MPI |
898 |
|
// in MPI, we have to look up the unique IDs for each atom |
899 |
|
unique_id_1 = AtomRowToGlobal[atom1]; |
900 |
|
unique_id_2 = AtomColToGlobal[atom2]; |
901 |
+ |
#else |
902 |
+ |
unique_id_1 = AtomLocalToGlobal[atom1]; |
903 |
+ |
unique_id_2 = AtomLocalToGlobal[atom2]; |
904 |
+ |
#endif |
905 |
|
|
768 |
– |
// this situation should only arise in MPI simulations |
906 |
|
if (unique_id_1 == unique_id_2) return true; |
907 |
< |
|
907 |
> |
|
908 |
> |
#ifdef IS_MPI |
909 |
|
// this prevents us from doing the pair on multiple processors |
910 |
|
if (unique_id_1 < unique_id_2) { |
911 |
|
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
912 |
|
} else { |
913 |
< |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
913 |
> |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
914 |
|
} |
915 |
|
#endif |
916 |
+ |
|
917 |
|
return false; |
918 |
|
} |
919 |
|
|
927 |
|
* field) must still be handled for these pairs. |
928 |
|
*/ |
929 |
|
bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
930 |
< |
int unique_id_2; |
930 |
> |
|
931 |
> |
// excludesForAtom was constructed to use row/column indices in the MPI |
932 |
> |
// version, and to use local IDs in the non-MPI version: |
933 |
|
|
793 |
– |
#ifdef IS_MPI |
794 |
– |
// in MPI, we have to look up the unique IDs for the row atom. |
795 |
– |
unique_id_2 = AtomColToGlobal[atom2]; |
796 |
– |
#else |
797 |
– |
// in the normal loop, the atom numbers are unique |
798 |
– |
unique_id_2 = atom2; |
799 |
– |
#endif |
800 |
– |
|
934 |
|
for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
935 |
|
i != excludesForAtom[atom1].end(); ++i) { |
936 |
< |
if ( (*i) == unique_id_2 ) return true; |
936 |
> |
if ( (*i) == atom2 ) return true; |
937 |
|
} |
938 |
|
|
939 |
|
return false; |
963 |
|
idat.excluded = excludeAtomPair(atom1, atom2); |
964 |
|
|
965 |
|
#ifdef IS_MPI |
966 |
+ |
idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
967 |
+ |
//idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
968 |
+ |
// ff_->getAtomType(identsCol[atom2]) ); |
969 |
|
|
834 |
– |
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
835 |
– |
ff_->getAtomType(identsCol[atom2]) ); |
836 |
– |
|
970 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
971 |
|
idat.A1 = &(atomRowData.aMat[atom1]); |
972 |
|
idat.A2 = &(atomColData.aMat[atom2]); |
1008 |
|
} |
1009 |
|
|
1010 |
|
#else |
1011 |
+ |
|
1012 |
|
|
1013 |
< |
idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
1014 |
< |
ff_->getAtomType(idents[atom2]) ); |
1013 |
> |
// cerr << "atoms = " << atom1 << " " << atom2 << "\n"; |
1014 |
> |
// cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n"; |
1015 |
> |
// cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n"; |
1016 |
> |
|
1017 |
> |
idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
1018 |
> |
//idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
1019 |
> |
// ff_->getAtomType(idents[atom2]) ); |
1020 |
|
|
1021 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
1022 |
|
idat.A1 = &(snap_->atomData.aMat[atom1]); |
1063 |
|
|
1064 |
|
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
1065 |
|
#ifdef IS_MPI |
1066 |
< |
pot_row[atom1] += 0.5 * *(idat.pot); |
1067 |
< |
pot_col[atom2] += 0.5 * *(idat.pot); |
1066 |
> |
pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1067 |
> |
pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1068 |
|
|
1069 |
|
atomRowData.force[atom1] += *(idat.f1); |
1070 |
|
atomColData.force[atom2] -= *(idat.f1); |
1071 |
+ |
|
1072 |
+ |
// should particle pot be done here also? |
1073 |
|
#else |
1074 |
|
pairwisePot += *(idat.pot); |
1075 |
|
|
1076 |
|
snap_->atomData.force[atom1] += *(idat.f1); |
1077 |
|
snap_->atomData.force[atom2] -= *(idat.f1); |
1078 |
+ |
|
1079 |
+ |
if (idat.doParticlePot) { |
1080 |
+ |
snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
1081 |
+ |
snap_->atomData.particlePot[atom2] -= *(idat.vpair) * *(idat.sw); |
1082 |
+ |
} |
1083 |
+ |
|
1084 |
|
#endif |
1085 |
|
|
1086 |
|
} |
1162 |
|
// add this cutoff group to the list of groups in this cell; |
1163 |
|
cellListRow_[cellIndex].push_back(i); |
1164 |
|
} |
1018 |
– |
|
1165 |
|
for (int i = 0; i < nGroupsInCol_; i++) { |
1166 |
|
rs = cgColData.position[i]; |
1167 |
|
|
1186 |
|
// add this cutoff group to the list of groups in this cell; |
1187 |
|
cellListCol_[cellIndex].push_back(i); |
1188 |
|
} |
1189 |
+ |
|
1190 |
|
#else |
1191 |
|
for (int i = 0; i < nGroups_; i++) { |
1192 |
|
rs = snap_->cgData.position[i]; |
1207 |
|
whichCell.z() = nCells_.z() * scaled.z(); |
1208 |
|
|
1209 |
|
// find single index of this cell: |
1210 |
< |
cellIndex = Vlinear(whichCell, nCells_); |
1210 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1211 |
|
|
1212 |
|
// add this cutoff group to the list of groups in this cell; |
1213 |
|
cellList_[cellIndex].push_back(i); |
1214 |
|
} |
1215 |
+ |
|
1216 |
|
#endif |
1217 |
|
|
1218 |
|
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1225 |
|
os != cellOffsets_.end(); ++os) { |
1226 |
|
|
1227 |
|
Vector3i m2v = m1v + (*os); |
1228 |
< |
|
1228 |
> |
|
1229 |
> |
|
1230 |
|
if (m2v.x() >= nCells_.x()) { |
1231 |
|
m2v.x() = 0; |
1232 |
|
} else if (m2v.x() < 0) { |
1244 |
|
} else if (m2v.z() < 0) { |
1245 |
|
m2v.z() = nCells_.z() - 1; |
1246 |
|
} |
1247 |
< |
|
1247 |
> |
|
1248 |
|
int m2 = Vlinear (m2v, nCells_); |
1249 |
|
|
1250 |
|
#ifdef IS_MPI |
1252 |
|
j1 != cellListRow_[m1].end(); ++j1) { |
1253 |
|
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1254 |
|
j2 != cellListCol_[m2].end(); ++j2) { |
1106 |
– |
|
1107 |
– |
// Always do this if we're in different cells or if |
1108 |
– |
// we're in the same cell and the global index of the |
1109 |
– |
// j2 cutoff group is less than the j1 cutoff group |
1255 |
|
|
1256 |
< |
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1257 |
< |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1258 |
< |
snap_->wrapVector(dr); |
1259 |
< |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1260 |
< |
if (dr.lengthSquare() < cuts.third) { |
1261 |
< |
neighborList.push_back(make_pair((*j1), (*j2))); |
1262 |
< |
} |
1263 |
< |
} |
1256 |
> |
// In parallel, we need to visit *all* pairs of row |
1257 |
> |
// & column indicies and will divide labor in the |
1258 |
> |
// force evaluation later. |
1259 |
> |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1260 |
> |
snap_->wrapVector(dr); |
1261 |
> |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1262 |
> |
if (dr.lengthSquare() < cuts.third) { |
1263 |
> |
neighborList.push_back(make_pair((*j1), (*j2))); |
1264 |
> |
} |
1265 |
|
} |
1266 |
|
} |
1267 |
|
#else |
1122 |
– |
|
1268 |
|
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1269 |
|
j1 != cellList_[m1].end(); ++j1) { |
1270 |
|
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1271 |
|
j2 != cellList_[m2].end(); ++j2) { |
1272 |
< |
|
1272 |
> |
|
1273 |
|
// Always do this if we're in different cells or if |
1274 |
< |
// we're in the same cell and the global index of the |
1275 |
< |
// j2 cutoff group is less than the j1 cutoff group |
1276 |
< |
|
1277 |
< |
if (m2 != m1 || (*j2) < (*j1)) { |
1274 |
> |
// we're in the same cell and the global index of |
1275 |
> |
// the j2 cutoff group is greater than or equal to |
1276 |
> |
// the j1 cutoff group. Note that Rappaport's code |
1277 |
> |
// has a "less than" conditional here, but that |
1278 |
> |
// deals with atom-by-atom computation. OpenMD |
1279 |
> |
// allows atoms within a single cutoff group to |
1280 |
> |
// interact with each other. |
1281 |
> |
|
1282 |
> |
|
1283 |
> |
|
1284 |
> |
if (m2 != m1 || (*j2) >= (*j1) ) { |
1285 |
> |
|
1286 |
|
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1287 |
|
snap_->wrapVector(dr); |
1288 |
|
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1301 |
|
// branch to do all cutoff group pairs |
1302 |
|
#ifdef IS_MPI |
1303 |
|
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1304 |
< |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1304 |
> |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1305 |
|
dr = cgColData.position[j2] - cgRowData.position[j1]; |
1306 |
|
snap_->wrapVector(dr); |
1307 |
|
cuts = getGroupCutoffs( j1, j2 ); |
1309 |
|
neighborList.push_back(make_pair(j1, j2)); |
1310 |
|
} |
1311 |
|
} |
1312 |
< |
} |
1312 |
> |
} |
1313 |
|
#else |
1314 |
< |
for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1315 |
< |
for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1314 |
> |
// include all groups here. |
1315 |
> |
for (int j1 = 0; j1 < nGroups_; j1++) { |
1316 |
> |
// include self group interactions j2 == j1 |
1317 |
> |
for (int j2 = j1; j2 < nGroups_; j2++) { |
1318 |
|
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1319 |
|
snap_->wrapVector(dr); |
1320 |
|
cuts = getGroupCutoffs( j1, j2 ); |
1321 |
|
if (dr.lengthSquare() < cuts.third) { |
1322 |
|
neighborList.push_back(make_pair(j1, j2)); |
1323 |
|
} |
1324 |
< |
} |
1325 |
< |
} |
1324 |
> |
} |
1325 |
> |
} |
1326 |
|
#endif |
1327 |
|
} |
1328 |
|
|