ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents):
Revision 1576 by gezelter, Wed Jun 8 16:05:07 2011 UTC vs.
Revision 1591 by gezelter, Tue Jul 12 15:25:07 2011 UTC

# Line 57 | Line 57 | namespace OpenMD {
57      storageLayout_ = sman_->getStorageLayout();
58      ff_ = info_->getForceField();
59      nLocal_ = snap_->getNumberOfAtoms();
60 <    nGroups_ = snap_->getNumberOfCutoffGroups();
61 <
60 >    
61 >    nGroups_ = info_->getNLocalCutoffGroups();
62      // gather the information for atomtype IDs (atids):
63 <    identsLocal = info_->getIdentArray();
63 >    idents = info_->getIdentArray();
64      AtomLocalToGlobal = info_->getGlobalAtomIndices();
65      cgLocalToGlobal = info_->getGlobalGroupIndices();
66      vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
67    vector<RealType> massFactorsLocal = info_->getMassFactors();
68    PairList excludes = info_->getExcludedInteractions();
69    PairList oneTwo = info_->getOneTwoInteractions();
70    PairList oneThree = info_->getOneThreeInteractions();
71    PairList oneFour = info_->getOneFourInteractions();
67  
68 +    massFactors = info_->getMassFactors();
69 +
70 +    PairList* excludes = info_->getExcludedInteractions();
71 +    PairList* oneTwo = info_->getOneTwoInteractions();
72 +    PairList* oneThree = info_->getOneThreeInteractions();
73 +    PairList* oneFour = info_->getOneFourInteractions();
74 +
75   #ifdef IS_MPI
76  
77      AtomCommIntRow = new Communicator<Row,int>(nLocal_);
# Line 104 | Line 106 | namespace OpenMD {
106      cgColData.resize(nGroupsInCol_);
107      cgColData.setStorageLayout(DataStorage::dslPosition);
108          
109 <    identsRow.reserve(nAtomsInRow_);
110 <    identsCol.reserve(nAtomsInCol_);
109 >    identsRow.resize(nAtomsInRow_);
110 >    identsCol.resize(nAtomsInCol_);
111      
112 <    AtomCommIntRow->gather(identsLocal, identsRow);
113 <    AtomCommIntColumn->gather(identsLocal, identsCol);
112 >    AtomCommIntRow->gather(idents, identsRow);
113 >    AtomCommIntColumn->gather(idents, identsCol);
114      
115 +    // allocate memory for the parallel objects
116 +    atypesRow.resize(nAtomsInRow_);
117 +    atypesCol.resize(nAtomsInCol_);
118 +
119 +    for (int i = 0; i < nAtomsInRow_; i++)
120 +      atypesRow[i] = ff_->getAtomType(identsRow[i]);
121 +    for (int i = 0; i < nAtomsInCol_; i++)
122 +      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
123 +
124 +    pot_row.resize(nAtomsInRow_);
125 +    pot_col.resize(nAtomsInCol_);
126 +
127 +    AtomRowToGlobal.resize(nAtomsInRow_);
128 +    AtomColToGlobal.resize(nAtomsInCol_);
129      AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
130      AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
131      
132 +    cgRowToGlobal.resize(nGroupsInRow_);
133 +    cgColToGlobal.resize(nGroupsInCol_);
134      cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
135      cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
136  
137 <    AtomCommRealRow->gather(massFactorsLocal, massFactorsRow);
138 <    AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol);
137 >    massFactorsRow.resize(nAtomsInRow_);
138 >    massFactorsCol.resize(nAtomsInCol_);
139 >    AtomCommRealRow->gather(massFactors, massFactorsRow);
140 >    AtomCommRealColumn->gather(massFactors, massFactorsCol);
141  
142      groupListRow_.clear();
143 <    groupListRow_.reserve(nGroupsInRow_);
143 >    groupListRow_.resize(nGroupsInRow_);
144      for (int i = 0; i < nGroupsInRow_; i++) {
145        int gid = cgRowToGlobal[i];
146        for (int j = 0; j < nAtomsInRow_; j++) {
# Line 131 | Line 151 | namespace OpenMD {
151      }
152  
153      groupListCol_.clear();
154 <    groupListCol_.reserve(nGroupsInCol_);
154 >    groupListCol_.resize(nGroupsInCol_);
155      for (int i = 0; i < nGroupsInCol_; i++) {
156        int gid = cgColToGlobal[i];
157        for (int j = 0; j < nAtomsInCol_; j++) {
# Line 141 | Line 161 | namespace OpenMD {
161        }      
162      }
163  
164 <    skipsForRowAtom.clear();
165 <    skipsForRowAtom.reserve(nAtomsInRow_);
164 >    excludesForAtom.clear();
165 >    excludesForAtom.resize(nAtomsInRow_);
166 >    toposForAtom.clear();
167 >    toposForAtom.resize(nAtomsInRow_);
168 >    topoDist.clear();
169 >    topoDist.resize(nAtomsInRow_);
170      for (int i = 0; i < nAtomsInRow_; i++) {
171        int iglob = AtomRowToGlobal[i];
148      for (int j = 0; j < nAtomsInCol_; j++) {
149        int jglob = AtomColToGlobal[j];        
150        if (excludes.hasPair(iglob, jglob))
151          skipsForRowAtom[i].push_back(j);      
152      }      
153    }
172  
155    toposForRowAtom.clear();
156    toposForRowAtom.reserve(nAtomsInRow_);
157    for (int i = 0; i < nAtomsInRow_; i++) {
158      int iglob = AtomRowToGlobal[i];
159      int nTopos = 0;
173        for (int j = 0; j < nAtomsInCol_; j++) {
174 <        int jglob = AtomColToGlobal[j];        
175 <        if (oneTwo.hasPair(iglob, jglob)) {
176 <          toposForRowAtom[i].push_back(j);
177 <          topoDistRow[i][nTopos] = 1;
178 <          nTopos++;
179 <        }
180 <        if (oneThree.hasPair(iglob, jglob)) {
181 <          toposForRowAtom[i].push_back(j);
182 <          topoDistRow[i][nTopos] = 2;
183 <          nTopos++;
184 <        }
185 <        if (oneFour.hasPair(iglob, jglob)) {
186 <          toposForRowAtom[i].push_back(j);
187 <          topoDistRow[i][nTopos] = 3;
188 <          nTopos++;
174 >        int jglob = AtomColToGlobal[j];
175 >
176 >        if (excludes->hasPair(iglob, jglob))
177 >          excludesForAtom[i].push_back(j);      
178 >        
179 >        if (oneTwo->hasPair(iglob, jglob)) {
180 >          toposForAtom[i].push_back(j);
181 >          topoDist[i].push_back(1);
182 >        } else {
183 >          if (oneThree->hasPair(iglob, jglob)) {
184 >            toposForAtom[i].push_back(j);
185 >            topoDist[i].push_back(2);
186 >          } else {
187 >            if (oneFour->hasPair(iglob, jglob)) {
188 >              toposForAtom[i].push_back(j);
189 >              topoDist[i].push_back(3);
190 >            }
191 >          }
192          }
193        }      
194      }
195  
196   #endif
197  
198 +    // allocate memory for the parallel objects
199 +    atypesLocal.resize(nLocal_);
200 +
201 +    for (int i = 0; i < nLocal_; i++)
202 +      atypesLocal[i] = ff_->getAtomType(idents[i]);
203 +
204      groupList_.clear();
205 <    groupList_.reserve(nGroups_);
205 >    groupList_.resize(nGroups_);
206      for (int i = 0; i < nGroups_; i++) {
207        int gid = cgLocalToGlobal[i];
208        for (int j = 0; j < nLocal_; j++) {
209          int aid = AtomLocalToGlobal[j];
210 <        if (globalGroupMembership[aid] == gid)
210 >        if (globalGroupMembership[aid] == gid) {
211            groupList_[i].push_back(j);
212 +        }
213        }      
214      }
215  
216 <    skipsForLocalAtom.clear();
217 <    skipsForLocalAtom.reserve(nLocal_);
216 >    excludesForAtom.clear();
217 >    excludesForAtom.resize(nLocal_);
218 >    toposForAtom.clear();
219 >    toposForAtom.resize(nLocal_);
220 >    topoDist.clear();
221 >    topoDist.resize(nLocal_);
222  
223      for (int i = 0; i < nLocal_; i++) {
224        int iglob = AtomLocalToGlobal[i];
198      for (int j = 0; j < nLocal_; j++) {
199        int jglob = AtomLocalToGlobal[j];        
200        if (excludes.hasPair(iglob, jglob))
201          skipsForLocalAtom[i].push_back(j);      
202      }      
203    }
225  
205    toposForLocalAtom.clear();
206    toposForLocalAtom.reserve(nLocal_);
207    for (int i = 0; i < nLocal_; i++) {
208      int iglob = AtomLocalToGlobal[i];
209      int nTopos = 0;
226        for (int j = 0; j < nLocal_; j++) {
227 <        int jglob = AtomLocalToGlobal[j];        
228 <        if (oneTwo.hasPair(iglob, jglob)) {
229 <          toposForLocalAtom[i].push_back(j);
230 <          topoDistLocal[i][nTopos] = 1;
231 <          nTopos++;
227 >        int jglob = AtomLocalToGlobal[j];
228 >
229 >        if (excludes->hasPair(iglob, jglob))
230 >          excludesForAtom[i].push_back(j);              
231 >        
232 >        if (oneTwo->hasPair(iglob, jglob)) {
233 >          toposForAtom[i].push_back(j);
234 >          topoDist[i].push_back(1);
235 >        } else {
236 >          if (oneThree->hasPair(iglob, jglob)) {
237 >            toposForAtom[i].push_back(j);
238 >            topoDist[i].push_back(2);
239 >          } else {
240 >            if (oneFour->hasPair(iglob, jglob)) {
241 >              toposForAtom[i].push_back(j);
242 >              topoDist[i].push_back(3);
243 >            }
244 >          }
245          }
217        if (oneThree.hasPair(iglob, jglob)) {
218          toposForLocalAtom[i].push_back(j);
219          topoDistLocal[i][nTopos] = 2;
220          nTopos++;
221        }
222        if (oneFour.hasPair(iglob, jglob)) {
223          toposForLocalAtom[i].push_back(j);
224          topoDistLocal[i][nTopos] = 3;
225          nTopos++;
226        }
246        }      
247 <    }    
247 >    }
248 >    
249 >    createGtypeCutoffMap();
250  
251    }
252    
253    void ForceMatrixDecomposition::createGtypeCutoffMap() {
254 <
254 >    
255      RealType tol = 1e-6;
256      RealType rc;
257      int atid;
258      set<AtomType*> atypes = info_->getSimulatedAtomTypes();
259 <    vector<RealType> atypeCutoff;
260 <    atypeCutoff.reserve( atypes.size() );
261 <
262 <    for (set<AtomType*>::iterator at = atypes.begin(); at != atypes.end(); ++at){
242 <      rc = interactionMan_->getSuggestedCutoffRadius(*at);
259 >    map<int, RealType> atypeCutoff;
260 >      
261 >    for (set<AtomType*>::iterator at = atypes.begin();
262 >         at != atypes.end(); ++at){
263        atid = (*at)->getIdent();
264 <      atypeCutoff[atid] = rc;
264 >      if (userChoseCutoff_)
265 >        atypeCutoff[atid] = userCutoff_;
266 >      else
267 >        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
268      }
269  
270      vector<RealType> gTypeCutoffs;
248
271      // first we do a single loop over the cutoff groups to find the
272      // largest cutoff for any atypes present in this group.
273   #ifdef IS_MPI
274      vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
275 +    groupRowToGtype.resize(nGroupsInRow_);
276      for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
277        vector<int> atomListRow = getAtomsInGroupRow(cg1);
278        for (vector<int>::iterator ia = atomListRow.begin();
# Line 275 | Line 298 | namespace OpenMD {
298        
299      }
300      vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
301 +    groupColToGtype.resize(nGroupsInCol_);
302      for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
303        vector<int> atomListCol = getAtomsInGroupColumn(cg2);
304        for (vector<int>::iterator jb = atomListCol.begin();
# Line 298 | Line 322 | namespace OpenMD {
322        }
323      }
324   #else
325 +
326      vector<RealType> groupCutoff(nGroups_, 0.0);
327 +    groupToGtype.resize(nGroups_);
328      for (int cg1 = 0; cg1 < nGroups_; cg1++) {
329 +
330        groupCutoff[cg1] = 0.0;
331        vector<int> atomList = getAtomsInGroupRow(cg1);
332 +
333        for (vector<int>::iterator ia = atomList.begin();
334             ia != atomList.end(); ++ia) {            
335          int atom1 = (*ia);
336 <        atid = identsLocal[atom1];
336 >        atid = idents[atom1];
337          if (atypeCutoff[atid] > groupCutoff[cg1]) {
338            groupCutoff[cg1] = atypeCutoff[atid];
339          }
# Line 327 | Line 355 | namespace OpenMD {
355  
356      // Now we find the maximum group cutoff value present in the simulation
357  
358 <    vector<RealType>::iterator groupMaxLoc = max_element(gTypeCutoffs.begin(), gTypeCutoffs.end());
359 <    RealType groupMax = *groupMaxLoc;
358 >    RealType groupMax = *max_element(gTypeCutoffs.begin(),
359 >                                     gTypeCutoffs.end());
360  
361   #ifdef IS_MPI
362 <    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX);
362 >    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
363 >                              MPI::MAX);
364   #endif
365      
366      RealType tradRcut = groupMax;
367  
368      for (int i = 0; i < gTypeCutoffs.size();  i++) {
369 <      for (int j = 0; j < gTypeCutoffs.size();  j++) {
341 <        
369 >      for (int j = 0; j < gTypeCutoffs.size();  j++) {      
370          RealType thisRcut;
371          switch(cutoffPolicy_) {
372          case TRADITIONAL:
373            thisRcut = tradRcut;
374 +          break;
375          case MIX:
376            thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
377 +          break;
378          case MAX:
379            thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
380 +          break;
381          default:
382            sprintf(painCave.errMsg,
383                    "ForceMatrixDecomposition::createGtypeCutoffMap "
384                    "hit an unknown cutoff policy!\n");
385            painCave.severity = OPENMD_ERROR;
386            painCave.isFatal = 1;
387 <          simError();              
387 >          simError();
388 >          break;
389          }
390  
391          pair<int,int> key = make_pair(i,j);
# Line 371 | Line 403 | namespace OpenMD {
403            if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
404              sprintf(painCave.errMsg,
405                      "ForceMatrixDecomposition::createGtypeCutoffMap "
406 <                    "user-specified rCut does not match computed group Cutoff\n");
406 >                    "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
407              painCave.severity = OPENMD_ERROR;
408              painCave.isFatal = 1;
409              simError();            
# Line 383 | Line 415 | namespace OpenMD {
415  
416  
417    groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
418 <    int i, j;
387 <
418 >    int i, j;  
419   #ifdef IS_MPI
420      i = groupRowToGtype[cg1];
421      j = groupColToGtype[cg2];
422   #else
423      i = groupToGtype[cg1];
424      j = groupToGtype[cg2];
425 < #endif
395 <    
425 > #endif    
426      return gTypeCutoffMap[make_pair(i,j)];
427    }
428  
429 +  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
430 +    for (int j = 0; j < toposForAtom[atom1].size(); j++) {
431 +      if (toposForAtom[atom1][j] == atom2)
432 +        return topoDist[atom1][j];
433 +    }
434 +    return 0;
435 +  }
436  
437    void ForceMatrixDecomposition::zeroWorkArrays() {
438 +    pairwisePot = 0.0;
439 +    embeddingPot = 0.0;
440  
402    for (int j = 0; j < N_INTERACTION_FAMILIES; j++) {
403      longRangePot_[j] = 0.0;
404    }
405
441   #ifdef IS_MPI
442      if (storageLayout_ & DataStorage::dslForce) {
443        fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
# Line 418 | Line 453 | namespace OpenMD {
453           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
454  
455      fill(pot_col.begin(), pot_col.end(),
456 <         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
422 <    
423 <    pot_local = Vector<RealType, N_INTERACTION_FAMILIES>(0.0);
456 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
457  
458      if (storageLayout_ & DataStorage::dslParticlePot) {    
459 <      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0);
460 <      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0);
459 >      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
460 >           0.0);
461 >      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
462 >           0.0);
463      }
464  
465      if (storageLayout_ & DataStorage::dslDensity) {      
# Line 433 | Line 468 | namespace OpenMD {
468      }
469  
470      if (storageLayout_ & DataStorage::dslFunctional) {  
471 <      fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0);
472 <      fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0);
471 >      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
472 >           0.0);
473 >      fill(atomColData.functional.begin(), atomColData.functional.end(),
474 >           0.0);
475      }
476  
477      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
# Line 444 | Line 481 | namespace OpenMD {
481             atomColData.functionalDerivative.end(), 0.0);
482      }
483  
484 < #else
485 <    
484 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
485 >      fill(atomRowData.skippedCharge.begin(),
486 >           atomRowData.skippedCharge.end(), 0.0);
487 >      fill(atomColData.skippedCharge.begin(),
488 >           atomColData.skippedCharge.end(), 0.0);
489 >    }
490 >
491 > #endif
492 >    // even in parallel, we need to zero out the local arrays:
493 >
494      if (storageLayout_ & DataStorage::dslParticlePot) {      
495        fill(snap_->atomData.particlePot.begin(),
496             snap_->atomData.particlePot.end(), 0.0);
# Line 463 | Line 508 | namespace OpenMD {
508        fill(snap_->atomData.functionalDerivative.begin(),
509             snap_->atomData.functionalDerivative.end(), 0.0);
510      }
511 < #endif
511 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
512 >      fill(snap_->atomData.skippedCharge.begin(),
513 >           snap_->atomData.skippedCharge.end(), 0.0);
514 >    }
515      
516    }
517  
# Line 500 | Line 548 | namespace OpenMD {
548        AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
549                                     atomColData.electroFrame);
550      }
551 +
552   #endif      
553    }
554    
# Line 566 | Line 615 | namespace OpenMD {
615      AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
616      for (int i = 0; i < n; i++)
617        snap_->atomData.force[i] += frc_tmp[i];
618 <    
570 <    
618 >        
619      if (storageLayout_ & DataStorage::dslTorque) {
620  
621 <      int nt = snap_->atomData.force.size();
621 >      int nt = snap_->atomData.torque.size();
622        vector<Vector3d> trq_tmp(nt, V3Zero);
623  
624        AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
625 <      for (int i = 0; i < n; i++) {
625 >      for (int i = 0; i < nt; i++) {
626          snap_->atomData.torque[i] += trq_tmp[i];
627          trq_tmp[i] = 0.0;
628        }
629        
630        AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
631 <      for (int i = 0; i < n; i++)
631 >      for (int i = 0; i < nt; i++)
632          snap_->atomData.torque[i] += trq_tmp[i];
633      }
634 +
635 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
636 +
637 +      int ns = snap_->atomData.skippedCharge.size();
638 +      vector<RealType> skch_tmp(ns, 0.0);
639 +
640 +      AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
641 +      for (int i = 0; i < ns; i++) {
642 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
643 +        skch_tmp[i] = 0.0;
644 +      }
645 +      
646 +      AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
647 +      for (int i = 0; i < ns; i++)
648 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
649 +    }
650      
651      nLocal_ = snap_->getNumberOfAtoms();
652  
# Line 594 | Line 658 | namespace OpenMD {
658      AtomCommPotRow->scatter(pot_row, pot_temp);
659  
660      for (int ii = 0;  ii < pot_temp.size(); ii++ )
661 <      pot_local += pot_temp[ii];
661 >      pairwisePot += pot_temp[ii];
662      
663      fill(pot_temp.begin(), pot_temp.end(),
664           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
# Line 602 | Line 666 | namespace OpenMD {
666      AtomCommPotColumn->scatter(pot_col, pot_temp);    
667      
668      for (int ii = 0;  ii < pot_temp.size(); ii++ )
669 <      pot_local += pot_temp[ii];
606 <    
669 >      pairwisePot += pot_temp[ii];    
670   #endif
671 +
672    }
673  
674    int ForceMatrixDecomposition::getNAtomsInRow() {  
# Line 679 | Line 743 | namespace OpenMD {
743   #ifdef IS_MPI
744      return massFactorsRow[atom1];
745   #else
746 <    return massFactorsLocal[atom1];
746 >    return massFactors[atom1];
747   #endif
748    }
749  
# Line 687 | Line 751 | namespace OpenMD {
751   #ifdef IS_MPI
752      return massFactorsCol[atom2];
753   #else
754 <    return massFactorsLocal[atom2];
754 >    return massFactors[atom2];
755   #endif
756  
757    }
# Line 705 | Line 769 | namespace OpenMD {
769      return d;    
770    }
771  
772 <  vector<int> ForceMatrixDecomposition::getSkipsForRowAtom(int atom1) {
773 < #ifdef IS_MPI
710 <    return skipsForRowAtom[atom1];
711 < #else
712 <    return skipsForLocalAtom[atom1];
713 < #endif
772 >  vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
773 >    return excludesForAtom[atom1];
774    }
775  
776    /**
777 <   * There are a number of reasons to skip a pair or a
718 <   * particle. Mostly we do this to exclude atoms who are involved in
719 <   * short range interactions (bonds, bends, torsions), but we also
720 <   * need to exclude some overcounted interactions that result from
777 >   * We need to exclude some overcounted interactions that result from
778     * the parallel decomposition.
779     */
780    bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
# Line 737 | Line 794 | namespace OpenMD {
794      } else {
795        if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
796      }
740 #else
741    // in the normal loop, the atom numbers are unique
742    unique_id_1 = atom1;
743    unique_id_2 = atom2;
797   #endif
798 <    
746 < #ifdef IS_MPI
747 <    for (vector<int>::iterator i = skipsForRowAtom[atom1].begin();
748 <         i != skipsForRowAtom[atom1].end(); ++i) {
749 <      if ( (*i) == unique_id_2 ) return true;
750 <    }    
751 < #else
752 <    for (vector<int>::iterator i = skipsForLocalAtom[atom1].begin();
753 <         i != skipsForLocalAtom[atom1].end(); ++i) {
754 <      if ( (*i) == unique_id_2 ) return true;
755 <    }    
756 < #endif
798 >    return false;
799    }
800  
801 <  int ForceMatrixDecomposition::getTopoDistance(int atom1, int atom2) {
801 >  /**
802 >   * We need to handle the interactions for atoms who are involved in
803 >   * the same rigid body as well as some short range interactions
804 >   * (bonds, bends, torsions) differently from other interactions.
805 >   * We'll still visit the pairwise routines, but with a flag that
806 >   * tells those routines to exclude the pair from direct long range
807 >   * interactions.  Some indirect interactions (notably reaction
808 >   * field) must still be handled for these pairs.
809 >   */
810 >  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
811 >    int unique_id_2;
812      
813   #ifdef IS_MPI
814 <    for (int i = 0; i < toposForRowAtom[atom1].size(); i++) {
815 <      if ( toposForRowAtom[atom1][i] == atom2 ) return topoDistRow[atom1][i];
764 <    }
814 >    // in MPI, we have to look up the unique IDs for the row atom.
815 >    unique_id_2 = AtomColToGlobal[atom2];
816   #else
817 <    for (int i = 0; i < toposForLocalAtom[atom1].size(); i++) {
818 <      if ( toposForLocalAtom[atom1][i] == atom2 ) return topoDistLocal[atom1][i];
768 <    }
817 >    // in the normal loop, the atom numbers are unique
818 >    unique_id_2 = atom2;
819   #endif
820 +    
821 +    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
822 +         i != excludesForAtom[atom1].end(); ++i) {
823 +      if ( (*i) == unique_id_2 ) return true;
824 +    }
825  
826 <    // zero is default for unconnected (i.e. normal) pair interactions
772 <    return 0;
826 >    return false;
827    }
828  
829 +
830    void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
831   #ifdef IS_MPI
832      atomRowData.force[atom1] += fg;
# Line 789 | Line 844 | namespace OpenMD {
844    }
845  
846      // filling interaction blocks with pointers
847 <  InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) {    
848 <    InteractionData idat;
847 >  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
848 >                                                     int atom1, int atom2) {
849  
850 +    idat.excluded = excludeAtomPair(atom1, atom2);
851 +  
852   #ifdef IS_MPI
853 <    
854 <    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
855 <                             ff_->getAtomType(identsCol[atom2]) );
799 <
853 >    idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
854 >    //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
855 >    //                         ff_->getAtomType(identsCol[atom2]) );
856      
857      if (storageLayout_ & DataStorage::dslAmat) {
858        idat.A1 = &(atomRowData.aMat[atom1]);
# Line 833 | Line 889 | namespace OpenMD {
889        idat.particlePot2 = &(atomColData.particlePot[atom2]);
890      }
891  
892 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
893 +      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
894 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
895 +    }
896 +
897   #else
898  
899 <    idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]),
900 <                             ff_->getAtomType(identsLocal[atom2]) );
899 >    idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
900 >    //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
901 >    //                         ff_->getAtomType(idents[atom2]) );
902  
903      if (storageLayout_ & DataStorage::dslAmat) {
904        idat.A1 = &(snap_->atomData.aMat[atom1]);
# Line 853 | Line 915 | namespace OpenMD {
915        idat.t2 = &(snap_->atomData.torque[atom2]);
916      }
917  
918 <    if (storageLayout_ & DataStorage::dslDensity) {
918 >    if (storageLayout_ & DataStorage::dslDensity) {    
919        idat.rho1 = &(snap_->atomData.density[atom1]);
920        idat.rho2 = &(snap_->atomData.density[atom2]);
921      }
# Line 873 | Line 935 | namespace OpenMD {
935        idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
936      }
937  
938 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
939 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
940 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
941 +    }
942   #endif
877    return idat;
943    }
944  
945    
946 <  void ForceMatrixDecomposition::unpackInteractionData(InteractionData idat, int atom1, int atom2) {    
946 >  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
947   #ifdef IS_MPI
948      pot_row[atom1] += 0.5 *  *(idat.pot);
949      pot_col[atom2] += 0.5 *  *(idat.pot);
# Line 886 | Line 951 | namespace OpenMD {
951      atomRowData.force[atom1] += *(idat.f1);
952      atomColData.force[atom2] -= *(idat.f1);
953   #else
954 <    longRangePot_ += *(idat.pot);
955 <    
954 >    pairwisePot += *(idat.pot);
955 >
956      snap_->atomData.force[atom1] += *(idat.f1);
957      snap_->atomData.force[atom2] -= *(idat.f1);
958   #endif
959 <
959 >    
960    }
961  
897
898  InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){
899
900    InteractionData idat;
901 #ifdef IS_MPI
902    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
903                             ff_->getAtomType(identsCol[atom2]) );
904
905    if (storageLayout_ & DataStorage::dslElectroFrame) {
906      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
907      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
908    }
909    if (storageLayout_ & DataStorage::dslTorque) {
910      idat.t1 = &(atomRowData.torque[atom1]);
911      idat.t2 = &(atomColData.torque[atom2]);
912    }
913 #else
914    idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]),
915                             ff_->getAtomType(identsLocal[atom2]) );
916
917    if (storageLayout_ & DataStorage::dslElectroFrame) {
918      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
919      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
920    }
921    if (storageLayout_ & DataStorage::dslTorque) {
922      idat.t1 = &(snap_->atomData.torque[atom1]);
923      idat.t2 = &(snap_->atomData.torque[atom2]);
924    }
925 #endif    
926  }
927
962    /*
963     * buildNeighborList
964     *
# Line 935 | Line 969 | namespace OpenMD {
969        
970      vector<pair<int, int> > neighborList;
971      groupCutoffs cuts;
972 +    bool doAllPairs = false;
973 +
974   #ifdef IS_MPI
975      cellListRow_.clear();
976      cellListCol_.clear();
# Line 954 | Line 990 | namespace OpenMD {
990      nCells_.y() = (int) ( Hy.length() )/ rList_;
991      nCells_.z() = (int) ( Hz.length() )/ rList_;
992  
993 +    // handle small boxes where the cell offsets can end up repeating cells
994 +    
995 +    if (nCells_.x() < 3) doAllPairs = true;
996 +    if (nCells_.y() < 3) doAllPairs = true;
997 +    if (nCells_.z() < 3) doAllPairs = true;
998 +
999      Mat3x3d invHmat = snap_->getInvHmat();
1000      Vector3d rs, scaled, dr;
1001      Vector3i whichCell;
1002      int cellIndex;
1003 +    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1004  
1005   #ifdef IS_MPI
1006 <    for (int i = 0; i < nGroupsInRow_; i++) {
1007 <      rs = cgRowData.position[i];
965 <      // scaled positions relative to the box vectors
966 <      scaled = invHmat * rs;
967 <      // wrap the vector back into the unit box by subtracting integer box
968 <      // numbers
969 <      for (int j = 0; j < 3; j++)
970 <        scaled[j] -= roundMe(scaled[j]);
971 <    
972 <      // find xyz-indices of cell that cutoffGroup is in.
973 <      whichCell.x() = nCells_.x() * scaled.x();
974 <      whichCell.y() = nCells_.y() * scaled.y();
975 <      whichCell.z() = nCells_.z() * scaled.z();
976 <
977 <      // find single index of this cell:
978 <      cellIndex = Vlinear(whichCell, nCells_);
979 <      // add this cutoff group to the list of groups in this cell;
980 <      cellListRow_[cellIndex].push_back(i);
981 <    }
982 <
983 <    for (int i = 0; i < nGroupsInCol_; i++) {
984 <      rs = cgColData.position[i];
985 <      // scaled positions relative to the box vectors
986 <      scaled = invHmat * rs;
987 <      // wrap the vector back into the unit box by subtracting integer box
988 <      // numbers
989 <      for (int j = 0; j < 3; j++)
990 <        scaled[j] -= roundMe(scaled[j]);
991 <
992 <      // find xyz-indices of cell that cutoffGroup is in.
993 <      whichCell.x() = nCells_.x() * scaled.x();
994 <      whichCell.y() = nCells_.y() * scaled.y();
995 <      whichCell.z() = nCells_.z() * scaled.z();
996 <
997 <      // find single index of this cell:
998 <      cellIndex = Vlinear(whichCell, nCells_);
999 <      // add this cutoff group to the list of groups in this cell;
1000 <      cellListCol_[cellIndex].push_back(i);
1001 <    }
1006 >    cellListRow_.resize(nCtot);
1007 >    cellListCol_.resize(nCtot);
1008   #else
1009 <    for (int i = 0; i < nGroups_; i++) {
1004 <      rs = snap_->cgData.position[i];
1005 <      // scaled positions relative to the box vectors
1006 <      scaled = invHmat * rs;
1007 <      // wrap the vector back into the unit box by subtracting integer box
1008 <      // numbers
1009 <      for (int j = 0; j < 3; j++)
1010 <        scaled[j] -= roundMe(scaled[j]);
1011 <
1012 <      // find xyz-indices of cell that cutoffGroup is in.
1013 <      whichCell.x() = nCells_.x() * scaled.x();
1014 <      whichCell.y() = nCells_.y() * scaled.y();
1015 <      whichCell.z() = nCells_.z() * scaled.z();
1016 <
1017 <      // find single index of this cell:
1018 <      cellIndex = Vlinear(whichCell, nCells_);
1019 <      // add this cutoff group to the list of groups in this cell;
1020 <      cellList_[cellIndex].push_back(i);
1021 <    }
1009 >    cellList_.resize(nCtot);
1010   #endif
1011  
1012 <    for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1013 <      for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1026 <        for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1027 <          Vector3i m1v(m1x, m1y, m1z);
1028 <          int m1 = Vlinear(m1v, nCells_);
1012 >    if (!doAllPairs) {
1013 > #ifdef IS_MPI
1014  
1015 <          for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1016 <               os != cellOffsets_.end(); ++os) {
1017 <            
1018 <            Vector3i m2v = m1v + (*os);
1019 <            
1020 <            if (m2v.x() >= nCells_.x()) {
1021 <              m2v.x() = 0;          
1022 <            } else if (m2v.x() < 0) {
1023 <              m2v.x() = nCells_.x() - 1;
1024 <            }
1025 <            
1026 <            if (m2v.y() >= nCells_.y()) {
1027 <              m2v.y() = 0;          
1028 <            } else if (m2v.y() < 0) {
1029 <              m2v.y() = nCells_.y() - 1;
1030 <            }
1031 <            
1032 <            if (m2v.z() >= nCells_.z()) {
1033 <              m2v.z() = 0;          
1034 <            } else if (m2v.z() < 0) {
1035 <              m2v.z() = nCells_.z() - 1;
1036 <            }
1037 <            
1038 <            int m2 = Vlinear (m2v, nCells_);
1015 >      for (int i = 0; i < nGroupsInRow_; i++) {
1016 >        rs = cgRowData.position[i];
1017 >        
1018 >        // scaled positions relative to the box vectors
1019 >        scaled = invHmat * rs;
1020 >        
1021 >        // wrap the vector back into the unit box by subtracting integer box
1022 >        // numbers
1023 >        for (int j = 0; j < 3; j++) {
1024 >          scaled[j] -= roundMe(scaled[j]);
1025 >          scaled[j] += 0.5;
1026 >        }
1027 >        
1028 >        // find xyz-indices of cell that cutoffGroup is in.
1029 >        whichCell.x() = nCells_.x() * scaled.x();
1030 >        whichCell.y() = nCells_.y() * scaled.y();
1031 >        whichCell.z() = nCells_.z() * scaled.z();
1032 >        
1033 >        // find single index of this cell:
1034 >        cellIndex = Vlinear(whichCell, nCells_);
1035 >        
1036 >        // add this cutoff group to the list of groups in this cell;
1037 >        cellListRow_[cellIndex].push_back(i);
1038 >      }
1039 >      
1040 >      for (int i = 0; i < nGroupsInCol_; i++) {
1041 >        rs = cgColData.position[i];
1042 >        
1043 >        // scaled positions relative to the box vectors
1044 >        scaled = invHmat * rs;
1045 >        
1046 >        // wrap the vector back into the unit box by subtracting integer box
1047 >        // numbers
1048 >        for (int j = 0; j < 3; j++) {
1049 >          scaled[j] -= roundMe(scaled[j]);
1050 >          scaled[j] += 0.5;
1051 >        }
1052 >        
1053 >        // find xyz-indices of cell that cutoffGroup is in.
1054 >        whichCell.x() = nCells_.x() * scaled.x();
1055 >        whichCell.y() = nCells_.y() * scaled.y();
1056 >        whichCell.z() = nCells_.z() * scaled.z();
1057 >        
1058 >        // find single index of this cell:
1059 >        cellIndex = Vlinear(whichCell, nCells_);
1060 >        
1061 >        // add this cutoff group to the list of groups in this cell;
1062 >        cellListCol_[cellIndex].push_back(i);
1063 >      }
1064 > #else
1065 >      for (int i = 0; i < nGroups_; i++) {
1066 >        rs = snap_->cgData.position[i];
1067 >        
1068 >        // scaled positions relative to the box vectors
1069 >        scaled = invHmat * rs;
1070 >        
1071 >        // wrap the vector back into the unit box by subtracting integer box
1072 >        // numbers
1073 >        for (int j = 0; j < 3; j++) {
1074 >          scaled[j] -= roundMe(scaled[j]);
1075 >          scaled[j] += 0.5;
1076 >        }
1077 >        
1078 >        // find xyz-indices of cell that cutoffGroup is in.
1079 >        whichCell.x() = nCells_.x() * scaled.x();
1080 >        whichCell.y() = nCells_.y() * scaled.y();
1081 >        whichCell.z() = nCells_.z() * scaled.z();
1082 >        
1083 >        // find single index of this cell:
1084 >        cellIndex = Vlinear(whichCell, nCells_);      
1085 >        
1086 >        // add this cutoff group to the list of groups in this cell;
1087 >        cellList_[cellIndex].push_back(i);
1088 >      }
1089 > #endif
1090  
1091 +      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1092 +        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1093 +          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1094 +            Vector3i m1v(m1x, m1y, m1z);
1095 +            int m1 = Vlinear(m1v, nCells_);
1096 +            
1097 +            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1098 +                 os != cellOffsets_.end(); ++os) {
1099 +              
1100 +              Vector3i m2v = m1v + (*os);
1101 +              
1102 +              if (m2v.x() >= nCells_.x()) {
1103 +                m2v.x() = 0;          
1104 +              } else if (m2v.x() < 0) {
1105 +                m2v.x() = nCells_.x() - 1;
1106 +              }
1107 +              
1108 +              if (m2v.y() >= nCells_.y()) {
1109 +                m2v.y() = 0;          
1110 +              } else if (m2v.y() < 0) {
1111 +                m2v.y() = nCells_.y() - 1;
1112 +              }
1113 +              
1114 +              if (m2v.z() >= nCells_.z()) {
1115 +                m2v.z() = 0;          
1116 +              } else if (m2v.z() < 0) {
1117 +                m2v.z() = nCells_.z() - 1;
1118 +              }
1119 +              
1120 +              int m2 = Vlinear (m2v, nCells_);
1121 +              
1122   #ifdef IS_MPI
1123 <            for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1124 <                 j1 != cellListRow_[m1].end(); ++j1) {
1125 <              for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1126 <                   j2 != cellListCol_[m2].end(); ++j2) {
1127 <                              
1128 <                // Always do this if we're in different cells or if
1129 <                // we're in the same cell and the global index of the
1130 <                // j2 cutoff group is less than the j1 cutoff group
1131 <
1132 <                if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1133 <                  dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1134 <                  snap_->wrapVector(dr);
1135 <                  cuts = getGroupCutoffs( (*j1), (*j2) );
1136 <                  if (dr.lengthSquare() < cuts.third) {
1137 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1123 >              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1124 >                   j1 != cellListRow_[m1].end(); ++j1) {
1125 >                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1126 >                     j2 != cellListCol_[m2].end(); ++j2) {
1127 >                  
1128 >                  // Always do this if we're in different cells or if
1129 >                  // we're in the same cell and the global index of the
1130 >                  // j2 cutoff group is less than the j1 cutoff group
1131 >                  
1132 >                  if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1133 >                    dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1134 >                    snap_->wrapVector(dr);
1135 >                    cuts = getGroupCutoffs( (*j1), (*j2) );
1136 >                    if (dr.lengthSquare() < cuts.third) {
1137 >                      neighborList.push_back(make_pair((*j1), (*j2)));
1138 >                    }
1139                    }
1140                  }
1141                }
1074            }
1142   #else
1143 <            for (vector<int>::iterator j1 = cellList_[m1].begin();
1144 <                 j1 != cellList_[m1].end(); ++j1) {
1145 <              for (vector<int>::iterator j2 = cellList_[m2].begin();
1146 <                   j2 != cellList_[m2].end(); ++j2) {
1147 <                              
1148 <                // Always do this if we're in different cells or if
1149 <                // we're in the same cell and the global index of the
1150 <                // j2 cutoff group is less than the j1 cutoff group
1151 <
1152 <                if (m2 != m1 || (*j2) < (*j1)) {
1153 <                  dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1154 <                  snap_->wrapVector(dr);
1155 <                  cuts = getGroupCutoffs( (*j1), (*j2) );
1156 <                  if (dr.lengthSquare() < cuts.third) {
1157 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1143 >              
1144 >              for (vector<int>::iterator j1 = cellList_[m1].begin();
1145 >                   j1 != cellList_[m1].end(); ++j1) {
1146 >                for (vector<int>::iterator j2 = cellList_[m2].begin();
1147 >                     j2 != cellList_[m2].end(); ++j2) {
1148 >                  
1149 >                  // Always do this if we're in different cells or if
1150 >                  // we're in the same cell and the global index of the
1151 >                  // j2 cutoff group is less than the j1 cutoff group
1152 >                  
1153 >                  if (m2 != m1 || (*j2) < (*j1)) {
1154 >                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1155 >                    snap_->wrapVector(dr);
1156 >                    cuts = getGroupCutoffs( (*j1), (*j2) );
1157 >                    if (dr.lengthSquare() < cuts.third) {
1158 >                      neighborList.push_back(make_pair((*j1), (*j2)));
1159 >                    }
1160                    }
1161                  }
1162                }
1094            }
1163   #endif
1164 +            }
1165            }
1166          }
1167        }
1168 +    } else {
1169 +      // branch to do all cutoff group pairs
1170 + #ifdef IS_MPI
1171 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1172 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {      
1173 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1174 +          snap_->wrapVector(dr);
1175 +          cuts = getGroupCutoffs( j1, j2 );
1176 +          if (dr.lengthSquare() < cuts.third) {
1177 +            neighborList.push_back(make_pair(j1, j2));
1178 +          }
1179 +        }
1180 +      }
1181 + #else
1182 +      for (int j1 = 0; j1 < nGroups_ - 1; j1++) {
1183 +        for (int j2 = j1 + 1; j2 < nGroups_; j2++) {
1184 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1185 +          snap_->wrapVector(dr);
1186 +          cuts = getGroupCutoffs( j1, j2 );
1187 +          if (dr.lengthSquare() < cuts.third) {
1188 +            neighborList.push_back(make_pair(j1, j2));
1189 +          }
1190 +        }
1191 +      }        
1192 + #endif
1193      }
1194 <
1194 >      
1195      // save the local cutoff group positions for the check that is
1196      // done on each loop:
1197      saved_CG_positions_.clear();
1198      for (int i = 0; i < nGroups_; i++)
1199        saved_CG_positions_.push_back(snap_->cgData.position[i]);
1200 <
1200 >    
1201      return neighborList;
1202    }
1203   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines