ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing:
branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 1571 by gezelter, Fri May 27 16:45:44 2011 UTC vs.
trunk/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 1939 by gezelter, Thu Oct 31 18:18:57 2013 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42   #include "parallel/ForceMatrixDecomposition.hpp"
43   #include "math/SquareMatrix3.hpp"
# Line 47 | Line 48 | namespace OpenMD {
48   using namespace std;
49   namespace OpenMD {
50  
51 +  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52 +
53 +    // In a parallel computation, row and colum scans must visit all
54 +    // surrounding cells (not just the 14 upper triangular blocks that
55 +    // are used when the processor can see all pairs)
56 + #ifdef IS_MPI
57 +    cellOffsets_.clear();
58 +    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59 +    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60 +    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                          
61 +    cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62 +    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63 +    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64 +    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65 +    cellOffsets_.push_back( Vector3i( 0, 1,-1) );      
66 +    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 +    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68 +    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69 +    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 +    cellOffsets_.push_back( Vector3i(-1, 0, 0) );      
71 +    cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72 +    cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73 +    cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74 +    cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75 +    cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76 +    cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77 +    cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78 +    cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 +    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 +    cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81 +    cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82 +    cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83 +    cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84 +    cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 + #endif    
86 +  }
87 +
88 +
89    /**
90     * distributeInitialData is essentially a copy of the older fortran
91     * SimulationSetup
92     */
54  
93    void ForceMatrixDecomposition::distributeInitialData() {
94      snap_ = sman_->getCurrentSnapshot();
95      storageLayout_ = sman_->getStorageLayout();
96      ff_ = info_->getForceField();
97      nLocal_ = snap_->getNumberOfAtoms();
98 <    nGroups_ = snap_->getNumberOfCutoffGroups();
99 <
98 >  
99 >    nGroups_ = info_->getNLocalCutoffGroups();
100      // gather the information for atomtype IDs (atids):
101 <    identsLocal = info_->getIdentArray();
101 >    idents = info_->getIdentArray();
102 >    regions = info_->getRegions();
103      AtomLocalToGlobal = info_->getGlobalAtomIndices();
104      cgLocalToGlobal = info_->getGlobalGroupIndices();
105      vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
67    vector<RealType> massFactorsLocal = info_->getMassFactors();
68    PairList excludes = info_->getExcludedInteractions();
69    PairList oneTwo = info_->getOneTwoInteractions();
70    PairList oneThree = info_->getOneThreeInteractions();
71    PairList oneFour = info_->getOneFourInteractions();
72    vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0);
106  
107 +    massFactors = info_->getMassFactors();
108 +
109 +    PairList* excludes = info_->getExcludedInteractions();
110 +    PairList* oneTwo = info_->getOneTwoInteractions();
111 +    PairList* oneThree = info_->getOneThreeInteractions();
112 +    PairList* oneFour = info_->getOneFourInteractions();
113 +    
114 +    if (needVelocities_)
115 +      snap_->cgData.setStorageLayout(DataStorage::dslPosition |
116 +                                     DataStorage::dslVelocity);
117 +    else
118 +      snap_->cgData.setStorageLayout(DataStorage::dslPosition);
119 +    
120   #ifdef IS_MPI
121  
122 <    AtomCommIntRow = new Communicator<Row,int>(nLocal_);
123 <    AtomCommRealRow = new Communicator<Row,RealType>(nLocal_);
78 <    AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_);
79 <    AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_);
122 >    MPI::Intracomm row = rowComm.getComm();
123 >    MPI::Intracomm col = colComm.getComm();
124  
125 <    AtomCommIntColumn = new Communicator<Column,int>(nLocal_);
126 <    AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_);
127 <    AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_);
128 <    AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_);
125 >    AtomPlanIntRow = new Plan<int>(row, nLocal_);
126 >    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
127 >    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
128 >    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
129 >    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
130  
131 <    cgCommIntRow = new Communicator<Row,int>(nGroups_);
132 <    cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_);
133 <    cgCommIntColumn = new Communicator<Column,int>(nGroups_);
134 <    cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_);
131 >    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
132 >    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
133 >    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
134 >    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
135 >    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
136  
137 <    nAtomsInRow_ = AtomCommIntRow->getSize();
138 <    nAtomsInCol_ = AtomCommIntColumn->getSize();
139 <    nGroupsInRow_ = cgCommIntRow->getSize();
140 <    nGroupsInCol_ = cgCommIntColumn->getSize();
137 >    cgPlanIntRow = new Plan<int>(row, nGroups_);
138 >    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
139 >    cgPlanIntColumn = new Plan<int>(col, nGroups_);
140 >    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
141  
142 +    nAtomsInRow_ = AtomPlanIntRow->getSize();
143 +    nAtomsInCol_ = AtomPlanIntColumn->getSize();
144 +    nGroupsInRow_ = cgPlanIntRow->getSize();
145 +    nGroupsInCol_ = cgPlanIntColumn->getSize();
146 +
147      // Modify the data storage objects with the correct layouts and sizes:
148      atomRowData.resize(nAtomsInRow_);
149      atomRowData.setStorageLayout(storageLayout_);
# Line 101 | Line 152 | namespace OpenMD {
152      cgRowData.resize(nGroupsInRow_);
153      cgRowData.setStorageLayout(DataStorage::dslPosition);
154      cgColData.resize(nGroupsInCol_);
155 <    cgColData.setStorageLayout(DataStorage::dslPosition);
155 >    if (needVelocities_)
156 >      // we only need column velocities if we need them.
157 >      cgColData.setStorageLayout(DataStorage::dslPosition |
158 >                                 DataStorage::dslVelocity);
159 >    else    
160 >      cgColData.setStorageLayout(DataStorage::dslPosition);
161 >      
162 >    identsRow.resize(nAtomsInRow_);
163 >    identsCol.resize(nAtomsInCol_);
164      
165 <    vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES,
166 <                                      vector<RealType> (nAtomsInRow_, 0.0));
167 <    vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES,
168 <                                      vector<RealType> (nAtomsInCol_, 0.0));
165 >    AtomPlanIntRow->gather(idents, identsRow);
166 >    AtomPlanIntColumn->gather(idents, identsCol);
167 >
168 >    regionsRow.resize(nAtomsInRow_);
169 >    regionsCol.resize(nAtomsInCol_);
170      
171 <    identsRow.reserve(nAtomsInRow_);
172 <    identsCol.reserve(nAtomsInCol_);
171 >    AtomPlanIntRow->gather(regions, regionsRow);
172 >    AtomPlanIntColumn->gather(regions, regionsCol);
173      
174 <    AtomCommIntRow->gather(identsLocal, identsRow);
175 <    AtomCommIntColumn->gather(identsLocal, identsCol);
176 <    
117 <    AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
118 <    AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
119 <    
120 <    cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
121 <    cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
174 >    // allocate memory for the parallel objects
175 >    atypesRow.resize(nAtomsInRow_);
176 >    atypesCol.resize(nAtomsInCol_);
177  
178 <    AtomCommRealRow->gather(massFactorsLocal, massFactorsRow);
179 <    AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol);
178 >    for (int i = 0; i < nAtomsInRow_; i++)
179 >      atypesRow[i] = ff_->getAtomType(identsRow[i]);
180 >    for (int i = 0; i < nAtomsInCol_; i++)
181 >      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
182  
183 +    pot_row.resize(nAtomsInRow_);
184 +    pot_col.resize(nAtomsInCol_);
185 +
186 +    expot_row.resize(nAtomsInRow_);
187 +    expot_col.resize(nAtomsInCol_);
188 +
189 +    AtomRowToGlobal.resize(nAtomsInRow_);
190 +    AtomColToGlobal.resize(nAtomsInCol_);
191 +    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
192 +    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
193 +
194 +    cgRowToGlobal.resize(nGroupsInRow_);
195 +    cgColToGlobal.resize(nGroupsInCol_);
196 +    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
197 +    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
198 +
199 +    massFactorsRow.resize(nAtomsInRow_);
200 +    massFactorsCol.resize(nAtomsInCol_);
201 +    AtomPlanRealRow->gather(massFactors, massFactorsRow);
202 +    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
203 +
204      groupListRow_.clear();
205 <    groupListRow_.reserve(nGroupsInRow_);
205 >    groupListRow_.resize(nGroupsInRow_);
206      for (int i = 0; i < nGroupsInRow_; i++) {
207        int gid = cgRowToGlobal[i];
208        for (int j = 0; j < nAtomsInRow_; j++) {
# Line 135 | Line 213 | namespace OpenMD {
213      }
214  
215      groupListCol_.clear();
216 <    groupListCol_.reserve(nGroupsInCol_);
216 >    groupListCol_.resize(nGroupsInCol_);
217      for (int i = 0; i < nGroupsInCol_; i++) {
218        int gid = cgColToGlobal[i];
219        for (int j = 0; j < nAtomsInCol_; j++) {
# Line 145 | Line 223 | namespace OpenMD {
223        }      
224      }
225  
226 <    skipsForRowAtom.clear();
227 <    skipsForRowAtom.reserve(nAtomsInRow_);
226 >    excludesForAtom.clear();
227 >    excludesForAtom.resize(nAtomsInRow_);
228 >    toposForAtom.clear();
229 >    toposForAtom.resize(nAtomsInRow_);
230 >    topoDist.clear();
231 >    topoDist.resize(nAtomsInRow_);
232      for (int i = 0; i < nAtomsInRow_; i++) {
233        int iglob = AtomRowToGlobal[i];
234 +
235        for (int j = 0; j < nAtomsInCol_; j++) {
236 <        int jglob = AtomColToGlobal[j];        
237 <        if (excludes.hasPair(iglob, jglob))
238 <          skipsForRowAtom[i].push_back(j);      
236 >        int jglob = AtomColToGlobal[j];
237 >
238 >        if (excludes->hasPair(iglob, jglob))
239 >          excludesForAtom[i].push_back(j);      
240 >        
241 >        if (oneTwo->hasPair(iglob, jglob)) {
242 >          toposForAtom[i].push_back(j);
243 >          topoDist[i].push_back(1);
244 >        } else {
245 >          if (oneThree->hasPair(iglob, jglob)) {
246 >            toposForAtom[i].push_back(j);
247 >            topoDist[i].push_back(2);
248 >          } else {
249 >            if (oneFour->hasPair(iglob, jglob)) {
250 >              toposForAtom[i].push_back(j);
251 >              topoDist[i].push_back(3);
252 >            }
253 >          }
254 >        }
255        }      
256      }
257  
258 <    toposForRowAtom.clear();
259 <    toposForRowAtom.reserve(nAtomsInRow_);
260 <    for (int i = 0; i < nAtomsInRow_; i++) {
261 <      int iglob = AtomRowToGlobal[i];
262 <      int nTopos = 0;
263 <      for (int j = 0; j < nAtomsInCol_; j++) {
264 <        int jglob = AtomColToGlobal[j];        
265 <        if (oneTwo.hasPair(iglob, jglob)) {
266 <          toposForRowAtom[i].push_back(j);
267 <          topoDistRow[i][nTopos] = 1;
268 <          nTopos++;
258 > #else
259 >    excludesForAtom.clear();
260 >    excludesForAtom.resize(nLocal_);
261 >    toposForAtom.clear();
262 >    toposForAtom.resize(nLocal_);
263 >    topoDist.clear();
264 >    topoDist.resize(nLocal_);
265 >
266 >    for (int i = 0; i < nLocal_; i++) {
267 >      int iglob = AtomLocalToGlobal[i];
268 >
269 >      for (int j = 0; j < nLocal_; j++) {
270 >        int jglob = AtomLocalToGlobal[j];
271 >
272 >        if (excludes->hasPair(iglob, jglob))
273 >          excludesForAtom[i].push_back(j);              
274 >        
275 >        if (oneTwo->hasPair(iglob, jglob)) {
276 >          toposForAtom[i].push_back(j);
277 >          topoDist[i].push_back(1);
278 >        } else {
279 >          if (oneThree->hasPair(iglob, jglob)) {
280 >            toposForAtom[i].push_back(j);
281 >            topoDist[i].push_back(2);
282 >          } else {
283 >            if (oneFour->hasPair(iglob, jglob)) {
284 >              toposForAtom[i].push_back(j);
285 >              topoDist[i].push_back(3);
286 >            }
287 >          }
288          }
171        if (oneThree.hasPair(iglob, jglob)) {
172          toposForRowAtom[i].push_back(j);
173          topoDistRow[i][nTopos] = 2;
174          nTopos++;
175        }
176        if (oneFour.hasPair(iglob, jglob)) {
177          toposForRowAtom[i].push_back(j);
178          topoDistRow[i][nTopos] = 3;
179          nTopos++;
180        }
289        }      
290      }
183
291   #endif
292  
293 +    // allocate memory for the parallel objects
294 +    atypesLocal.resize(nLocal_);
295 +
296 +    for (int i = 0; i < nLocal_; i++)
297 +      atypesLocal[i] = ff_->getAtomType(idents[i]);
298 +
299      groupList_.clear();
300 <    groupList_.reserve(nGroups_);
300 >    groupList_.resize(nGroups_);
301      for (int i = 0; i < nGroups_; i++) {
302        int gid = cgLocalToGlobal[i];
303        for (int j = 0; j < nLocal_; j++) {
304          int aid = AtomLocalToGlobal[j];
305 <        if (globalGroupMembership[aid] == gid)
305 >        if (globalGroupMembership[aid] == gid) {
306            groupList_[i].push_back(j);
307 +        }
308        }      
309      }
310  
197    skipsForLocalAtom.clear();
198    skipsForLocalAtom.reserve(nLocal_);
311  
312 <    for (int i = 0; i < nLocal_; i++) {
313 <      int iglob = AtomLocalToGlobal[i];
314 <      for (int j = 0; j < nLocal_; j++) {
315 <        int jglob = AtomLocalToGlobal[j];        
316 <        if (excludes.hasPair(iglob, jglob))
317 <          skipsForLocalAtom[i].push_back(j);      
318 <      }      
312 >    createGtypeCutoffMap();
313 >
314 >  }
315 >  
316 >  void ForceMatrixDecomposition::createGtypeCutoffMap() {
317 >    
318 >    GrCut.clear();
319 >    GrCutSq.clear();
320 >    GrlistSq.clear();
321 >
322 >    RealType tol = 1e-6;
323 >    largestRcut_ = 0.0;
324 >    int atid;
325 >    set<AtomType*> atypes = info_->getSimulatedAtomTypes();
326 >    
327 >    map<int, RealType> atypeCutoff;
328 >      
329 >    for (set<AtomType*>::iterator at = atypes.begin();
330 >         at != atypes.end(); ++at){
331 >      atid = (*at)->getIdent();
332 >      if (userChoseCutoff_)
333 >        atypeCutoff[atid] = userCutoff_;
334 >      else
335 >        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
336      }
337 +    
338 +    vector<RealType> gTypeCutoffs;
339 +    // first we do a single loop over the cutoff groups to find the
340 +    // largest cutoff for any atypes present in this group.
341 + #ifdef IS_MPI
342 +    vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
343 +    groupRowToGtype.resize(nGroupsInRow_);
344 +    for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
345 +      vector<int> atomListRow = getAtomsInGroupRow(cg1);
346 +      for (vector<int>::iterator ia = atomListRow.begin();
347 +           ia != atomListRow.end(); ++ia) {            
348 +        int atom1 = (*ia);
349 +        atid = identsRow[atom1];
350 +        if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
351 +          groupCutoffRow[cg1] = atypeCutoff[atid];
352 +        }
353 +      }
354  
355 <    toposForLocalAtom.clear();
356 <    toposForLocalAtom.reserve(nLocal_);
357 <    for (int i = 0; i < nLocal_; i++) {
358 <      int iglob = AtomLocalToGlobal[i];
359 <      int nTopos = 0;
360 <      for (int j = 0; j < nLocal_; j++) {
361 <        int jglob = AtomLocalToGlobal[j];        
362 <        if (oneTwo.hasPair(iglob, jglob)) {
363 <          toposForLocalAtom[i].push_back(j);
364 <          topoDistLocal[i][nTopos] = 1;
365 <          nTopos++;
355 >      bool gTypeFound = false;
356 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
357 >        if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
358 >          groupRowToGtype[cg1] = gt;
359 >          gTypeFound = true;
360 >        }
361 >      }
362 >      if (!gTypeFound) {
363 >        gTypeCutoffs.push_back( groupCutoffRow[cg1] );
364 >        groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
365 >      }
366 >      
367 >    }
368 >    vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
369 >    groupColToGtype.resize(nGroupsInCol_);
370 >    for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
371 >      vector<int> atomListCol = getAtomsInGroupColumn(cg2);
372 >      for (vector<int>::iterator jb = atomListCol.begin();
373 >           jb != atomListCol.end(); ++jb) {            
374 >        int atom2 = (*jb);
375 >        atid = identsCol[atom2];
376 >        if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
377 >          groupCutoffCol[cg2] = atypeCutoff[atid];
378          }
379 <        if (oneThree.hasPair(iglob, jglob)) {
380 <          toposForLocalAtom[i].push_back(j);
381 <          topoDistLocal[i][nTopos] = 2;
382 <          nTopos++;
383 <        }
384 <        if (oneFour.hasPair(iglob, jglob)) {
385 <          toposForLocalAtom[i].push_back(j);
386 <          topoDistLocal[i][nTopos] = 3;
387 <          nTopos++;
388 <        }
379 >      }
380 >      bool gTypeFound = false;
381 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
382 >        if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
383 >          groupColToGtype[cg2] = gt;
384 >          gTypeFound = true;
385 >        }
386 >      }
387 >      if (!gTypeFound) {
388 >        gTypeCutoffs.push_back( groupCutoffCol[cg2] );
389 >        groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
390 >      }
391 >    }
392 > #else
393 >
394 >    vector<RealType> groupCutoff(nGroups_, 0.0);
395 >    groupToGtype.resize(nGroups_);
396 >    for (int cg1 = 0; cg1 < nGroups_; cg1++) {
397 >      groupCutoff[cg1] = 0.0;
398 >      vector<int> atomList = getAtomsInGroupRow(cg1);
399 >      for (vector<int>::iterator ia = atomList.begin();
400 >           ia != atomList.end(); ++ia) {            
401 >        int atom1 = (*ia);
402 >        atid = idents[atom1];
403 >        if (atypeCutoff[atid] > groupCutoff[cg1])
404 >          groupCutoff[cg1] = atypeCutoff[atid];
405 >      }
406 >      
407 >      bool gTypeFound = false;
408 >      for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) {
409 >        if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
410 >          groupToGtype[cg1] = gt;
411 >          gTypeFound = true;
412 >        }
413 >      }
414 >      if (!gTypeFound) {      
415 >        gTypeCutoffs.push_back( groupCutoff[cg1] );
416 >        groupToGtype[cg1] = gTypeCutoffs.size() - 1;
417        }      
418 +    }
419 + #endif
420 +
421 +    // Now we find the maximum group cutoff value present in the simulation
422 +
423 +    RealType groupMax = *max_element(gTypeCutoffs.begin(),
424 +                                     gTypeCutoffs.end());
425 +
426 + #ifdef IS_MPI
427 +    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
428 +                              MPI::MAX);
429 + #endif
430 +    
431 +    RealType tradRcut = groupMax;
432 +
433 +    GrCut.resize( gTypeCutoffs.size() );
434 +    GrCutSq.resize( gTypeCutoffs.size() );
435 +    GrlistSq.resize( gTypeCutoffs.size() );
436 +
437 +
438 +    for (unsigned int i = 0; i < gTypeCutoffs.size();  i++) {
439 +      GrCut[i].resize( gTypeCutoffs.size() , 0.0);
440 +      GrCutSq[i].resize( gTypeCutoffs.size(), 0.0 );
441 +      GrlistSq[i].resize( gTypeCutoffs.size(), 0.0 );
442 +
443 +      for (unsigned int j = 0; j < gTypeCutoffs.size();  j++) {      
444 +        RealType thisRcut;
445 +        switch(cutoffPolicy_) {
446 +        case TRADITIONAL:
447 +          thisRcut = tradRcut;
448 +          break;
449 +        case MIX:
450 +          thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
451 +          break;
452 +        case MAX:
453 +          thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
454 +          break;
455 +        default:
456 +          sprintf(painCave.errMsg,
457 +                  "ForceMatrixDecomposition::createGtypeCutoffMap "
458 +                  "hit an unknown cutoff policy!\n");
459 +          painCave.severity = OPENMD_ERROR;
460 +          painCave.isFatal = 1;
461 +          simError();
462 +          break;
463 +        }
464 +
465 +        GrCut[i][j] = thisRcut;
466 +        if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
467 +        GrCutSq[i][j] = thisRcut * thisRcut;
468 +        GrlistSq[i][j] = pow(thisRcut + skinThickness_, 2);
469 +
470 +        // pair<int,int> key = make_pair(i,j);
471 +        // gTypeCutoffMap[key].first = thisRcut;
472 +        // gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
473 +        // sanity check
474 +        
475 +        if (userChoseCutoff_) {
476 +          if (abs(GrCut[i][j] - userCutoff_) > 0.0001) {
477 +            sprintf(painCave.errMsg,
478 +                    "ForceMatrixDecomposition::createGtypeCutoffMap "
479 +                    "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
480 +            painCave.severity = OPENMD_ERROR;
481 +            painCave.isFatal = 1;
482 +            simError();            
483 +          }
484 +        }
485 +      }
486      }
487    }
488 <  
488 >
489 >  void ForceMatrixDecomposition::getGroupCutoffs(int &cg1, int &cg2, RealType &rcut, RealType &rcutsq, RealType &rlistsq) {
490 >    int i, j;  
491 > #ifdef IS_MPI
492 >    i = groupRowToGtype[cg1];
493 >    j = groupColToGtype[cg2];
494 > #else
495 >    i = groupToGtype[cg1];
496 >    j = groupToGtype[cg2];
497 > #endif    
498 >    rcut = GrCut[i][j];
499 >    rcutsq = GrCutSq[i][j];
500 >    rlistsq = GrlistSq[i][j];
501 >    return;
502 >    //return gTypeCutoffMap[make_pair(i,j)];
503 >  }
504 >
505 >  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
506 >    for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) {
507 >      if (toposForAtom[atom1][j] == atom2)
508 >        return topoDist[atom1][j];
509 >    }                                          
510 >    return 0;
511 >  }
512 >
513 >  void ForceMatrixDecomposition::zeroWorkArrays() {
514 >    pairwisePot = 0.0;
515 >    embeddingPot = 0.0;
516 >    excludedPot = 0.0;
517 >    excludedSelfPot = 0.0;
518 >
519 > #ifdef IS_MPI
520 >    if (storageLayout_ & DataStorage::dslForce) {
521 >      fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
522 >      fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
523 >    }
524 >
525 >    if (storageLayout_ & DataStorage::dslTorque) {
526 >      fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
527 >      fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
528 >    }
529 >    
530 >    fill(pot_row.begin(), pot_row.end(),
531 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
532 >
533 >    fill(pot_col.begin(), pot_col.end(),
534 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
535 >
536 >    fill(expot_row.begin(), expot_row.end(),
537 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
538 >
539 >    fill(expot_col.begin(), expot_col.end(),
540 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
541 >
542 >    if (storageLayout_ & DataStorage::dslParticlePot) {    
543 >      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
544 >           0.0);
545 >      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
546 >           0.0);
547 >    }
548 >
549 >    if (storageLayout_ & DataStorage::dslDensity) {      
550 >      fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
551 >      fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
552 >    }
553 >
554 >    if (storageLayout_ & DataStorage::dslFunctional) {  
555 >      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
556 >           0.0);
557 >      fill(atomColData.functional.begin(), atomColData.functional.end(),
558 >           0.0);
559 >    }
560 >
561 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
562 >      fill(atomRowData.functionalDerivative.begin(),
563 >           atomRowData.functionalDerivative.end(), 0.0);
564 >      fill(atomColData.functionalDerivative.begin(),
565 >           atomColData.functionalDerivative.end(), 0.0);
566 >    }
567 >
568 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
569 >      fill(atomRowData.skippedCharge.begin(),
570 >           atomRowData.skippedCharge.end(), 0.0);
571 >      fill(atomColData.skippedCharge.begin(),
572 >           atomColData.skippedCharge.end(), 0.0);
573 >    }
574 >
575 >    if (storageLayout_ & DataStorage::dslFlucQForce) {      
576 >      fill(atomRowData.flucQFrc.begin(),
577 >           atomRowData.flucQFrc.end(), 0.0);
578 >      fill(atomColData.flucQFrc.begin(),
579 >           atomColData.flucQFrc.end(), 0.0);
580 >    }
581 >
582 >    if (storageLayout_ & DataStorage::dslElectricField) {    
583 >      fill(atomRowData.electricField.begin(),
584 >           atomRowData.electricField.end(), V3Zero);
585 >      fill(atomColData.electricField.begin(),
586 >           atomColData.electricField.end(), V3Zero);
587 >    }
588 >
589 > #endif
590 >    // even in parallel, we need to zero out the local arrays:
591 >
592 >    if (storageLayout_ & DataStorage::dslParticlePot) {      
593 >      fill(snap_->atomData.particlePot.begin(),
594 >           snap_->atomData.particlePot.end(), 0.0);
595 >    }
596 >    
597 >    if (storageLayout_ & DataStorage::dslDensity) {      
598 >      fill(snap_->atomData.density.begin(),
599 >           snap_->atomData.density.end(), 0.0);
600 >    }
601 >
602 >    if (storageLayout_ & DataStorage::dslFunctional) {
603 >      fill(snap_->atomData.functional.begin(),
604 >           snap_->atomData.functional.end(), 0.0);
605 >    }
606 >
607 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
608 >      fill(snap_->atomData.functionalDerivative.begin(),
609 >           snap_->atomData.functionalDerivative.end(), 0.0);
610 >    }
611 >
612 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
613 >      fill(snap_->atomData.skippedCharge.begin(),
614 >           snap_->atomData.skippedCharge.end(), 0.0);
615 >    }
616 >
617 >    if (storageLayout_ & DataStorage::dslElectricField) {      
618 >      fill(snap_->atomData.electricField.begin(),
619 >           snap_->atomData.electricField.end(), V3Zero);
620 >    }
621 >  }
622 >
623 >
624    void ForceMatrixDecomposition::distributeData()  {
625      snap_ = sman_->getCurrentSnapshot();
626      storageLayout_ = sman_->getStorageLayout();
627   #ifdef IS_MPI
628      
629      // gather up the atomic positions
630 <    AtomCommVectorRow->gather(snap_->atomData.position,
630 >    AtomPlanVectorRow->gather(snap_->atomData.position,
631                                atomRowData.position);
632 <    AtomCommVectorColumn->gather(snap_->atomData.position,
632 >    AtomPlanVectorColumn->gather(snap_->atomData.position,
633                                   atomColData.position);
634      
635      // gather up the cutoff group positions
636 <    cgCommVectorRow->gather(snap_->cgData.position,
636 >
637 >    cgPlanVectorRow->gather(snap_->cgData.position,
638                              cgRowData.position);
639 <    cgCommVectorColumn->gather(snap_->cgData.position,
639 >
640 >    cgPlanVectorColumn->gather(snap_->cgData.position,
641                                 cgColData.position);
642 +
643 +
644 +
645 +    if (needVelocities_) {
646 +      // gather up the atomic velocities
647 +      AtomPlanVectorColumn->gather(snap_->atomData.velocity,
648 +                                   atomColData.velocity);
649 +      
650 +      cgPlanVectorColumn->gather(snap_->cgData.velocity,
651 +                                 cgColData.velocity);
652 +    }
653 +
654      
655      // if needed, gather the atomic rotation matrices
656      if (storageLayout_ & DataStorage::dslAmat) {
657 <      AtomCommMatrixRow->gather(snap_->atomData.aMat,
657 >      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
658                                  atomRowData.aMat);
659 <      AtomCommMatrixColumn->gather(snap_->atomData.aMat,
659 >      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
660                                     atomColData.aMat);
661      }
662 <    
663 <    // if needed, gather the atomic eletrostatic frames
664 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
665 <      AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
666 <                                atomRowData.electroFrame);
667 <      AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
668 <                                   atomColData.electroFrame);
662 >
663 >    // if needed, gather the atomic eletrostatic information
664 >    if (storageLayout_ & DataStorage::dslDipole) {
665 >      AtomPlanVectorRow->gather(snap_->atomData.dipole,
666 >                                atomRowData.dipole);
667 >      AtomPlanVectorColumn->gather(snap_->atomData.dipole,
668 >                                   atomColData.dipole);
669      }
670 +
671 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
672 +      AtomPlanMatrixRow->gather(snap_->atomData.quadrupole,
673 +                                atomRowData.quadrupole);
674 +      AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole,
675 +                                   atomColData.quadrupole);
676 +    }
677 +        
678 +    // if needed, gather the atomic fluctuating charge values
679 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {
680 +      AtomPlanRealRow->gather(snap_->atomData.flucQPos,
681 +                              atomRowData.flucQPos);
682 +      AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
683 +                                 atomColData.flucQPos);
684 +    }
685 +
686   #endif      
687    }
688    
689 +  /* collects information obtained during the pre-pair loop onto local
690 +   * data structures.
691 +   */
692    void ForceMatrixDecomposition::collectIntermediateData() {
693      snap_ = sman_->getCurrentSnapshot();
694      storageLayout_ = sman_->getStorageLayout();
# Line 274 | Line 696 | namespace OpenMD {
696      
697      if (storageLayout_ & DataStorage::dslDensity) {
698        
699 <      AtomCommRealRow->scatter(atomRowData.density,
699 >      AtomPlanRealRow->scatter(atomRowData.density,
700                                 snap_->atomData.density);
701        
702        int n = snap_->atomData.density.size();
703 <      std::vector<RealType> rho_tmp(n, 0.0);
704 <      AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
703 >      vector<RealType> rho_tmp(n, 0.0);
704 >      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
705        for (int i = 0; i < n; i++)
706          snap_->atomData.density[i] += rho_tmp[i];
707      }
708 +
709 +    // this isn't necessary if we don't have polarizable atoms, but
710 +    // we'll leave it here for now.
711 +    if (storageLayout_ & DataStorage::dslElectricField) {
712 +      
713 +      AtomPlanVectorRow->scatter(atomRowData.electricField,
714 +                                 snap_->atomData.electricField);
715 +      
716 +      int n = snap_->atomData.electricField.size();
717 +      vector<Vector3d> field_tmp(n, V3Zero);
718 +      AtomPlanVectorColumn->scatter(atomColData.electricField,
719 +                                    field_tmp);
720 +      for (int i = 0; i < n; i++)
721 +        snap_->atomData.electricField[i] += field_tmp[i];
722 +    }
723   #endif
724    }
725 <  
725 >
726 >  /*
727 >   * redistributes information obtained during the pre-pair loop out to
728 >   * row and column-indexed data structures
729 >   */
730    void ForceMatrixDecomposition::distributeIntermediateData() {
731      snap_ = sman_->getCurrentSnapshot();
732      storageLayout_ = sman_->getStorageLayout();
733   #ifdef IS_MPI
734      if (storageLayout_ & DataStorage::dslFunctional) {
735 <      AtomCommRealRow->gather(snap_->atomData.functional,
735 >      AtomPlanRealRow->gather(snap_->atomData.functional,
736                                atomRowData.functional);
737 <      AtomCommRealColumn->gather(snap_->atomData.functional,
737 >      AtomPlanRealColumn->gather(snap_->atomData.functional,
738                                   atomColData.functional);
739      }
740      
741      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
742 <      AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
742 >      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
743                                atomRowData.functionalDerivative);
744 <      AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
744 >      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
745                                   atomColData.functionalDerivative);
746      }
747   #endif
# Line 314 | Line 755 | namespace OpenMD {
755      int n = snap_->atomData.force.size();
756      vector<Vector3d> frc_tmp(n, V3Zero);
757      
758 <    AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
758 >    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
759      for (int i = 0; i < n; i++) {
760        snap_->atomData.force[i] += frc_tmp[i];
761        frc_tmp[i] = 0.0;
762      }
763      
764 <    AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
765 <    for (int i = 0; i < n; i++)
764 >    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
765 >    for (int i = 0; i < n; i++) {
766        snap_->atomData.force[i] += frc_tmp[i];
767 <    
768 <    
767 >    }
768 >        
769      if (storageLayout_ & DataStorage::dslTorque) {
770  
771 <      int nt = snap_->atomData.force.size();
771 >      int nt = snap_->atomData.torque.size();
772        vector<Vector3d> trq_tmp(nt, V3Zero);
773  
774 <      AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
775 <      for (int i = 0; i < n; i++) {
774 >      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
775 >      for (int i = 0; i < nt; i++) {
776          snap_->atomData.torque[i] += trq_tmp[i];
777          trq_tmp[i] = 0.0;
778        }
779        
780 <      AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
781 <      for (int i = 0; i < n; i++)
780 >      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
781 >      for (int i = 0; i < nt; i++)
782          snap_->atomData.torque[i] += trq_tmp[i];
783      }
784 +
785 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
786 +
787 +      int ns = snap_->atomData.skippedCharge.size();
788 +      vector<RealType> skch_tmp(ns, 0.0);
789 +
790 +      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
791 +      for (int i = 0; i < ns; i++) {
792 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
793 +        skch_tmp[i] = 0.0;
794 +      }
795 +      
796 +      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
797 +      for (int i = 0; i < ns; i++)
798 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
799 +            
800 +    }
801      
802 +    if (storageLayout_ & DataStorage::dslFlucQForce) {
803 +
804 +      int nq = snap_->atomData.flucQFrc.size();
805 +      vector<RealType> fqfrc_tmp(nq, 0.0);
806 +
807 +      AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
808 +      for (int i = 0; i < nq; i++) {
809 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
810 +        fqfrc_tmp[i] = 0.0;
811 +      }
812 +      
813 +      AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
814 +      for (int i = 0; i < nq; i++)
815 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
816 +            
817 +    }
818 +
819 +    if (storageLayout_ & DataStorage::dslElectricField) {
820 +
821 +      int nef = snap_->atomData.electricField.size();
822 +      vector<Vector3d> efield_tmp(nef, V3Zero);
823 +
824 +      AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp);
825 +      for (int i = 0; i < nef; i++) {
826 +        snap_->atomData.electricField[i] += efield_tmp[i];
827 +        efield_tmp[i] = 0.0;
828 +      }
829 +      
830 +      AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp);
831 +      for (int i = 0; i < nef; i++)
832 +        snap_->atomData.electricField[i] += efield_tmp[i];
833 +    }
834 +
835 +
836      nLocal_ = snap_->getNumberOfAtoms();
837  
838 <    vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES,
839 <                                       vector<RealType> (nLocal_, 0.0));
838 >    vector<potVec> pot_temp(nLocal_,
839 >                            Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
840 >    vector<potVec> expot_temp(nLocal_,
841 >                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
842 >
843 >    // scatter/gather pot_row into the members of my column
844 >          
845 >    AtomPlanPotRow->scatter(pot_row, pot_temp);
846 >    AtomPlanPotRow->scatter(expot_row, expot_temp);
847 >
848 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
849 >      pairwisePot += pot_temp[ii];
850 >
851 >    for (int ii = 0;  ii < expot_temp.size(); ii++ )
852 >      excludedPot += expot_temp[ii];
853 >        
854 >    if (storageLayout_ & DataStorage::dslParticlePot) {
855 >      // This is the pairwise contribution to the particle pot.  The
856 >      // embedding contribution is added in each of the low level
857 >      // non-bonded routines.  In single processor, this is done in
858 >      // unpackInteractionData, not in collectData.
859 >      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
860 >        for (int i = 0; i < nLocal_; i++) {
861 >          // factor of two is because the total potential terms are divided
862 >          // by 2 in parallel due to row/ column scatter      
863 >          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
864 >        }
865 >      }
866 >    }
867 >
868 >    fill(pot_temp.begin(), pot_temp.end(),
869 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
870 >    fill(expot_temp.begin(), expot_temp.end(),
871 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
872 >      
873 >    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
874 >    AtomPlanPotColumn->scatter(expot_col, expot_temp);    
875      
876 <    for (int i = 0; i < N_INTERACTION_FAMILIES; i++) {
877 <      AtomCommRealRow->scatter(pot_row[i], pot_temp[i]);
878 <      for (int ii = 0;  ii < pot_temp[i].size(); ii++ ) {
879 <        pot_local[i] += pot_temp[i][ii];
876 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
877 >      pairwisePot += pot_temp[ii];    
878 >
879 >    for (int ii = 0;  ii < expot_temp.size(); ii++ )
880 >      excludedPot += expot_temp[ii];    
881 >
882 >    if (storageLayout_ & DataStorage::dslParticlePot) {
883 >      // This is the pairwise contribution to the particle pot.  The
884 >      // embedding contribution is added in each of the low level
885 >      // non-bonded routines.  In single processor, this is done in
886 >      // unpackInteractionData, not in collectData.
887 >      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
888 >        for (int i = 0; i < nLocal_; i++) {
889 >          // factor of two is because the total potential terms are divided
890 >          // by 2 in parallel due to row/ column scatter      
891 >          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
892 >        }
893        }
894      }
895 +    
896 +    if (storageLayout_ & DataStorage::dslParticlePot) {
897 +      int npp = snap_->atomData.particlePot.size();
898 +      vector<RealType> ppot_temp(npp, 0.0);
899 +
900 +      // This is the direct or embedding contribution to the particle
901 +      // pot.
902 +      
903 +      AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
904 +      for (int i = 0; i < npp; i++) {
905 +        snap_->atomData.particlePot[i] += ppot_temp[i];
906 +      }
907 +
908 +      fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
909 +      
910 +      AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
911 +      for (int i = 0; i < npp; i++) {
912 +        snap_->atomData.particlePot[i] += ppot_temp[i];
913 +      }
914 +    }
915 +
916 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
917 +      RealType ploc1 = pairwisePot[ii];
918 +      RealType ploc2 = 0.0;
919 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
920 +      pairwisePot[ii] = ploc2;
921 +    }
922 +
923 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
924 +      RealType ploc1 = excludedPot[ii];
925 +      RealType ploc2 = 0.0;
926 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
927 +      excludedPot[ii] = ploc2;
928 +    }
929 +
930 +    // Here be dragons.
931 +    MPI::Intracomm col = colComm.getComm();
932 +
933 +    col.Allreduce(MPI::IN_PLACE,
934 +                  &snap_->frameData.conductiveHeatFlux[0], 3,
935 +                  MPI::REALTYPE, MPI::SUM);
936 +
937 +
938   #endif
939 +
940    }
941  
942 <  int ForceMatrixDecomposition::getNAtomsInRow() {  
942 >  /**
943 >   * Collects information obtained during the post-pair (and embedding
944 >   * functional) loops onto local data structures.
945 >   */
946 >  void ForceMatrixDecomposition::collectSelfData() {
947 >    snap_ = sman_->getCurrentSnapshot();
948 >    storageLayout_ = sman_->getStorageLayout();
949 >
950   #ifdef IS_MPI
951 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
952 +      RealType ploc1 = embeddingPot[ii];
953 +      RealType ploc2 = 0.0;
954 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
955 +      embeddingPot[ii] = ploc2;
956 +    }    
957 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
958 +      RealType ploc1 = excludedSelfPot[ii];
959 +      RealType ploc2 = 0.0;
960 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
961 +      excludedSelfPot[ii] = ploc2;
962 +    }    
963 + #endif
964 +    
965 +  }
966 +
967 +
968 +
969 +  int& ForceMatrixDecomposition::getNAtomsInRow() {  
970 + #ifdef IS_MPI
971      return nAtomsInRow_;
972   #else
973      return nLocal_;
# Line 366 | Line 977 | namespace OpenMD {
977    /**
978     * returns the list of atoms belonging to this group.  
979     */
980 <  vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
980 >  vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
981   #ifdef IS_MPI
982      return groupListRow_[cg1];
983   #else
# Line 374 | Line 985 | namespace OpenMD {
985   #endif
986    }
987  
988 <  vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
988 >  vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
989   #ifdef IS_MPI
990      return groupListCol_[cg2];
991   #else
# Line 391 | Line 1002 | namespace OpenMD {
1002      d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
1003   #endif
1004      
1005 <    snap_->wrapVector(d);
1005 >    if (usePeriodicBoundaryConditions_) {
1006 >      snap_->wrapVector(d);
1007 >    }
1008      return d;    
1009    }
1010  
1011 +  Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
1012 + #ifdef IS_MPI
1013 +    return cgColData.velocity[cg2];
1014 + #else
1015 +    return snap_->cgData.velocity[cg2];
1016 + #endif
1017 +  }
1018  
1019 +  Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
1020 + #ifdef IS_MPI
1021 +    return atomColData.velocity[atom2];
1022 + #else
1023 +    return snap_->atomData.velocity[atom2];
1024 + #endif
1025 +  }
1026 +
1027 +
1028    Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
1029  
1030      Vector3d d;
# Line 405 | Line 1034 | namespace OpenMD {
1034   #else
1035      d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
1036   #endif
1037 <
1038 <    snap_->wrapVector(d);
1037 >    if (usePeriodicBoundaryConditions_) {
1038 >      snap_->wrapVector(d);
1039 >    }
1040      return d;    
1041    }
1042    
# Line 418 | Line 1048 | namespace OpenMD {
1048   #else
1049      d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
1050   #endif
1051 <    
1052 <    snap_->wrapVector(d);
1051 >    if (usePeriodicBoundaryConditions_) {
1052 >      snap_->wrapVector(d);
1053 >    }
1054      return d;    
1055    }
1056  
1057 <  RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
1057 >  RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) {
1058   #ifdef IS_MPI
1059      return massFactorsRow[atom1];
1060   #else
1061 <    return massFactorsLocal[atom1];
1061 >    return massFactors[atom1];
1062   #endif
1063    }
1064  
1065 <  RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
1065 >  RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
1066   #ifdef IS_MPI
1067      return massFactorsCol[atom2];
1068   #else
1069 <    return massFactorsLocal[atom2];
1069 >    return massFactors[atom2];
1070   #endif
1071  
1072    }
# Line 448 | Line 1079 | namespace OpenMD {
1079   #else
1080      d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
1081   #endif
1082 <
1083 <    snap_->wrapVector(d);
1082 >    if (usePeriodicBoundaryConditions_) {
1083 >      snap_->wrapVector(d);
1084 >    }
1085      return d;    
1086    }
1087  
1088 <  vector<int> ForceMatrixDecomposition::getSkipsForRowAtom(int atom1) {
1089 < #ifdef IS_MPI
458 <    return skipsForRowAtom[atom1];
459 < #else
460 <    return skipsForLocalAtom[atom1];
461 < #endif
1088 >  vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
1089 >    return excludesForAtom[atom1];
1090    }
1091  
1092    /**
1093 <   * there are a number of reasons to skip a pair or a particle mostly
1094 <   * we do this to exclude atoms who are involved in short range
467 <   * interactions (bonds, bends, torsions), but we also need to
468 <   * exclude some overcounted interactions that result from the
469 <   * parallel decomposition.
1093 >   * We need to exclude some overcounted interactions that result from
1094 >   * the parallel decomposition.
1095     */
1096 <  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
1096 >  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) {
1097      int unique_id_1, unique_id_2;
1098 <
1098 >        
1099   #ifdef IS_MPI
1100      // in MPI, we have to look up the unique IDs for each atom
1101      unique_id_1 = AtomRowToGlobal[atom1];
1102      unique_id_2 = AtomColToGlobal[atom2];
1103 +    // group1 = cgRowToGlobal[cg1];
1104 +    // group2 = cgColToGlobal[cg2];
1105 + #else
1106 +    unique_id_1 = AtomLocalToGlobal[atom1];
1107 +    unique_id_2 = AtomLocalToGlobal[atom2];
1108 +    int group1 = cgLocalToGlobal[cg1];
1109 +    int group2 = cgLocalToGlobal[cg2];
1110 + #endif  
1111  
479    // this situation should only arise in MPI simulations
1112      if (unique_id_1 == unique_id_2) return true;
1113 <    
1113 >
1114 > #ifdef IS_MPI
1115      // this prevents us from doing the pair on multiple processors
1116      if (unique_id_1 < unique_id_2) {
1117        if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
1118      } else {
1119 <      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1119 >      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1120      }
1121 < #else
1122 <    // in the normal loop, the atom numbers are unique
1123 <    unique_id_1 = atom1;
1124 <    unique_id_2 = atom2;
1121 > #endif    
1122 >
1123 > #ifndef IS_MPI
1124 >    if (group1 == group2) {
1125 >      if (unique_id_1 < unique_id_2) return true;
1126 >    }
1127   #endif
1128      
1129 < #ifdef IS_MPI
495 <    for (vector<int>::iterator i = skipsForRowAtom[atom1].begin();
496 <         i != skipsForRowAtom[atom1].end(); ++i) {
497 <      if ( (*i) == unique_id_2 ) return true;
498 <    }    
499 < #else
500 <    for (vector<int>::iterator i = skipsForLocalAtom[atom1].begin();
501 <         i != skipsForLocalAtom[atom1].end(); ++i) {
502 <      if ( (*i) == unique_id_2 ) return true;
503 <    }    
504 < #endif
1129 >    return false;
1130    }
1131  
1132 <  int ForceMatrixDecomposition::getTopoDistance(int atom1, int atom2) {
1132 >  /**
1133 >   * We need to handle the interactions for atoms who are involved in
1134 >   * the same rigid body as well as some short range interactions
1135 >   * (bonds, bends, torsions) differently from other interactions.
1136 >   * We'll still visit the pairwise routines, but with a flag that
1137 >   * tells those routines to exclude the pair from direct long range
1138 >   * interactions.  Some indirect interactions (notably reaction
1139 >   * field) must still be handled for these pairs.
1140 >   */
1141 >  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
1142 >
1143 >    // excludesForAtom was constructed to use row/column indices in the MPI
1144 >    // version, and to use local IDs in the non-MPI version:
1145      
1146 < #ifdef IS_MPI
1147 <    for (int i = 0; i < toposForRowAtom[atom1].size(); i++) {
1148 <      if ( toposForRowAtom[atom1][i] == atom2 ) return topoDistRow[atom1][i];
512 <    }
513 < #else
514 <    for (int i = 0; i < toposForLocalAtom[atom1].size(); i++) {
515 <      if ( toposForLocalAtom[atom1][i] == atom2 ) return topoDistLocal[atom1][i];
1146 >    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
1147 >         i != excludesForAtom[atom1].end(); ++i) {
1148 >      if ( (*i) == atom2 ) return true;
1149      }
517 #endif
1150  
1151 <    // zero is default for unconnected (i.e. normal) pair interactions
520 <    return 0;
1151 >    return false;
1152    }
1153  
1154 +
1155    void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
1156   #ifdef IS_MPI
1157      atomRowData.force[atom1] += fg;
# Line 537 | Line 1169 | namespace OpenMD {
1169    }
1170  
1171      // filling interaction blocks with pointers
1172 <  InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) {    
1173 <    InteractionData idat;
1172 >  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1173 >                                                     int atom1, int atom2) {
1174  
1175 +    idat.excluded = excludeAtomPair(atom1, atom2);
1176 +  
1177   #ifdef IS_MPI
1178 <    
1179 <    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
1180 <                             ff_->getAtomType(identsCol[atom2]) );
1178 >    //idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
1179 >    idat.atid1 = identsRow[atom1];
1180 >    idat.atid2 = identsCol[atom2];
1181  
1182 +    if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) {
1183 +      idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]);
1184 +    } else {
1185 +      idat.sameRegion = false;
1186 +    }
1187 +
1188      if (storageLayout_ & DataStorage::dslAmat) {
1189        idat.A1 = &(atomRowData.aMat[atom1]);
1190        idat.A2 = &(atomColData.aMat[atom2]);
1191      }
1192      
553    if (storageLayout_ & DataStorage::dslElectroFrame) {
554      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
555      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
556    }
557
1193      if (storageLayout_ & DataStorage::dslTorque) {
1194        idat.t1 = &(atomRowData.torque[atom1]);
1195        idat.t2 = &(atomColData.torque[atom2]);
1196      }
1197  
1198 +    if (storageLayout_ & DataStorage::dslDipole) {
1199 +      idat.dipole1 = &(atomRowData.dipole[atom1]);
1200 +      idat.dipole2 = &(atomColData.dipole[atom2]);
1201 +    }
1202 +
1203 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1204 +      idat.quadrupole1 = &(atomRowData.quadrupole[atom1]);
1205 +      idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1206 +    }
1207 +
1208      if (storageLayout_ & DataStorage::dslDensity) {
1209        idat.rho1 = &(atomRowData.density[atom1]);
1210        idat.rho2 = &(atomColData.density[atom2]);
1211      }
1212  
1213 +    if (storageLayout_ & DataStorage::dslFunctional) {
1214 +      idat.frho1 = &(atomRowData.functional[atom1]);
1215 +      idat.frho2 = &(atomColData.functional[atom2]);
1216 +    }
1217 +
1218      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1219        idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1220        idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1221      }
1222  
1223 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1224 +      idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1225 +      idat.particlePot2 = &(atomColData.particlePot[atom2]);
1226 +    }
1227 +
1228 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1229 +      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1230 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1231 +    }
1232 +
1233 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1234 +      idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1235 +      idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1236 +    }
1237 +
1238   #else
1239 +    
1240 +    //idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
1241 +    idat.atid1 = idents[atom1];
1242 +    idat.atid2 = idents[atom2];
1243  
1244 <    idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]),
1245 <                             ff_->getAtomType(identsLocal[atom2]) );
1244 >    if (regions[atom1] >= 0 && regions[atom2] >= 0) {
1245 >      idat.sameRegion = (regions[atom1] == regions[atom2]);
1246 >    } else {
1247 >      idat.sameRegion = false;
1248 >    }
1249  
1250      if (storageLayout_ & DataStorage::dslAmat) {
1251        idat.A1 = &(snap_->atomData.aMat[atom1]);
1252        idat.A2 = &(snap_->atomData.aMat[atom2]);
1253      }
1254  
583    if (storageLayout_ & DataStorage::dslElectroFrame) {
584      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
585      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
586    }
587
1255      if (storageLayout_ & DataStorage::dslTorque) {
1256        idat.t1 = &(snap_->atomData.torque[atom1]);
1257        idat.t2 = &(snap_->atomData.torque[atom2]);
1258      }
1259  
1260 <    if (storageLayout_ & DataStorage::dslDensity) {
1260 >    if (storageLayout_ & DataStorage::dslDipole) {
1261 >      idat.dipole1 = &(snap_->atomData.dipole[atom1]);
1262 >      idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1263 >    }
1264 >
1265 >    if (storageLayout_ & DataStorage::dslQuadrupole) {
1266 >      idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]);
1267 >      idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1268 >    }
1269 >
1270 >    if (storageLayout_ & DataStorage::dslDensity) {    
1271        idat.rho1 = &(snap_->atomData.density[atom1]);
1272        idat.rho2 = &(snap_->atomData.density[atom2]);
1273      }
1274  
1275 +    if (storageLayout_ & DataStorage::dslFunctional) {
1276 +      idat.frho1 = &(snap_->atomData.functional[atom1]);
1277 +      idat.frho2 = &(snap_->atomData.functional[atom2]);
1278 +    }
1279 +
1280      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1281        idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1282        idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1283      }
1284 +
1285 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1286 +      idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1287 +      idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1288 +    }
1289 +
1290 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
1291 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1292 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1293 +    }
1294 +
1295 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1296 +      idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1297 +      idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1298 +    }
1299 +
1300   #endif
603    return idat;
1301    }
1302  
1303 <  InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){
1304 <
608 <    InteractionData idat;
1303 >  
1304 >  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
1305   #ifdef IS_MPI
1306 <    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
1307 <                             ff_->getAtomType(identsCol[atom2]) );
1306 >    pot_row[atom1] += RealType(0.5) *  *(idat.pot);
1307 >    pot_col[atom2] += RealType(0.5) *  *(idat.pot);
1308 >    expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot);
1309 >    expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot);
1310  
1311 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
1312 <      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
1313 <      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
1311 >    atomRowData.force[atom1] += *(idat.f1);
1312 >    atomColData.force[atom2] -= *(idat.f1);
1313 >
1314 >    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1315 >      atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1316 >      atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1317      }
1318 <    if (storageLayout_ & DataStorage::dslTorque) {
1319 <      idat.t1 = &(atomRowData.torque[atom1]);
1320 <      idat.t2 = &(atomColData.torque[atom2]);
1318 >
1319 >    if (storageLayout_ & DataStorage::dslElectricField) {              
1320 >      atomRowData.electricField[atom1] += *(idat.eField1);
1321 >      atomColData.electricField[atom2] += *(idat.eField2);
1322      }
1323 <    if (storageLayout_ & DataStorage::dslForce) {
622 <      idat.t1 = &(atomRowData.force[atom1]);
623 <      idat.t2 = &(atomColData.force[atom2]);
624 <    }
1323 >
1324   #else
1325 <    idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]),
1326 <                             ff_->getAtomType(identsLocal[atom2]) );
1325 >    pairwisePot += *(idat.pot);
1326 >    excludedPot += *(idat.excludedPot);
1327  
1328 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
1329 <      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
1330 <      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
1328 >    snap_->atomData.force[atom1] += *(idat.f1);
1329 >    snap_->atomData.force[atom2] -= *(idat.f1);
1330 >
1331 >    if (idat.doParticlePot) {
1332 >      // This is the pairwise contribution to the particle pot.  The
1333 >      // embedding contribution is added in each of the low level
1334 >      // non-bonded routines.  In parallel, this calculation is done
1335 >      // in collectData, not in unpackInteractionData.
1336 >      snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1337 >      snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1338      }
1339 <    if (storageLayout_ & DataStorage::dslTorque) {
1340 <      idat.t1 = &(snap_->atomData.torque[atom1]);
1341 <      idat.t2 = &(snap_->atomData.torque[atom2]);
1339 >    
1340 >    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1341 >      snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1342 >      snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1343      }
1344 <    if (storageLayout_ & DataStorage::dslForce) {
1345 <      idat.t1 = &(snap_->atomData.force[atom1]);
1346 <      idat.t2 = &(snap_->atomData.force[atom2]);
1344 >
1345 >    if (storageLayout_ & DataStorage::dslElectricField) {              
1346 >      snap_->atomData.electricField[atom1] += *(idat.eField1);
1347 >      snap_->atomData.electricField[atom2] += *(idat.eField2);
1348      }
1349 < #endif    
1349 >
1350 > #endif
1351 >    
1352    }
1353  
1354    /*
# Line 647 | Line 1357 | namespace OpenMD {
1357     * first element of pair is row-indexed CutoffGroup
1358     * second element of pair is column-indexed CutoffGroup
1359     */
1360 <  vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1361 <      
1362 <    vector<pair<int, int> > neighborList;
1363 < #ifdef IS_MPI
1364 <    cellListRow_.clear();
655 <    cellListCol_.clear();
656 < #else
657 <    cellList_.clear();
658 < #endif
1360 >  void ForceMatrixDecomposition::buildNeighborList(vector<pair<int,int> >& neighborList) {
1361 >    
1362 >    neighborList.clear();
1363 >    groupCutoffs cuts;
1364 >    bool doAllPairs = false;
1365  
1366 <    // dangerous to not do error checking.
1367 <    RealType rCut_;
662 <
663 <    RealType rList_ = (rCut_ + skinThickness_);
664 <    RealType rl2 = rList_ * rList_;
1366 >    RealType rList_ = (largestRcut_ + skinThickness_);
1367 >    RealType rcut, rcutsq, rlistsq;
1368      Snapshot* snap_ = sman_->getCurrentSnapshot();
1369 <    Mat3x3d Hmat = snap_->getHmat();
1370 <    Vector3d Hx = Hmat.getColumn(0);
668 <    Vector3d Hy = Hmat.getColumn(1);
669 <    Vector3d Hz = Hmat.getColumn(2);
1369 >    Mat3x3d box;
1370 >    Mat3x3d invBox;
1371  
671    nCells_.x() = (int) ( Hx.length() )/ rList_;
672    nCells_.y() = (int) ( Hy.length() )/ rList_;
673    nCells_.z() = (int) ( Hz.length() )/ rList_;
674
675    Mat3x3d invHmat = snap_->getInvHmat();
1372      Vector3d rs, scaled, dr;
1373      Vector3i whichCell;
1374      int cellIndex;
1375  
1376   #ifdef IS_MPI
1377 <    for (int i = 0; i < nGroupsInRow_; i++) {
1378 <      rs = cgRowData.position[i];
1379 <      // scaled positions relative to the box vectors
1380 <      scaled = invHmat * rs;
1381 <      // wrap the vector back into the unit box by subtracting integer box
1382 <      // numbers
1383 <      for (int j = 0; j < 3; j++)
1384 <        scaled[j] -= roundMe(scaled[j]);
1385 <    
1386 <      // find xyz-indices of cell that cutoffGroup is in.
1387 <      whichCell.x() = nCells_.x() * scaled.x();
1388 <      whichCell.y() = nCells_.y() * scaled.y();
693 <      whichCell.z() = nCells_.z() * scaled.z();
694 <
695 <      // find single index of this cell:
696 <      cellIndex = Vlinear(whichCell, nCells_);
697 <      // add this cutoff group to the list of groups in this cell;
698 <      cellListRow_[cellIndex].push_back(i);
1377 >    cellListRow_.clear();
1378 >    cellListCol_.clear();
1379 > #else
1380 >    cellList_.clear();
1381 > #endif
1382 >    
1383 >    if (!usePeriodicBoundaryConditions_) {
1384 >      box = snap_->getBoundingBox();
1385 >      invBox = snap_->getInvBoundingBox();
1386 >    } else {
1387 >      box = snap_->getHmat();
1388 >      invBox = snap_->getInvHmat();
1389      }
1390 <
1391 <    for (int i = 0; i < nGroupsInCol_; i++) {
1392 <      rs = cgColData.position[i];
1393 <      // scaled positions relative to the box vectors
1394 <      scaled = invHmat * rs;
1395 <      // wrap the vector back into the unit box by subtracting integer box
1396 <      // numbers
1397 <      for (int j = 0; j < 3; j++)
1398 <        scaled[j] -= roundMe(scaled[j]);
1399 <
1400 <      // find xyz-indices of cell that cutoffGroup is in.
1401 <      whichCell.x() = nCells_.x() * scaled.x();
1402 <      whichCell.y() = nCells_.y() * scaled.y();
1403 <      whichCell.z() = nCells_.z() * scaled.z();
1404 <
1405 <      // find single index of this cell:
1406 <      cellIndex = Vlinear(whichCell, nCells_);
1407 <      // add this cutoff group to the list of groups in this cell;
1408 <      cellListCol_[cellIndex].push_back(i);
1409 <    }
1390 >    
1391 >    Vector3d boxX = box.getColumn(0);
1392 >    Vector3d boxY = box.getColumn(1);
1393 >    Vector3d boxZ = box.getColumn(2);
1394 >    
1395 >    nCells_.x() = int( boxX.length() / rList_ );
1396 >    nCells_.y() = int( boxY.length() / rList_ );
1397 >    nCells_.z() = int( boxZ.length() / rList_ );
1398 >    
1399 >    // handle small boxes where the cell offsets can end up repeating cells
1400 >    
1401 >    if (nCells_.x() < 3) doAllPairs = true;
1402 >    if (nCells_.y() < 3) doAllPairs = true;
1403 >    if (nCells_.z() < 3) doAllPairs = true;
1404 >    
1405 >    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1406 >    
1407 > #ifdef IS_MPI
1408 >    cellListRow_.resize(nCtot);
1409 >    cellListCol_.resize(nCtot);
1410   #else
1411 <    for (int i = 0; i < nGroups_; i++) {
1412 <      rs = snap_->cgData.position[i];
1413 <      // scaled positions relative to the box vectors
1414 <      scaled = invHmat * rs;
1415 <      // wrap the vector back into the unit box by subtracting integer box
1416 <      // numbers
1417 <      for (int j = 0; j < 3; j++)
1418 <        scaled[j] -= roundMe(scaled[j]);
1411 >    cellList_.resize(nCtot);
1412 > #endif
1413 >    
1414 >    if (!doAllPairs) {
1415 > #ifdef IS_MPI
1416 >      
1417 >      for (int i = 0; i < nGroupsInRow_; i++) {
1418 >        rs = cgRowData.position[i];
1419 >        
1420 >        // scaled positions relative to the box vectors
1421 >        scaled = invBox * rs;
1422 >        
1423 >        // wrap the vector back into the unit box by subtracting integer box
1424 >        // numbers
1425 >        for (int j = 0; j < 3; j++) {
1426 >          scaled[j] -= roundMe(scaled[j]);
1427 >          scaled[j] += 0.5;
1428 >          // Handle the special case when an object is exactly on the
1429 >          // boundary (a scaled coordinate of 1.0 is the same as
1430 >          // scaled coordinate of 0.0)
1431 >          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1432 >        }
1433 >        
1434 >        // find xyz-indices of cell that cutoffGroup is in.
1435 >        whichCell.x() = nCells_.x() * scaled.x();
1436 >        whichCell.y() = nCells_.y() * scaled.y();
1437 >        whichCell.z() = nCells_.z() * scaled.z();
1438 >        
1439 >        // find single index of this cell:
1440 >        cellIndex = Vlinear(whichCell, nCells_);
1441 >        
1442 >        // add this cutoff group to the list of groups in this cell;
1443 >        cellListRow_[cellIndex].push_back(i);
1444 >      }
1445 >      for (int i = 0; i < nGroupsInCol_; i++) {
1446 >        rs = cgColData.position[i];
1447 >        
1448 >        // scaled positions relative to the box vectors
1449 >        scaled = invBox * rs;
1450 >        
1451 >        // wrap the vector back into the unit box by subtracting integer box
1452 >        // numbers
1453 >        for (int j = 0; j < 3; j++) {
1454 >          scaled[j] -= roundMe(scaled[j]);
1455 >          scaled[j] += 0.5;
1456 >          // Handle the special case when an object is exactly on the
1457 >          // boundary (a scaled coordinate of 1.0 is the same as
1458 >          // scaled coordinate of 0.0)
1459 >          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1460 >        }
1461 >        
1462 >        // find xyz-indices of cell that cutoffGroup is in.
1463 >        whichCell.x() = nCells_.x() * scaled.x();
1464 >        whichCell.y() = nCells_.y() * scaled.y();
1465 >        whichCell.z() = nCells_.z() * scaled.z();
1466 >        
1467 >        // find single index of this cell:
1468 >        cellIndex = Vlinear(whichCell, nCells_);
1469 >        
1470 >        // add this cutoff group to the list of groups in this cell;
1471 >        cellListCol_[cellIndex].push_back(i);
1472 >      }
1473 >      
1474 > #else
1475 >      for (int i = 0; i < nGroups_; i++) {
1476 >        rs = snap_->cgData.position[i];
1477 >        
1478 >        // scaled positions relative to the box vectors
1479 >        scaled = invBox * rs;
1480 >        
1481 >        // wrap the vector back into the unit box by subtracting integer box
1482 >        // numbers
1483 >        for (int j = 0; j < 3; j++) {
1484 >          scaled[j] -= roundMe(scaled[j]);
1485 >          scaled[j] += 0.5;
1486 >          // Handle the special case when an object is exactly on the
1487 >          // boundary (a scaled coordinate of 1.0 is the same as
1488 >          // scaled coordinate of 0.0)
1489 >          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1490 >        }
1491 >        
1492 >        // find xyz-indices of cell that cutoffGroup is in.
1493 >        whichCell.x() = int(nCells_.x() * scaled.x());
1494 >        whichCell.y() = int(nCells_.y() * scaled.y());
1495 >        whichCell.z() = int(nCells_.z() * scaled.z());
1496 >        
1497 >        // find single index of this cell:
1498 >        cellIndex = Vlinear(whichCell, nCells_);
1499 >        
1500 >        // add this cutoff group to the list of groups in this cell;
1501 >        cellList_[cellIndex].push_back(i);
1502 >      }
1503  
730      // find xyz-indices of cell that cutoffGroup is in.
731      whichCell.x() = nCells_.x() * scaled.x();
732      whichCell.y() = nCells_.y() * scaled.y();
733      whichCell.z() = nCells_.z() * scaled.z();
734
735      // find single index of this cell:
736      cellIndex = Vlinear(whichCell, nCells_);
737      // add this cutoff group to the list of groups in this cell;
738      cellList_[cellIndex].push_back(i);
739    }
1504   #endif
1505  
1506 <
1507 <
1508 <    for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1509 <      for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1510 <        for (int m1x = 0; m1x < nCells_.x(); m1x++) {
747 <          Vector3i m1v(m1x, m1y, m1z);
748 <          int m1 = Vlinear(m1v, nCells_);
749 <
750 <          for (vector<Vector3i>::iterator os = cellOffsets_.begin();
751 <               os != cellOffsets_.end(); ++os) {
1506 >      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1507 >        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1508 >          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1509 >            Vector3i m1v(m1x, m1y, m1z);
1510 >            int m1 = Vlinear(m1v, nCells_);
1511              
1512 <            Vector3i m2v = m1v + (*os);
1513 <            
1514 <            if (m2v.x() >= nCells_.x()) {
1515 <              m2v.x() = 0;          
1516 <            } else if (m2v.x() < 0) {
758 <              m2v.x() = nCells_.x() - 1;
759 <            }
760 <            
761 <            if (m2v.y() >= nCells_.y()) {
762 <              m2v.y() = 0;          
763 <            } else if (m2v.y() < 0) {
764 <              m2v.y() = nCells_.y() - 1;
765 <            }
766 <            
767 <            if (m2v.z() >= nCells_.z()) {
768 <              m2v.z() = 0;          
769 <            } else if (m2v.z() < 0) {
770 <              m2v.z() = nCells_.z() - 1;
771 <            }
772 <            
773 <            int m2 = Vlinear (m2v, nCells_);
1512 >            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1513 >                 os != cellOffsets_.end(); ++os) {
1514 >              
1515 >              Vector3i m2v = m1v + (*os);
1516 >            
1517  
1518 < #ifdef IS_MPI
1519 <            for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1520 <                 j1 != cellListRow_[m1].end(); ++j1) {
1521 <              for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1522 <                   j2 != cellListCol_[m2].end(); ++j2) {
1523 <                              
1524 <                // Always do this if we're in different cells or if
1525 <                // we're in the same cell and the global index of the
1526 <                // j2 cutoff group is less than the j1 cutoff group
1518 >              if (m2v.x() >= nCells_.x()) {
1519 >                m2v.x() = 0;          
1520 >              } else if (m2v.x() < 0) {
1521 >                m2v.x() = nCells_.x() - 1;
1522 >              }
1523 >              
1524 >              if (m2v.y() >= nCells_.y()) {
1525 >                m2v.y() = 0;          
1526 >              } else if (m2v.y() < 0) {
1527 >                m2v.y() = nCells_.y() - 1;
1528 >              }
1529 >              
1530 >              if (m2v.z() >= nCells_.z()) {
1531 >                m2v.z() = 0;          
1532 >              } else if (m2v.z() < 0) {
1533 >                m2v.z() = nCells_.z() - 1;
1534 >              }
1535  
1536 <                if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1536 >              int m2 = Vlinear (m2v, nCells_);
1537 >              
1538 > #ifdef IS_MPI
1539 >              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1540 >                   j1 != cellListRow_[m1].end(); ++j1) {
1541 >                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1542 >                     j2 != cellListCol_[m2].end(); ++j2) {
1543 >                  
1544 >                  // In parallel, we need to visit *all* pairs of row
1545 >                  // & column indicies and will divide labor in the
1546 >                  // force evaluation later.
1547                    dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1548 <                  snap_->wrapVector(dr);
1549 <                  if (dr.lengthSquare() < rl2) {
789 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1548 >                  if (usePeriodicBoundaryConditions_) {
1549 >                    snap_->wrapVector(dr);
1550                    }
1551 +                  getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq );
1552 +                  if (dr.lengthSquare() < rlistsq) {
1553 +                    neighborList.push_back(make_pair((*j1), (*j2)));
1554 +                  }                  
1555                  }
1556                }
793            }
1557   #else
1558 <            for (vector<int>::iterator j1 = cellList_[m1].begin();
1559 <                 j1 != cellList_[m1].end(); ++j1) {
1560 <              for (vector<int>::iterator j2 = cellList_[m2].begin();
1561 <                   j2 != cellList_[m2].end(); ++j2) {
1562 <                              
1563 <                // Always do this if we're in different cells or if
1564 <                // we're in the same cell and the global index of the
1565 <                // j2 cutoff group is less than the j1 cutoff group
1558 >              for (vector<int>::iterator j1 = cellList_[m1].begin();
1559 >                   j1 != cellList_[m1].end(); ++j1) {
1560 >                for (vector<int>::iterator j2 = cellList_[m2].begin();
1561 >                     j2 != cellList_[m2].end(); ++j2) {
1562 >    
1563 >                  // Always do this if we're in different cells or if
1564 >                  // we're in the same cell and the global index of
1565 >                  // the j2 cutoff group is greater than or equal to
1566 >                  // the j1 cutoff group.  Note that Rappaport's code
1567 >                  // has a "less than" conditional here, but that
1568 >                  // deals with atom-by-atom computation.  OpenMD
1569 >                  // allows atoms within a single cutoff group to
1570 >                  // interact with each other.
1571  
1572 <                if (m2 != m1 || (*j2) < (*j1)) {
1573 <                  dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1574 <                  snap_->wrapVector(dr);
1575 <                  if (dr.lengthSquare() < rl2) {
1576 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1572 >                  if (m2 != m1 || (*j2) >= (*j1) ) {
1573 >
1574 >                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1575 >                    if (usePeriodicBoundaryConditions_) {
1576 >                      snap_->wrapVector(dr);
1577 >                    }
1578 >                    getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq );
1579 >                    if (dr.lengthSquare() < rlistsq) {
1580 >                      neighborList.push_back(make_pair((*j1), (*j2)));
1581 >                    }
1582                    }
1583                  }
1584                }
812            }
1585   #endif
1586 +            }
1587            }
1588          }
1589        }
1590 +    } else {
1591 +      // branch to do all cutoff group pairs
1592 + #ifdef IS_MPI
1593 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1594 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {    
1595 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1596 +          if (usePeriodicBoundaryConditions_) {
1597 +            snap_->wrapVector(dr);
1598 +          }
1599 +          getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq);
1600 +          if (dr.lengthSquare() < rlistsq) {
1601 +            neighborList.push_back(make_pair(j1, j2));
1602 +          }
1603 +        }
1604 +      }      
1605 + #else
1606 +      // include all groups here.
1607 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1608 +        // include self group interactions j2 == j1
1609 +        for (int j2 = j1; j2 < nGroups_; j2++) {
1610 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1611 +          if (usePeriodicBoundaryConditions_) {
1612 +            snap_->wrapVector(dr);
1613 +          }
1614 +          getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq );
1615 +          if (dr.lengthSquare() < rlistsq) {
1616 +            neighborList.push_back(make_pair(j1, j2));
1617 +          }
1618 +        }    
1619 +      }
1620 + #endif
1621      }
1622 <
1622 >      
1623      // save the local cutoff group positions for the check that is
1624      // done on each loop:
1625      saved_CG_positions_.clear();
1626      for (int i = 0; i < nGroups_; i++)
1627        saved_CG_positions_.push_back(snap_->cgData.position[i]);
824
825    return neighborList;
1628    }
1629   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines