ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents):
Revision 1576 by gezelter, Wed Jun 8 16:05:07 2011 UTC vs.
Revision 1665 by gezelter, Tue Nov 22 20:38:56 2011 UTC

# Line 36 | Line 36
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42   #include "parallel/ForceMatrixDecomposition.hpp"
43   #include "math/SquareMatrix3.hpp"
# Line 47 | Line 48 | namespace OpenMD {
48   using namespace std;
49   namespace OpenMD {
50  
51 +  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52 +
53 +    // In a parallel computation, row and colum scans must visit all
54 +    // surrounding cells (not just the 14 upper triangular blocks that
55 +    // are used when the processor can see all pairs)
56 + #ifdef IS_MPI
57 +    cellOffsets_.clear();
58 +    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59 +    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60 +    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                          
61 +    cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62 +    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63 +    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64 +    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65 +    cellOffsets_.push_back( Vector3i( 0, 1,-1) );      
66 +    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 +    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68 +    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69 +    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 +    cellOffsets_.push_back( Vector3i(-1, 0, 0) );      
71 +    cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72 +    cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73 +    cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74 +    cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75 +    cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76 +    cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77 +    cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78 +    cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 +    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 +    cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81 +    cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82 +    cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83 +    cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84 +    cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 + #endif    
86 +  }
87 +
88 +
89    /**
90     * distributeInitialData is essentially a copy of the older fortran
91     * SimulationSetup
92     */
54  
93    void ForceMatrixDecomposition::distributeInitialData() {
94      snap_ = sman_->getCurrentSnapshot();
95      storageLayout_ = sman_->getStorageLayout();
96      ff_ = info_->getForceField();
97      nLocal_ = snap_->getNumberOfAtoms();
98 <    nGroups_ = snap_->getNumberOfCutoffGroups();
99 <
98 >    
99 >    nGroups_ = info_->getNLocalCutoffGroups();
100      // gather the information for atomtype IDs (atids):
101 <    identsLocal = info_->getIdentArray();
101 >    idents = info_->getIdentArray();
102      AtomLocalToGlobal = info_->getGlobalAtomIndices();
103      cgLocalToGlobal = info_->getGlobalGroupIndices();
104      vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
67    vector<RealType> massFactorsLocal = info_->getMassFactors();
68    PairList excludes = info_->getExcludedInteractions();
69    PairList oneTwo = info_->getOneTwoInteractions();
70    PairList oneThree = info_->getOneThreeInteractions();
71    PairList oneFour = info_->getOneFourInteractions();
105  
106 +    massFactors = info_->getMassFactors();
107 +
108 +    PairList* excludes = info_->getExcludedInteractions();
109 +    PairList* oneTwo = info_->getOneTwoInteractions();
110 +    PairList* oneThree = info_->getOneThreeInteractions();
111 +    PairList* oneFour = info_->getOneFourInteractions();
112 +
113   #ifdef IS_MPI
114  
115 <    AtomCommIntRow = new Communicator<Row,int>(nLocal_);
116 <    AtomCommRealRow = new Communicator<Row,RealType>(nLocal_);
77 <    AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_);
78 <    AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_);
79 <    AtomCommPotRow = new Communicator<Row,potVec>(nLocal_);
115 >    MPI::Intracomm row = rowComm.getComm();
116 >    MPI::Intracomm col = colComm.getComm();
117  
118 <    AtomCommIntColumn = new Communicator<Column,int>(nLocal_);
119 <    AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_);
120 <    AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_);
121 <    AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_);
122 <    AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_);
118 >    AtomPlanIntRow = new Plan<int>(row, nLocal_);
119 >    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
120 >    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
121 >    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
122 >    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
123  
124 <    cgCommIntRow = new Communicator<Row,int>(nGroups_);
125 <    cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_);
126 <    cgCommIntColumn = new Communicator<Column,int>(nGroups_);
127 <    cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_);
124 >    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
125 >    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
126 >    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
127 >    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
128 >    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
129  
130 <    nAtomsInRow_ = AtomCommIntRow->getSize();
131 <    nAtomsInCol_ = AtomCommIntColumn->getSize();
132 <    nGroupsInRow_ = cgCommIntRow->getSize();
133 <    nGroupsInCol_ = cgCommIntColumn->getSize();
130 >    cgPlanIntRow = new Plan<int>(row, nGroups_);
131 >    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
132 >    cgPlanIntColumn = new Plan<int>(col, nGroups_);
133 >    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
134  
135 +    nAtomsInRow_ = AtomPlanIntRow->getSize();
136 +    nAtomsInCol_ = AtomPlanIntColumn->getSize();
137 +    nGroupsInRow_ = cgPlanIntRow->getSize();
138 +    nGroupsInCol_ = cgPlanIntColumn->getSize();
139 +
140      // Modify the data storage objects with the correct layouts and sizes:
141      atomRowData.resize(nAtomsInRow_);
142      atomRowData.setStorageLayout(storageLayout_);
# Line 104 | Line 147 | namespace OpenMD {
147      cgColData.resize(nGroupsInCol_);
148      cgColData.setStorageLayout(DataStorage::dslPosition);
149          
150 <    identsRow.reserve(nAtomsInRow_);
151 <    identsCol.reserve(nAtomsInCol_);
150 >    identsRow.resize(nAtomsInRow_);
151 >    identsCol.resize(nAtomsInCol_);
152      
153 <    AtomCommIntRow->gather(identsLocal, identsRow);
154 <    AtomCommIntColumn->gather(identsLocal, identsCol);
153 >    AtomPlanIntRow->gather(idents, identsRow);
154 >    AtomPlanIntColumn->gather(idents, identsCol);
155      
156 <    AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
157 <    AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
158 <    
116 <    cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
117 <    cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
156 >    // allocate memory for the parallel objects
157 >    atypesRow.resize(nAtomsInRow_);
158 >    atypesCol.resize(nAtomsInCol_);
159  
160 <    AtomCommRealRow->gather(massFactorsLocal, massFactorsRow);
161 <    AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol);
160 >    for (int i = 0; i < nAtomsInRow_; i++)
161 >      atypesRow[i] = ff_->getAtomType(identsRow[i]);
162 >    for (int i = 0; i < nAtomsInCol_; i++)
163 >      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
164  
165 +    pot_row.resize(nAtomsInRow_);
166 +    pot_col.resize(nAtomsInCol_);
167 +
168 +    AtomRowToGlobal.resize(nAtomsInRow_);
169 +    AtomColToGlobal.resize(nAtomsInCol_);
170 +    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
171 +    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
172 +
173 +    cgRowToGlobal.resize(nGroupsInRow_);
174 +    cgColToGlobal.resize(nGroupsInCol_);
175 +    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
176 +    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
177 +
178 +    massFactorsRow.resize(nAtomsInRow_);
179 +    massFactorsCol.resize(nAtomsInCol_);
180 +    AtomPlanRealRow->gather(massFactors, massFactorsRow);
181 +    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
182 +
183      groupListRow_.clear();
184 <    groupListRow_.reserve(nGroupsInRow_);
184 >    groupListRow_.resize(nGroupsInRow_);
185      for (int i = 0; i < nGroupsInRow_; i++) {
186        int gid = cgRowToGlobal[i];
187        for (int j = 0; j < nAtomsInRow_; j++) {
# Line 131 | Line 192 | namespace OpenMD {
192      }
193  
194      groupListCol_.clear();
195 <    groupListCol_.reserve(nGroupsInCol_);
195 >    groupListCol_.resize(nGroupsInCol_);
196      for (int i = 0; i < nGroupsInCol_; i++) {
197        int gid = cgColToGlobal[i];
198        for (int j = 0; j < nAtomsInCol_; j++) {
# Line 141 | Line 202 | namespace OpenMD {
202        }      
203      }
204  
205 <    skipsForRowAtom.clear();
206 <    skipsForRowAtom.reserve(nAtomsInRow_);
205 >    excludesForAtom.clear();
206 >    excludesForAtom.resize(nAtomsInRow_);
207 >    toposForAtom.clear();
208 >    toposForAtom.resize(nAtomsInRow_);
209 >    topoDist.clear();
210 >    topoDist.resize(nAtomsInRow_);
211      for (int i = 0; i < nAtomsInRow_; i++) {
212        int iglob = AtomRowToGlobal[i];
213 +
214        for (int j = 0; j < nAtomsInCol_; j++) {
215 <        int jglob = AtomColToGlobal[j];        
216 <        if (excludes.hasPair(iglob, jglob))
217 <          skipsForRowAtom[i].push_back(j);      
215 >        int jglob = AtomColToGlobal[j];
216 >
217 >        if (excludes->hasPair(iglob, jglob))
218 >          excludesForAtom[i].push_back(j);      
219 >        
220 >        if (oneTwo->hasPair(iglob, jglob)) {
221 >          toposForAtom[i].push_back(j);
222 >          topoDist[i].push_back(1);
223 >        } else {
224 >          if (oneThree->hasPair(iglob, jglob)) {
225 >            toposForAtom[i].push_back(j);
226 >            topoDist[i].push_back(2);
227 >          } else {
228 >            if (oneFour->hasPair(iglob, jglob)) {
229 >              toposForAtom[i].push_back(j);
230 >              topoDist[i].push_back(3);
231 >            }
232 >          }
233 >        }
234        }      
235      }
236  
237 <    toposForRowAtom.clear();
238 <    toposForRowAtom.reserve(nAtomsInRow_);
239 <    for (int i = 0; i < nAtomsInRow_; i++) {
240 <      int iglob = AtomRowToGlobal[i];
241 <      int nTopos = 0;
242 <      for (int j = 0; j < nAtomsInCol_; j++) {
243 <        int jglob = AtomColToGlobal[j];        
244 <        if (oneTwo.hasPair(iglob, jglob)) {
245 <          toposForRowAtom[i].push_back(j);
246 <          topoDistRow[i][nTopos] = 1;
247 <          nTopos++;
237 > #else
238 >    excludesForAtom.clear();
239 >    excludesForAtom.resize(nLocal_);
240 >    toposForAtom.clear();
241 >    toposForAtom.resize(nLocal_);
242 >    topoDist.clear();
243 >    topoDist.resize(nLocal_);
244 >
245 >    for (int i = 0; i < nLocal_; i++) {
246 >      int iglob = AtomLocalToGlobal[i];
247 >
248 >      for (int j = 0; j < nLocal_; j++) {
249 >        int jglob = AtomLocalToGlobal[j];
250 >
251 >        if (excludes->hasPair(iglob, jglob))
252 >          excludesForAtom[i].push_back(j);              
253 >        
254 >        if (oneTwo->hasPair(iglob, jglob)) {
255 >          toposForAtom[i].push_back(j);
256 >          topoDist[i].push_back(1);
257 >        } else {
258 >          if (oneThree->hasPair(iglob, jglob)) {
259 >            toposForAtom[i].push_back(j);
260 >            topoDist[i].push_back(2);
261 >          } else {
262 >            if (oneFour->hasPair(iglob, jglob)) {
263 >              toposForAtom[i].push_back(j);
264 >              topoDist[i].push_back(3);
265 >            }
266 >          }
267          }
167        if (oneThree.hasPair(iglob, jglob)) {
168          toposForRowAtom[i].push_back(j);
169          topoDistRow[i][nTopos] = 2;
170          nTopos++;
171        }
172        if (oneFour.hasPair(iglob, jglob)) {
173          toposForRowAtom[i].push_back(j);
174          topoDistRow[i][nTopos] = 3;
175          nTopos++;
176        }
268        }      
269      }
179
270   #endif
271  
272 +    // allocate memory for the parallel objects
273 +    atypesLocal.resize(nLocal_);
274 +
275 +    for (int i = 0; i < nLocal_; i++)
276 +      atypesLocal[i] = ff_->getAtomType(idents[i]);
277 +
278      groupList_.clear();
279 <    groupList_.reserve(nGroups_);
279 >    groupList_.resize(nGroups_);
280      for (int i = 0; i < nGroups_; i++) {
281        int gid = cgLocalToGlobal[i];
282        for (int j = 0; j < nLocal_; j++) {
283          int aid = AtomLocalToGlobal[j];
284 <        if (globalGroupMembership[aid] == gid)
284 >        if (globalGroupMembership[aid] == gid) {
285            groupList_[i].push_back(j);
286 +        }
287        }      
288      }
289  
193    skipsForLocalAtom.clear();
194    skipsForLocalAtom.reserve(nLocal_);
290  
291 <    for (int i = 0; i < nLocal_; i++) {
197 <      int iglob = AtomLocalToGlobal[i];
198 <      for (int j = 0; j < nLocal_; j++) {
199 <        int jglob = AtomLocalToGlobal[j];        
200 <        if (excludes.hasPair(iglob, jglob))
201 <          skipsForLocalAtom[i].push_back(j);      
202 <      }      
203 <    }
204 <
205 <    toposForLocalAtom.clear();
206 <    toposForLocalAtom.reserve(nLocal_);
207 <    for (int i = 0; i < nLocal_; i++) {
208 <      int iglob = AtomLocalToGlobal[i];
209 <      int nTopos = 0;
210 <      for (int j = 0; j < nLocal_; j++) {
211 <        int jglob = AtomLocalToGlobal[j];        
212 <        if (oneTwo.hasPair(iglob, jglob)) {
213 <          toposForLocalAtom[i].push_back(j);
214 <          topoDistLocal[i][nTopos] = 1;
215 <          nTopos++;
216 <        }
217 <        if (oneThree.hasPair(iglob, jglob)) {
218 <          toposForLocalAtom[i].push_back(j);
219 <          topoDistLocal[i][nTopos] = 2;
220 <          nTopos++;
221 <        }
222 <        if (oneFour.hasPair(iglob, jglob)) {
223 <          toposForLocalAtom[i].push_back(j);
224 <          topoDistLocal[i][nTopos] = 3;
225 <          nTopos++;
226 <        }
227 <      }      
228 <    }    
291 >    createGtypeCutoffMap();
292  
293    }
294    
295    void ForceMatrixDecomposition::createGtypeCutoffMap() {
296 <
296 >    
297      RealType tol = 1e-6;
298 +    largestRcut_ = 0.0;
299      RealType rc;
300      int atid;
301      set<AtomType*> atypes = info_->getSimulatedAtomTypes();
302 <    vector<RealType> atypeCutoff;
303 <    atypeCutoff.reserve( atypes.size() );
304 <
305 <    for (set<AtomType*>::iterator at = atypes.begin(); at != atypes.end(); ++at){
306 <      rc = interactionMan_->getSuggestedCutoffRadius(*at);
302 >    
303 >    map<int, RealType> atypeCutoff;
304 >      
305 >    for (set<AtomType*>::iterator at = atypes.begin();
306 >         at != atypes.end(); ++at){
307        atid = (*at)->getIdent();
308 <      atypeCutoff[atid] = rc;
308 >      if (userChoseCutoff_)
309 >        atypeCutoff[atid] = userCutoff_;
310 >      else
311 >        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
312      }
313 <
313 >    
314      vector<RealType> gTypeCutoffs;
248
315      // first we do a single loop over the cutoff groups to find the
316      // largest cutoff for any atypes present in this group.
317   #ifdef IS_MPI
318      vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
319 +    groupRowToGtype.resize(nGroupsInRow_);
320      for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
321        vector<int> atomListRow = getAtomsInGroupRow(cg1);
322        for (vector<int>::iterator ia = atomListRow.begin();
# Line 275 | Line 342 | namespace OpenMD {
342        
343      }
344      vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
345 +    groupColToGtype.resize(nGroupsInCol_);
346      for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
347        vector<int> atomListCol = getAtomsInGroupColumn(cg2);
348        for (vector<int>::iterator jb = atomListCol.begin();
# Line 298 | Line 366 | namespace OpenMD {
366        }
367      }
368   #else
369 +
370      vector<RealType> groupCutoff(nGroups_, 0.0);
371 +    groupToGtype.resize(nGroups_);
372      for (int cg1 = 0; cg1 < nGroups_; cg1++) {
373        groupCutoff[cg1] = 0.0;
374        vector<int> atomList = getAtomsInGroupRow(cg1);
375        for (vector<int>::iterator ia = atomList.begin();
376             ia != atomList.end(); ++ia) {            
377          int atom1 = (*ia);
378 <        atid = identsLocal[atom1];
379 <        if (atypeCutoff[atid] > groupCutoff[cg1]) {
378 >        atid = idents[atom1];
379 >        if (atypeCutoff[atid] > groupCutoff[cg1])
380            groupCutoff[cg1] = atypeCutoff[atid];
311        }
381        }
382 <
382 >      
383        bool gTypeFound = false;
384        for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
385          if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
# Line 318 | Line 387 | namespace OpenMD {
387            gTypeFound = true;
388          }
389        }
390 <      if (!gTypeFound) {
390 >      if (!gTypeFound) {      
391          gTypeCutoffs.push_back( groupCutoff[cg1] );
392          groupToGtype[cg1] = gTypeCutoffs.size() - 1;
393        }      
# Line 327 | Line 396 | namespace OpenMD {
396  
397      // Now we find the maximum group cutoff value present in the simulation
398  
399 <    vector<RealType>::iterator groupMaxLoc = max_element(gTypeCutoffs.begin(), gTypeCutoffs.end());
400 <    RealType groupMax = *groupMaxLoc;
399 >    RealType groupMax = *max_element(gTypeCutoffs.begin(),
400 >                                     gTypeCutoffs.end());
401  
402   #ifdef IS_MPI
403 <    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX);
403 >    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
404 >                              MPI::MAX);
405   #endif
406      
407      RealType tradRcut = groupMax;
408  
409      for (int i = 0; i < gTypeCutoffs.size();  i++) {
410 <      for (int j = 0; j < gTypeCutoffs.size();  j++) {
341 <        
410 >      for (int j = 0; j < gTypeCutoffs.size();  j++) {      
411          RealType thisRcut;
412          switch(cutoffPolicy_) {
413          case TRADITIONAL:
414            thisRcut = tradRcut;
415 +          break;
416          case MIX:
417            thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
418 +          break;
419          case MAX:
420            thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
421 +          break;
422          default:
423            sprintf(painCave.errMsg,
424                    "ForceMatrixDecomposition::createGtypeCutoffMap "
425                    "hit an unknown cutoff policy!\n");
426            painCave.severity = OPENMD_ERROR;
427            painCave.isFatal = 1;
428 <          simError();              
428 >          simError();
429 >          break;
430          }
431  
432          pair<int,int> key = make_pair(i,j);
433          gTypeCutoffMap[key].first = thisRcut;
361
434          if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
363
435          gTypeCutoffMap[key].second = thisRcut*thisRcut;
365        
436          gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
367
437          // sanity check
438          
439          if (userChoseCutoff_) {
440            if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
441              sprintf(painCave.errMsg,
442                      "ForceMatrixDecomposition::createGtypeCutoffMap "
443 <                    "user-specified rCut does not match computed group Cutoff\n");
443 >                    "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
444              painCave.severity = OPENMD_ERROR;
445              painCave.isFatal = 1;
446              simError();            
# Line 383 | Line 452 | namespace OpenMD {
452  
453  
454    groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
455 <    int i, j;
387 <
455 >    int i, j;  
456   #ifdef IS_MPI
457      i = groupRowToGtype[cg1];
458      j = groupColToGtype[cg2];
459   #else
460      i = groupToGtype[cg1];
461      j = groupToGtype[cg2];
462 < #endif
395 <    
462 > #endif    
463      return gTypeCutoffMap[make_pair(i,j)];
464    }
465  
466 +  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
467 +    for (int j = 0; j < toposForAtom[atom1].size(); j++) {
468 +      if (toposForAtom[atom1][j] == atom2)
469 +        return topoDist[atom1][j];
470 +    }
471 +    return 0;
472 +  }
473  
474    void ForceMatrixDecomposition::zeroWorkArrays() {
475 +    pairwisePot = 0.0;
476 +    embeddingPot = 0.0;
477  
402    for (int j = 0; j < N_INTERACTION_FAMILIES; j++) {
403      longRangePot_[j] = 0.0;
404    }
405
478   #ifdef IS_MPI
479      if (storageLayout_ & DataStorage::dslForce) {
480        fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
# Line 418 | Line 490 | namespace OpenMD {
490           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
491  
492      fill(pot_col.begin(), pot_col.end(),
493 <         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
422 <    
423 <    pot_local = Vector<RealType, N_INTERACTION_FAMILIES>(0.0);
493 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
494  
495      if (storageLayout_ & DataStorage::dslParticlePot) {    
496 <      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0);
497 <      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0);
496 >      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
497 >           0.0);
498 >      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
499 >           0.0);
500      }
501  
502      if (storageLayout_ & DataStorage::dslDensity) {      
# Line 433 | Line 505 | namespace OpenMD {
505      }
506  
507      if (storageLayout_ & DataStorage::dslFunctional) {  
508 <      fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0);
509 <      fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0);
508 >      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
509 >           0.0);
510 >      fill(atomColData.functional.begin(), atomColData.functional.end(),
511 >           0.0);
512      }
513  
514      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
# Line 444 | Line 518 | namespace OpenMD {
518             atomColData.functionalDerivative.end(), 0.0);
519      }
520  
521 < #else
522 <    
521 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
522 >      fill(atomRowData.skippedCharge.begin(),
523 >           atomRowData.skippedCharge.end(), 0.0);
524 >      fill(atomColData.skippedCharge.begin(),
525 >           atomColData.skippedCharge.end(), 0.0);
526 >    }
527 >
528 > #endif
529 >    // even in parallel, we need to zero out the local arrays:
530 >
531      if (storageLayout_ & DataStorage::dslParticlePot) {      
532        fill(snap_->atomData.particlePot.begin(),
533             snap_->atomData.particlePot.end(), 0.0);
# Line 463 | Line 545 | namespace OpenMD {
545        fill(snap_->atomData.functionalDerivative.begin(),
546             snap_->atomData.functionalDerivative.end(), 0.0);
547      }
548 < #endif
548 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
549 >      fill(snap_->atomData.skippedCharge.begin(),
550 >           snap_->atomData.skippedCharge.end(), 0.0);
551 >    }
552      
553    }
554  
# Line 474 | Line 559 | namespace OpenMD {
559   #ifdef IS_MPI
560      
561      // gather up the atomic positions
562 <    AtomCommVectorRow->gather(snap_->atomData.position,
562 >    AtomPlanVectorRow->gather(snap_->atomData.position,
563                                atomRowData.position);
564 <    AtomCommVectorColumn->gather(snap_->atomData.position,
564 >    AtomPlanVectorColumn->gather(snap_->atomData.position,
565                                   atomColData.position);
566      
567      // gather up the cutoff group positions
568 <    cgCommVectorRow->gather(snap_->cgData.position,
568 >
569 >    cgPlanVectorRow->gather(snap_->cgData.position,
570                              cgRowData.position);
571 <    cgCommVectorColumn->gather(snap_->cgData.position,
571 >
572 >    cgPlanVectorColumn->gather(snap_->cgData.position,
573                                 cgColData.position);
574 +
575      
576      // if needed, gather the atomic rotation matrices
577      if (storageLayout_ & DataStorage::dslAmat) {
578 <      AtomCommMatrixRow->gather(snap_->atomData.aMat,
578 >      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
579                                  atomRowData.aMat);
580 <      AtomCommMatrixColumn->gather(snap_->atomData.aMat,
580 >      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
581                                     atomColData.aMat);
582      }
583      
584      // if needed, gather the atomic eletrostatic frames
585      if (storageLayout_ & DataStorage::dslElectroFrame) {
586 <      AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
586 >      AtomPlanMatrixRow->gather(snap_->atomData.electroFrame,
587                                  atomRowData.electroFrame);
588 <      AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
588 >      AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame,
589                                     atomColData.electroFrame);
590      }
591 +
592   #endif      
593    }
594    
# Line 513 | Line 602 | namespace OpenMD {
602      
603      if (storageLayout_ & DataStorage::dslDensity) {
604        
605 <      AtomCommRealRow->scatter(atomRowData.density,
605 >      AtomPlanRealRow->scatter(atomRowData.density,
606                                 snap_->atomData.density);
607        
608        int n = snap_->atomData.density.size();
609        vector<RealType> rho_tmp(n, 0.0);
610 <      AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
610 >      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
611        for (int i = 0; i < n; i++)
612          snap_->atomData.density[i] += rho_tmp[i];
613      }
# Line 534 | Line 623 | namespace OpenMD {
623      storageLayout_ = sman_->getStorageLayout();
624   #ifdef IS_MPI
625      if (storageLayout_ & DataStorage::dslFunctional) {
626 <      AtomCommRealRow->gather(snap_->atomData.functional,
626 >      AtomPlanRealRow->gather(snap_->atomData.functional,
627                                atomRowData.functional);
628 <      AtomCommRealColumn->gather(snap_->atomData.functional,
628 >      AtomPlanRealColumn->gather(snap_->atomData.functional,
629                                   atomColData.functional);
630      }
631      
632      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
633 <      AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
633 >      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
634                                atomRowData.functionalDerivative);
635 <      AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
635 >      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
636                                   atomColData.functionalDerivative);
637      }
638   #endif
# Line 557 | Line 646 | namespace OpenMD {
646      int n = snap_->atomData.force.size();
647      vector<Vector3d> frc_tmp(n, V3Zero);
648      
649 <    AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
649 >    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
650      for (int i = 0; i < n; i++) {
651        snap_->atomData.force[i] += frc_tmp[i];
652        frc_tmp[i] = 0.0;
653      }
654      
655 <    AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
656 <    for (int i = 0; i < n; i++)
655 >    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
656 >    for (int i = 0; i < n; i++) {
657        snap_->atomData.force[i] += frc_tmp[i];
658 <    
659 <    
658 >    }
659 >        
660      if (storageLayout_ & DataStorage::dslTorque) {
661  
662 <      int nt = snap_->atomData.force.size();
662 >      int nt = snap_->atomData.torque.size();
663        vector<Vector3d> trq_tmp(nt, V3Zero);
664  
665 <      AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
666 <      for (int i = 0; i < n; i++) {
665 >      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
666 >      for (int i = 0; i < nt; i++) {
667          snap_->atomData.torque[i] += trq_tmp[i];
668          trq_tmp[i] = 0.0;
669        }
670        
671 <      AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
672 <      for (int i = 0; i < n; i++)
671 >      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
672 >      for (int i = 0; i < nt; i++)
673          snap_->atomData.torque[i] += trq_tmp[i];
674      }
675 +
676 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
677 +
678 +      int ns = snap_->atomData.skippedCharge.size();
679 +      vector<RealType> skch_tmp(ns, 0.0);
680 +
681 +      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
682 +      for (int i = 0; i < ns; i++) {
683 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
684 +        skch_tmp[i] = 0.0;
685 +      }
686 +      
687 +      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
688 +      for (int i = 0; i < ns; i++)
689 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
690 +            
691 +    }
692      
693      nLocal_ = snap_->getNumberOfAtoms();
694  
# Line 591 | Line 697 | namespace OpenMD {
697  
698      // scatter/gather pot_row into the members of my column
699            
700 <    AtomCommPotRow->scatter(pot_row, pot_temp);
700 >    AtomPlanPotRow->scatter(pot_row, pot_temp);
701  
702      for (int ii = 0;  ii < pot_temp.size(); ii++ )
703 <      pot_local += pot_temp[ii];
703 >      pairwisePot += pot_temp[ii];
704      
705      fill(pot_temp.begin(), pot_temp.end(),
706           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
707        
708 <    AtomCommPotColumn->scatter(pot_col, pot_temp);    
708 >    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
709      
710      for (int ii = 0;  ii < pot_temp.size(); ii++ )
711 <      pot_local += pot_temp[ii];
711 >      pairwisePot += pot_temp[ii];    
712      
713 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
714 +      RealType ploc1 = pairwisePot[ii];
715 +      RealType ploc2 = 0.0;
716 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
717 +      pairwisePot[ii] = ploc2;
718 +    }
719 +
720 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
721 +      RealType ploc1 = embeddingPot[ii];
722 +      RealType ploc2 = 0.0;
723 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
724 +      embeddingPot[ii] = ploc2;
725 +    }
726 +
727   #endif
728 +
729    }
730  
731    int ForceMatrixDecomposition::getNAtomsInRow() {  
# Line 679 | Line 800 | namespace OpenMD {
800   #ifdef IS_MPI
801      return massFactorsRow[atom1];
802   #else
803 <    return massFactorsLocal[atom1];
803 >    return massFactors[atom1];
804   #endif
805    }
806  
# Line 687 | Line 808 | namespace OpenMD {
808   #ifdef IS_MPI
809      return massFactorsCol[atom2];
810   #else
811 <    return massFactorsLocal[atom2];
811 >    return massFactors[atom2];
812   #endif
813  
814    }
# Line 705 | Line 826 | namespace OpenMD {
826      return d;    
827    }
828  
829 <  vector<int> ForceMatrixDecomposition::getSkipsForRowAtom(int atom1) {
830 < #ifdef IS_MPI
710 <    return skipsForRowAtom[atom1];
711 < #else
712 <    return skipsForLocalAtom[atom1];
713 < #endif
829 >  vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
830 >    return excludesForAtom[atom1];
831    }
832  
833    /**
834 <   * There are a number of reasons to skip a pair or a
718 <   * particle. Mostly we do this to exclude atoms who are involved in
719 <   * short range interactions (bonds, bends, torsions), but we also
720 <   * need to exclude some overcounted interactions that result from
834 >   * We need to exclude some overcounted interactions that result from
835     * the parallel decomposition.
836     */
837    bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
838      int unique_id_1, unique_id_2;
839 <
839 >        
840   #ifdef IS_MPI
841      // in MPI, we have to look up the unique IDs for each atom
842      unique_id_1 = AtomRowToGlobal[atom1];
843      unique_id_2 = AtomColToGlobal[atom2];
844 + #else
845 +    unique_id_1 = AtomLocalToGlobal[atom1];
846 +    unique_id_2 = AtomLocalToGlobal[atom2];
847 + #endif  
848  
731    // this situation should only arise in MPI simulations
849      if (unique_id_1 == unique_id_2) return true;
850 <    
850 >
851 > #ifdef IS_MPI
852      // this prevents us from doing the pair on multiple processors
853      if (unique_id_1 < unique_id_2) {
854        if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
855      } else {
856 <      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
856 >      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
857      }
740 #else
741    // in the normal loop, the atom numbers are unique
742    unique_id_1 = atom1;
743    unique_id_2 = atom2;
858   #endif
859      
860 < #ifdef IS_MPI
747 <    for (vector<int>::iterator i = skipsForRowAtom[atom1].begin();
748 <         i != skipsForRowAtom[atom1].end(); ++i) {
749 <      if ( (*i) == unique_id_2 ) return true;
750 <    }    
751 < #else
752 <    for (vector<int>::iterator i = skipsForLocalAtom[atom1].begin();
753 <         i != skipsForLocalAtom[atom1].end(); ++i) {
754 <      if ( (*i) == unique_id_2 ) return true;
755 <    }    
756 < #endif
860 >    return false;
861    }
862  
863 <  int ForceMatrixDecomposition::getTopoDistance(int atom1, int atom2) {
864 <    
865 < #ifdef IS_MPI
866 <    for (int i = 0; i < toposForRowAtom[atom1].size(); i++) {
867 <      if ( toposForRowAtom[atom1][i] == atom2 ) return topoDistRow[atom1][i];
863 >  /**
864 >   * We need to handle the interactions for atoms who are involved in
865 >   * the same rigid body as well as some short range interactions
866 >   * (bonds, bends, torsions) differently from other interactions.
867 >   * We'll still visit the pairwise routines, but with a flag that
868 >   * tells those routines to exclude the pair from direct long range
869 >   * interactions.  Some indirect interactions (notably reaction
870 >   * field) must still be handled for these pairs.
871 >   */
872 >  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
873 >
874 >    // excludesForAtom was constructed to use row/column indices in the MPI
875 >    // version, and to use local IDs in the non-MPI version:
876 >    
877 >    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
878 >         i != excludesForAtom[atom1].end(); ++i) {
879 >      if ( (*i) == atom2 ) return true;
880      }
765 #else
766    for (int i = 0; i < toposForLocalAtom[atom1].size(); i++) {
767      if ( toposForLocalAtom[atom1][i] == atom2 ) return topoDistLocal[atom1][i];
768    }
769 #endif
881  
882 <    // zero is default for unconnected (i.e. normal) pair interactions
772 <    return 0;
882 >    return false;
883    }
884  
885 +
886    void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
887   #ifdef IS_MPI
888      atomRowData.force[atom1] += fg;
# Line 789 | Line 900 | namespace OpenMD {
900    }
901  
902      // filling interaction blocks with pointers
903 <  InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) {    
904 <    InteractionData idat;
903 >  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
904 >                                                     int atom1, int atom2) {
905  
906 +    idat.excluded = excludeAtomPair(atom1, atom2);
907 +  
908   #ifdef IS_MPI
909 +    idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
910 +    //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
911 +    //                         ff_->getAtomType(identsCol[atom2]) );
912      
797    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
798                             ff_->getAtomType(identsCol[atom2]) );
799
800    
913      if (storageLayout_ & DataStorage::dslAmat) {
914        idat.A1 = &(atomRowData.aMat[atom1]);
915        idat.A2 = &(atomColData.aMat[atom2]);
# Line 833 | Line 945 | namespace OpenMD {
945        idat.particlePot2 = &(atomColData.particlePot[atom2]);
946      }
947  
948 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
949 +      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
950 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
951 +    }
952 +
953   #else
954  
955 <    idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]),
956 <                             ff_->getAtomType(identsLocal[atom2]) );
955 >    idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
956 >    //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
957 >    //                         ff_->getAtomType(idents[atom2]) );
958  
959      if (storageLayout_ & DataStorage::dslAmat) {
960        idat.A1 = &(snap_->atomData.aMat[atom1]);
# Line 853 | Line 971 | namespace OpenMD {
971        idat.t2 = &(snap_->atomData.torque[atom2]);
972      }
973  
974 <    if (storageLayout_ & DataStorage::dslDensity) {
974 >    if (storageLayout_ & DataStorage::dslDensity) {    
975        idat.rho1 = &(snap_->atomData.density[atom1]);
976        idat.rho2 = &(snap_->atomData.density[atom2]);
977      }
# Line 873 | Line 991 | namespace OpenMD {
991        idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
992      }
993  
994 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
995 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
996 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
997 +    }
998   #endif
877    return idat;
999    }
1000  
1001    
1002 <  void ForceMatrixDecomposition::unpackInteractionData(InteractionData idat, int atom1, int atom2) {    
1002 >  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
1003   #ifdef IS_MPI
1004      pot_row[atom1] += 0.5 *  *(idat.pot);
1005      pot_col[atom2] += 0.5 *  *(idat.pot);
# Line 886 | Line 1007 | namespace OpenMD {
1007      atomRowData.force[atom1] += *(idat.f1);
1008      atomColData.force[atom2] -= *(idat.f1);
1009   #else
1010 <    longRangePot_ += *(idat.pot);
1011 <    
1010 >    pairwisePot += *(idat.pot);
1011 >
1012      snap_->atomData.force[atom1] += *(idat.f1);
1013      snap_->atomData.force[atom2] -= *(idat.f1);
1014   #endif
1015 <
1015 >    
1016    }
1017  
897
898  InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){
899
900    InteractionData idat;
901 #ifdef IS_MPI
902    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
903                             ff_->getAtomType(identsCol[atom2]) );
904
905    if (storageLayout_ & DataStorage::dslElectroFrame) {
906      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
907      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
908    }
909    if (storageLayout_ & DataStorage::dslTorque) {
910      idat.t1 = &(atomRowData.torque[atom1]);
911      idat.t2 = &(atomColData.torque[atom2]);
912    }
913 #else
914    idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]),
915                             ff_->getAtomType(identsLocal[atom2]) );
916
917    if (storageLayout_ & DataStorage::dslElectroFrame) {
918      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
919      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
920    }
921    if (storageLayout_ & DataStorage::dslTorque) {
922      idat.t1 = &(snap_->atomData.torque[atom1]);
923      idat.t2 = &(snap_->atomData.torque[atom2]);
924    }
925 #endif    
926  }
927
1018    /*
1019     * buildNeighborList
1020     *
# Line 935 | Line 1025 | namespace OpenMD {
1025        
1026      vector<pair<int, int> > neighborList;
1027      groupCutoffs cuts;
1028 +    bool doAllPairs = false;
1029 +
1030   #ifdef IS_MPI
1031      cellListRow_.clear();
1032      cellListCol_.clear();
# Line 954 | Line 1046 | namespace OpenMD {
1046      nCells_.y() = (int) ( Hy.length() )/ rList_;
1047      nCells_.z() = (int) ( Hz.length() )/ rList_;
1048  
1049 +    // handle small boxes where the cell offsets can end up repeating cells
1050 +    
1051 +    if (nCells_.x() < 3) doAllPairs = true;
1052 +    if (nCells_.y() < 3) doAllPairs = true;
1053 +    if (nCells_.z() < 3) doAllPairs = true;
1054 +
1055      Mat3x3d invHmat = snap_->getInvHmat();
1056      Vector3d rs, scaled, dr;
1057      Vector3i whichCell;
1058      int cellIndex;
1059 +    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1060  
1061   #ifdef IS_MPI
1062 <    for (int i = 0; i < nGroupsInRow_; i++) {
1063 <      rs = cgRowData.position[i];
1064 <      // scaled positions relative to the box vectors
1065 <      scaled = invHmat * rs;
1066 <      // wrap the vector back into the unit box by subtracting integer box
968 <      // numbers
969 <      for (int j = 0; j < 3; j++)
970 <        scaled[j] -= roundMe(scaled[j]);
971 <    
972 <      // find xyz-indices of cell that cutoffGroup is in.
973 <      whichCell.x() = nCells_.x() * scaled.x();
974 <      whichCell.y() = nCells_.y() * scaled.y();
975 <      whichCell.z() = nCells_.z() * scaled.z();
1062 >    cellListRow_.resize(nCtot);
1063 >    cellListCol_.resize(nCtot);
1064 > #else
1065 >    cellList_.resize(nCtot);
1066 > #endif
1067  
1068 <      // find single index of this cell:
1069 <      cellIndex = Vlinear(whichCell, nCells_);
979 <      // add this cutoff group to the list of groups in this cell;
980 <      cellListRow_[cellIndex].push_back(i);
981 <    }
1068 >    if (!doAllPairs) {
1069 > #ifdef IS_MPI
1070  
1071 <    for (int i = 0; i < nGroupsInCol_; i++) {
1072 <      rs = cgColData.position[i];
1073 <      // scaled positions relative to the box vectors
1074 <      scaled = invHmat * rs;
1075 <      // wrap the vector back into the unit box by subtracting integer box
1076 <      // numbers
1077 <      for (int j = 0; j < 3; j++)
1078 <        scaled[j] -= roundMe(scaled[j]);
1079 <
1080 <      // find xyz-indices of cell that cutoffGroup is in.
1081 <      whichCell.x() = nCells_.x() * scaled.x();
1082 <      whichCell.y() = nCells_.y() * scaled.y();
1083 <      whichCell.z() = nCells_.z() * scaled.z();
1084 <
1085 <      // find single index of this cell:
1086 <      cellIndex = Vlinear(whichCell, nCells_);
1087 <      // add this cutoff group to the list of groups in this cell;
1088 <      cellListCol_[cellIndex].push_back(i);
1089 <    }
1071 >      for (int i = 0; i < nGroupsInRow_; i++) {
1072 >        rs = cgRowData.position[i];
1073 >        
1074 >        // scaled positions relative to the box vectors
1075 >        scaled = invHmat * rs;
1076 >        
1077 >        // wrap the vector back into the unit box by subtracting integer box
1078 >        // numbers
1079 >        for (int j = 0; j < 3; j++) {
1080 >          scaled[j] -= roundMe(scaled[j]);
1081 >          scaled[j] += 0.5;
1082 >        }
1083 >        
1084 >        // find xyz-indices of cell that cutoffGroup is in.
1085 >        whichCell.x() = nCells_.x() * scaled.x();
1086 >        whichCell.y() = nCells_.y() * scaled.y();
1087 >        whichCell.z() = nCells_.z() * scaled.z();
1088 >        
1089 >        // find single index of this cell:
1090 >        cellIndex = Vlinear(whichCell, nCells_);
1091 >        
1092 >        // add this cutoff group to the list of groups in this cell;
1093 >        cellListRow_[cellIndex].push_back(i);
1094 >      }
1095 >      for (int i = 0; i < nGroupsInCol_; i++) {
1096 >        rs = cgColData.position[i];
1097 >        
1098 >        // scaled positions relative to the box vectors
1099 >        scaled = invHmat * rs;
1100 >        
1101 >        // wrap the vector back into the unit box by subtracting integer box
1102 >        // numbers
1103 >        for (int j = 0; j < 3; j++) {
1104 >          scaled[j] -= roundMe(scaled[j]);
1105 >          scaled[j] += 0.5;
1106 >        }
1107 >        
1108 >        // find xyz-indices of cell that cutoffGroup is in.
1109 >        whichCell.x() = nCells_.x() * scaled.x();
1110 >        whichCell.y() = nCells_.y() * scaled.y();
1111 >        whichCell.z() = nCells_.z() * scaled.z();
1112 >        
1113 >        // find single index of this cell:
1114 >        cellIndex = Vlinear(whichCell, nCells_);
1115 >        
1116 >        // add this cutoff group to the list of groups in this cell;
1117 >        cellListCol_[cellIndex].push_back(i);
1118 >      }
1119 >    
1120   #else
1121 <    for (int i = 0; i < nGroups_; i++) {
1122 <      rs = snap_->cgData.position[i];
1123 <      // scaled positions relative to the box vectors
1124 <      scaled = invHmat * rs;
1125 <      // wrap the vector back into the unit box by subtracting integer box
1126 <      // numbers
1127 <      for (int j = 0; j < 3; j++)
1128 <        scaled[j] -= roundMe(scaled[j]);
1121 >      for (int i = 0; i < nGroups_; i++) {
1122 >        rs = snap_->cgData.position[i];
1123 >        
1124 >        // scaled positions relative to the box vectors
1125 >        scaled = invHmat * rs;
1126 >        
1127 >        // wrap the vector back into the unit box by subtracting integer box
1128 >        // numbers
1129 >        for (int j = 0; j < 3; j++) {
1130 >          scaled[j] -= roundMe(scaled[j]);
1131 >          scaled[j] += 0.5;
1132 >        }
1133 >        
1134 >        // find xyz-indices of cell that cutoffGroup is in.
1135 >        whichCell.x() = nCells_.x() * scaled.x();
1136 >        whichCell.y() = nCells_.y() * scaled.y();
1137 >        whichCell.z() = nCells_.z() * scaled.z();
1138 >        
1139 >        // find single index of this cell:
1140 >        cellIndex = Vlinear(whichCell, nCells_);
1141 >        
1142 >        // add this cutoff group to the list of groups in this cell;
1143 >        cellList_[cellIndex].push_back(i);
1144 >      }
1145  
1012      // find xyz-indices of cell that cutoffGroup is in.
1013      whichCell.x() = nCells_.x() * scaled.x();
1014      whichCell.y() = nCells_.y() * scaled.y();
1015      whichCell.z() = nCells_.z() * scaled.z();
1016
1017      // find single index of this cell:
1018      cellIndex = Vlinear(whichCell, nCells_);
1019      // add this cutoff group to the list of groups in this cell;
1020      cellList_[cellIndex].push_back(i);
1021    }
1146   #endif
1147  
1148 <    for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1149 <      for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1150 <        for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1151 <          Vector3i m1v(m1x, m1y, m1z);
1152 <          int m1 = Vlinear(m1v, nCells_);
1029 <
1030 <          for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1031 <               os != cellOffsets_.end(); ++os) {
1148 >      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1149 >        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1150 >          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1151 >            Vector3i m1v(m1x, m1y, m1z);
1152 >            int m1 = Vlinear(m1v, nCells_);
1153              
1154 <            Vector3i m2v = m1v + (*os);
1155 <            
1156 <            if (m2v.x() >= nCells_.x()) {
1157 <              m2v.x() = 0;          
1158 <            } else if (m2v.x() < 0) {
1038 <              m2v.x() = nCells_.x() - 1;
1039 <            }
1040 <            
1041 <            if (m2v.y() >= nCells_.y()) {
1042 <              m2v.y() = 0;          
1043 <            } else if (m2v.y() < 0) {
1044 <              m2v.y() = nCells_.y() - 1;
1045 <            }
1046 <            
1047 <            if (m2v.z() >= nCells_.z()) {
1048 <              m2v.z() = 0;          
1049 <            } else if (m2v.z() < 0) {
1050 <              m2v.z() = nCells_.z() - 1;
1051 <            }
1052 <            
1053 <            int m2 = Vlinear (m2v, nCells_);
1154 >            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1155 >                 os != cellOffsets_.end(); ++os) {
1156 >              
1157 >              Vector3i m2v = m1v + (*os);
1158 >            
1159  
1160 < #ifdef IS_MPI
1161 <            for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1162 <                 j1 != cellListRow_[m1].end(); ++j1) {
1163 <              for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1164 <                   j2 != cellListCol_[m2].end(); ++j2) {
1165 <                              
1166 <                // Always do this if we're in different cells or if
1167 <                // we're in the same cell and the global index of the
1168 <                // j2 cutoff group is less than the j1 cutoff group
1160 >              if (m2v.x() >= nCells_.x()) {
1161 >                m2v.x() = 0;          
1162 >              } else if (m2v.x() < 0) {
1163 >                m2v.x() = nCells_.x() - 1;
1164 >              }
1165 >              
1166 >              if (m2v.y() >= nCells_.y()) {
1167 >                m2v.y() = 0;          
1168 >              } else if (m2v.y() < 0) {
1169 >                m2v.y() = nCells_.y() - 1;
1170 >              }
1171 >              
1172 >              if (m2v.z() >= nCells_.z()) {
1173 >                m2v.z() = 0;          
1174 >              } else if (m2v.z() < 0) {
1175 >                m2v.z() = nCells_.z() - 1;
1176 >              }
1177  
1178 <                if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1178 >              int m2 = Vlinear (m2v, nCells_);
1179 >              
1180 > #ifdef IS_MPI
1181 >              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1182 >                   j1 != cellListRow_[m1].end(); ++j1) {
1183 >                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1184 >                     j2 != cellListCol_[m2].end(); ++j2) {
1185 >                  
1186 >                  // In parallel, we need to visit *all* pairs of row
1187 >                  // & column indicies and will divide labor in the
1188 >                  // force evaluation later.
1189                    dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1190                    snap_->wrapVector(dr);
1191                    cuts = getGroupCutoffs( (*j1), (*j2) );
1192                    if (dr.lengthSquare() < cuts.third) {
1193                      neighborList.push_back(make_pair((*j1), (*j2)));
1194 <                  }
1194 >                  }                  
1195                  }
1196                }
1074            }
1197   #else
1198 <            for (vector<int>::iterator j1 = cellList_[m1].begin();
1199 <                 j1 != cellList_[m1].end(); ++j1) {
1200 <              for (vector<int>::iterator j2 = cellList_[m2].begin();
1201 <                   j2 != cellList_[m2].end(); ++j2) {
1202 <                              
1203 <                // Always do this if we're in different cells or if
1204 <                // we're in the same cell and the global index of the
1205 <                // j2 cutoff group is less than the j1 cutoff group
1198 >              for (vector<int>::iterator j1 = cellList_[m1].begin();
1199 >                   j1 != cellList_[m1].end(); ++j1) {
1200 >                for (vector<int>::iterator j2 = cellList_[m2].begin();
1201 >                     j2 != cellList_[m2].end(); ++j2) {
1202 >    
1203 >                  // Always do this if we're in different cells or if
1204 >                  // we're in the same cell and the global index of
1205 >                  // the j2 cutoff group is greater than or equal to
1206 >                  // the j1 cutoff group.  Note that Rappaport's code
1207 >                  // has a "less than" conditional here, but that
1208 >                  // deals with atom-by-atom computation.  OpenMD
1209 >                  // allows atoms within a single cutoff group to
1210 >                  // interact with each other.
1211  
1212 <                if (m2 != m1 || (*j2) < (*j1)) {
1213 <                  dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1214 <                  snap_->wrapVector(dr);
1215 <                  cuts = getGroupCutoffs( (*j1), (*j2) );
1216 <                  if (dr.lengthSquare() < cuts.third) {
1217 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1212 >
1213 >
1214 >                  if (m2 != m1 || (*j2) >= (*j1) ) {
1215 >
1216 >                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1217 >                    snap_->wrapVector(dr);
1218 >                    cuts = getGroupCutoffs( (*j1), (*j2) );
1219 >                    if (dr.lengthSquare() < cuts.third) {
1220 >                      neighborList.push_back(make_pair((*j1), (*j2)));
1221 >                    }
1222                    }
1223                  }
1224                }
1094            }
1225   #endif
1226 +            }
1227            }
1228          }
1229        }
1230 +    } else {
1231 +      // branch to do all cutoff group pairs
1232 + #ifdef IS_MPI
1233 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1234 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {    
1235 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1236 +          snap_->wrapVector(dr);
1237 +          cuts = getGroupCutoffs( j1, j2 );
1238 +          if (dr.lengthSquare() < cuts.third) {
1239 +            neighborList.push_back(make_pair(j1, j2));
1240 +          }
1241 +        }
1242 +      }      
1243 + #else
1244 +      // include all groups here.
1245 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1246 +        // include self group interactions j2 == j1
1247 +        for (int j2 = j1; j2 < nGroups_; j2++) {
1248 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1249 +          snap_->wrapVector(dr);
1250 +          cuts = getGroupCutoffs( j1, j2 );
1251 +          if (dr.lengthSquare() < cuts.third) {
1252 +            neighborList.push_back(make_pair(j1, j2));
1253 +          }
1254 +        }    
1255 +      }
1256 + #endif
1257      }
1258 <
1258 >      
1259      // save the local cutoff group positions for the check that is
1260      // done on each loop:
1261      saved_CG_positions_.clear();
1262      for (int i = 0; i < nGroups_; i++)
1263        saved_CG_positions_.push_back(snap_->cgData.position[i]);
1264 <
1264 >    
1265      return neighborList;
1266    }
1267   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines