ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents):
Revision 1562 by gezelter, Thu May 12 17:00:14 2011 UTC vs.
Revision 1587 by gezelter, Fri Jul 8 20:25:32 2011 UTC

# Line 42 | Line 42
42   #include "math/SquareMatrix3.hpp"
43   #include "nonbonded/NonBondedInteraction.hpp"
44   #include "brains/SnapshotManager.hpp"
45 + #include "brains/PairList.hpp"
46  
47   using namespace std;
48   namespace OpenMD {
# Line 54 | Line 55 | namespace OpenMD {
55    void ForceMatrixDecomposition::distributeInitialData() {
56      snap_ = sman_->getCurrentSnapshot();
57      storageLayout_ = sman_->getStorageLayout();
58 < #ifdef IS_MPI    
59 <    int nLocal = snap_->getNumberOfAtoms();
59 <    int nGroups = snap_->getNumberOfCutoffGroups();
58 >    ff_ = info_->getForceField();
59 >    nLocal_ = snap_->getNumberOfAtoms();
60      
61 <    AtomCommIntRow = new Communicator<Row,int>(nLocal);
62 <    AtomCommRealRow = new Communicator<Row,RealType>(nLocal);
63 <    AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal);
64 <    AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal);
61 >    nGroups_ = info_->getNLocalCutoffGroups();
62 >    // gather the information for atomtype IDs (atids):
63 >    idents = info_->getIdentArray();
64 >    AtomLocalToGlobal = info_->getGlobalAtomIndices();
65 >    cgLocalToGlobal = info_->getGlobalGroupIndices();
66 >    vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
67  
68 <    AtomCommIntColumn = new Communicator<Column,int>(nLocal);
67 <    AtomCommRealColumn = new Communicator<Column,RealType>(nLocal);
68 <    AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal);
69 <    AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal);
68 >    massFactors = info_->getMassFactors();
69  
70 <    cgCommIntRow = new Communicator<Row,int>(nGroups);
71 <    cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups);
72 <    cgCommIntColumn = new Communicator<Column,int>(nGroups);
73 <    cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups);
70 >    PairList* excludes = info_->getExcludedInteractions();
71 >    PairList* oneTwo = info_->getOneTwoInteractions();
72 >    PairList* oneThree = info_->getOneThreeInteractions();
73 >    PairList* oneFour = info_->getOneFourInteractions();
74  
75 <    int nAtomsInRow = AtomCommIntRow->getSize();
76 <    int nAtomsInCol = AtomCommIntColumn->getSize();
77 <    int nGroupsInRow = cgCommIntRow->getSize();
78 <    int nGroupsInCol = cgCommIntColumn->getSize();
75 > #ifdef IS_MPI
76 >
77 >    AtomCommIntRow = new Communicator<Row,int>(nLocal_);
78 >    AtomCommRealRow = new Communicator<Row,RealType>(nLocal_);
79 >    AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_);
80 >    AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_);
81 >    AtomCommPotRow = new Communicator<Row,potVec>(nLocal_);
82  
83 +    AtomCommIntColumn = new Communicator<Column,int>(nLocal_);
84 +    AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_);
85 +    AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_);
86 +    AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_);
87 +    AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_);
88 +
89 +    cgCommIntRow = new Communicator<Row,int>(nGroups_);
90 +    cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_);
91 +    cgCommIntColumn = new Communicator<Column,int>(nGroups_);
92 +    cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_);
93 +
94 +    nAtomsInRow_ = AtomCommIntRow->getSize();
95 +    nAtomsInCol_ = AtomCommIntColumn->getSize();
96 +    nGroupsInRow_ = cgCommIntRow->getSize();
97 +    nGroupsInCol_ = cgCommIntColumn->getSize();
98 +
99      // Modify the data storage objects with the correct layouts and sizes:
100 <    atomRowData.resize(nAtomsInRow);
100 >    atomRowData.resize(nAtomsInRow_);
101      atomRowData.setStorageLayout(storageLayout_);
102 <    atomColData.resize(nAtomsInCol);
102 >    atomColData.resize(nAtomsInCol_);
103      atomColData.setStorageLayout(storageLayout_);
104 <    cgRowData.resize(nGroupsInRow);
104 >    cgRowData.resize(nGroupsInRow_);
105      cgRowData.setStorageLayout(DataStorage::dslPosition);
106 <    cgColData.resize(nGroupsInCol);
106 >    cgColData.resize(nGroupsInCol_);
107      cgColData.setStorageLayout(DataStorage::dslPosition);
108 +        
109 +    identsRow.resize(nAtomsInRow_);
110 +    identsCol.resize(nAtomsInCol_);
111      
112 <    vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES,
113 <                                      vector<RealType> (nAtomsInRow, 0.0));
93 <    vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES,
94 <                                      vector<RealType> (nAtomsInCol, 0.0));
95 <
96 <
97 <    vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0);
112 >    AtomCommIntRow->gather(idents, identsRow);
113 >    AtomCommIntColumn->gather(idents, identsCol);
114      
99    // gather the information for atomtype IDs (atids):
100    vector<int> identsLocal = info_->getIdentArray();
101    identsRow.reserve(nAtomsInRow);
102    identsCol.reserve(nAtomsInCol);
103    
104    AtomCommIntRow->gather(identsLocal, identsRow);
105    AtomCommIntColumn->gather(identsLocal, identsCol);
106    
107    AtomLocalToGlobal = info_->getGlobalAtomIndices();
115      AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
116      AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
117      
111    cgLocalToGlobal = info_->getGlobalGroupIndices();
118      cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
119      cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
120  
121 <    // still need:
122 <    // topoDist
123 <    // exclude
121 >    AtomCommRealRow->gather(massFactors, massFactorsRow);
122 >    AtomCommRealColumn->gather(massFactors, massFactorsCol);
123 >
124 >    groupListRow_.clear();
125 >    groupListRow_.resize(nGroupsInRow_);
126 >    for (int i = 0; i < nGroupsInRow_; i++) {
127 >      int gid = cgRowToGlobal[i];
128 >      for (int j = 0; j < nAtomsInRow_; j++) {
129 >        int aid = AtomRowToGlobal[j];
130 >        if (globalGroupMembership[aid] == gid)
131 >          groupListRow_[i].push_back(j);
132 >      }      
133 >    }
134 >
135 >    groupListCol_.clear();
136 >    groupListCol_.resize(nGroupsInCol_);
137 >    for (int i = 0; i < nGroupsInCol_; i++) {
138 >      int gid = cgColToGlobal[i];
139 >      for (int j = 0; j < nAtomsInCol_; j++) {
140 >        int aid = AtomColToGlobal[j];
141 >        if (globalGroupMembership[aid] == gid)
142 >          groupListCol_[i].push_back(j);
143 >      }      
144 >    }
145 >
146 >    excludesForAtom.clear();
147 >    excludesForAtom.resize(nAtomsInRow_);
148 >    toposForAtom.clear();
149 >    toposForAtom.resize(nAtomsInRow_);
150 >    topoDist.clear();
151 >    topoDist.resize(nAtomsInRow_);
152 >    for (int i = 0; i < nAtomsInRow_; i++) {
153 >      int iglob = AtomRowToGlobal[i];
154 >
155 >      for (int j = 0; j < nAtomsInCol_; j++) {
156 >        int jglob = AtomColToGlobal[j];
157 >
158 >        if (excludes->hasPair(iglob, jglob))
159 >          excludesForAtom[i].push_back(j);      
160 >        
161 >        if (oneTwo->hasPair(iglob, jglob)) {
162 >          toposForAtom[i].push_back(j);
163 >          topoDist[i].push_back(1);
164 >        } else {
165 >          if (oneThree->hasPair(iglob, jglob)) {
166 >            toposForAtom[i].push_back(j);
167 >            topoDist[i].push_back(2);
168 >          } else {
169 >            if (oneFour->hasPair(iglob, jglob)) {
170 >              toposForAtom[i].push_back(j);
171 >              topoDist[i].push_back(3);
172 >            }
173 >          }
174 >        }
175 >      }      
176 >    }
177 >
178 > #endif
179 >
180 >    groupList_.clear();
181 >    groupList_.resize(nGroups_);
182 >    for (int i = 0; i < nGroups_; i++) {
183 >      int gid = cgLocalToGlobal[i];
184 >      for (int j = 0; j < nLocal_; j++) {
185 >        int aid = AtomLocalToGlobal[j];
186 >        if (globalGroupMembership[aid] == gid) {
187 >          groupList_[i].push_back(j);
188 >        }
189 >      }      
190 >    }
191 >
192 >    excludesForAtom.clear();
193 >    excludesForAtom.resize(nLocal_);
194 >    toposForAtom.clear();
195 >    toposForAtom.resize(nLocal_);
196 >    topoDist.clear();
197 >    topoDist.resize(nLocal_);
198 >
199 >    for (int i = 0; i < nLocal_; i++) {
200 >      int iglob = AtomLocalToGlobal[i];
201 >
202 >      for (int j = 0; j < nLocal_; j++) {
203 >        int jglob = AtomLocalToGlobal[j];
204 >
205 >        if (excludes->hasPair(iglob, jglob))
206 >          excludesForAtom[i].push_back(j);              
207 >        
208 >        if (oneTwo->hasPair(iglob, jglob)) {
209 >          toposForAtom[i].push_back(j);
210 >          topoDist[i].push_back(1);
211 >        } else {
212 >          if (oneThree->hasPair(iglob, jglob)) {
213 >            toposForAtom[i].push_back(j);
214 >            topoDist[i].push_back(2);
215 >          } else {
216 >            if (oneFour->hasPair(iglob, jglob)) {
217 >              toposForAtom[i].push_back(j);
218 >              topoDist[i].push_back(3);
219 >            }
220 >          }
221 >        }
222 >      }      
223 >    }
224 >    
225 >    createGtypeCutoffMap();
226 >
227 >  }
228 >  
229 >  void ForceMatrixDecomposition::createGtypeCutoffMap() {
230 >    
231 >    RealType tol = 1e-6;
232 >    RealType rc;
233 >    int atid;
234 >    set<AtomType*> atypes = info_->getSimulatedAtomTypes();
235 >    map<int, RealType> atypeCutoff;
236 >      
237 >    for (set<AtomType*>::iterator at = atypes.begin();
238 >         at != atypes.end(); ++at){
239 >      atid = (*at)->getIdent();
240 >      if (userChoseCutoff_)
241 >        atypeCutoff[atid] = userCutoff_;
242 >      else
243 >        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
244 >    }
245 >
246 >    vector<RealType> gTypeCutoffs;
247 >    // first we do a single loop over the cutoff groups to find the
248 >    // largest cutoff for any atypes present in this group.
249 > #ifdef IS_MPI
250 >    vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
251 >    groupRowToGtype.resize(nGroupsInRow_);
252 >    for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
253 >      vector<int> atomListRow = getAtomsInGroupRow(cg1);
254 >      for (vector<int>::iterator ia = atomListRow.begin();
255 >           ia != atomListRow.end(); ++ia) {            
256 >        int atom1 = (*ia);
257 >        atid = identsRow[atom1];
258 >        if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
259 >          groupCutoffRow[cg1] = atypeCutoff[atid];
260 >        }
261 >      }
262 >
263 >      bool gTypeFound = false;
264 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
265 >        if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
266 >          groupRowToGtype[cg1] = gt;
267 >          gTypeFound = true;
268 >        }
269 >      }
270 >      if (!gTypeFound) {
271 >        gTypeCutoffs.push_back( groupCutoffRow[cg1] );
272 >        groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
273 >      }
274 >      
275 >    }
276 >    vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
277 >    groupColToGtype.resize(nGroupsInCol_);
278 >    for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
279 >      vector<int> atomListCol = getAtomsInGroupColumn(cg2);
280 >      for (vector<int>::iterator jb = atomListCol.begin();
281 >           jb != atomListCol.end(); ++jb) {            
282 >        int atom2 = (*jb);
283 >        atid = identsCol[atom2];
284 >        if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
285 >          groupCutoffCol[cg2] = atypeCutoff[atid];
286 >        }
287 >      }
288 >      bool gTypeFound = false;
289 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
290 >        if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
291 >          groupColToGtype[cg2] = gt;
292 >          gTypeFound = true;
293 >        }
294 >      }
295 >      if (!gTypeFound) {
296 >        gTypeCutoffs.push_back( groupCutoffCol[cg2] );
297 >        groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
298 >      }
299 >    }
300 > #else
301 >
302 >    vector<RealType> groupCutoff(nGroups_, 0.0);
303 >    groupToGtype.resize(nGroups_);
304 >    for (int cg1 = 0; cg1 < nGroups_; cg1++) {
305 >
306 >      groupCutoff[cg1] = 0.0;
307 >      vector<int> atomList = getAtomsInGroupRow(cg1);
308 >
309 >      for (vector<int>::iterator ia = atomList.begin();
310 >           ia != atomList.end(); ++ia) {            
311 >        int atom1 = (*ia);
312 >        atid = idents[atom1];
313 >        if (atypeCutoff[atid] > groupCutoff[cg1]) {
314 >          groupCutoff[cg1] = atypeCutoff[atid];
315 >        }
316 >      }
317 >
318 >      bool gTypeFound = false;
319 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
320 >        if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
321 >          groupToGtype[cg1] = gt;
322 >          gTypeFound = true;
323 >        }
324 >      }
325 >      if (!gTypeFound) {
326 >        gTypeCutoffs.push_back( groupCutoff[cg1] );
327 >        groupToGtype[cg1] = gTypeCutoffs.size() - 1;
328 >      }      
329 >    }
330   #endif
331 +
332 +    // Now we find the maximum group cutoff value present in the simulation
333 +
334 +    RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end());
335 +
336 + #ifdef IS_MPI
337 +    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX);
338 + #endif
339 +    
340 +    RealType tradRcut = groupMax;
341 +
342 +    for (int i = 0; i < gTypeCutoffs.size();  i++) {
343 +      for (int j = 0; j < gTypeCutoffs.size();  j++) {      
344 +        RealType thisRcut;
345 +        switch(cutoffPolicy_) {
346 +        case TRADITIONAL:
347 +          thisRcut = tradRcut;
348 +          break;
349 +        case MIX:
350 +          thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
351 +          break;
352 +        case MAX:
353 +          thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
354 +          break;
355 +        default:
356 +          sprintf(painCave.errMsg,
357 +                  "ForceMatrixDecomposition::createGtypeCutoffMap "
358 +                  "hit an unknown cutoff policy!\n");
359 +          painCave.severity = OPENMD_ERROR;
360 +          painCave.isFatal = 1;
361 +          simError();
362 +          break;
363 +        }
364 +
365 +        pair<int,int> key = make_pair(i,j);
366 +        gTypeCutoffMap[key].first = thisRcut;
367 +
368 +        if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
369 +
370 +        gTypeCutoffMap[key].second = thisRcut*thisRcut;
371 +        
372 +        gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
373 +
374 +        // sanity check
375 +        
376 +        if (userChoseCutoff_) {
377 +          if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
378 +            sprintf(painCave.errMsg,
379 +                    "ForceMatrixDecomposition::createGtypeCutoffMap "
380 +                    "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
381 +            painCave.severity = OPENMD_ERROR;
382 +            painCave.isFatal = 1;
383 +            simError();            
384 +          }
385 +        }
386 +      }
387 +    }
388    }
389 +
390 +
391 +  groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
392 +    int i, j;  
393 + #ifdef IS_MPI
394 +    i = groupRowToGtype[cg1];
395 +    j = groupColToGtype[cg2];
396 + #else
397 +    i = groupToGtype[cg1];
398 +    j = groupToGtype[cg2];
399 + #endif    
400 +    return gTypeCutoffMap[make_pair(i,j)];
401 +  }
402 +
403 +  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
404 +    for (int j = 0; j < toposForAtom[atom1].size(); j++) {
405 +      if (toposForAtom[atom1][j] == atom2)
406 +        return topoDist[atom1][j];
407 +    }
408 +    return 0;
409 +  }
410 +
411 +  void ForceMatrixDecomposition::zeroWorkArrays() {
412 +    pairwisePot = 0.0;
413 +    embeddingPot = 0.0;
414 +
415 + #ifdef IS_MPI
416 +    if (storageLayout_ & DataStorage::dslForce) {
417 +      fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
418 +      fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
419 +    }
420 +
421 +    if (storageLayout_ & DataStorage::dslTorque) {
422 +      fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
423 +      fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
424 +    }
425      
426 +    fill(pot_row.begin(), pot_row.end(),
427 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
428  
429 +    fill(pot_col.begin(), pot_col.end(),
430 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
431  
432 +    if (storageLayout_ & DataStorage::dslParticlePot) {    
433 +      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0);
434 +      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0);
435 +    }
436 +
437 +    if (storageLayout_ & DataStorage::dslDensity) {      
438 +      fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
439 +      fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
440 +    }
441 +
442 +    if (storageLayout_ & DataStorage::dslFunctional) {  
443 +      fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0);
444 +      fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0);
445 +    }
446 +
447 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
448 +      fill(atomRowData.functionalDerivative.begin(),
449 +           atomRowData.functionalDerivative.end(), 0.0);
450 +      fill(atomColData.functionalDerivative.begin(),
451 +           atomColData.functionalDerivative.end(), 0.0);
452 +    }
453 +
454 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
455 +      fill(atomRowData.skippedCharge.begin(),
456 +           atomRowData.skippedCharge.end(), 0.0);
457 +      fill(atomColData.skippedCharge.begin(),
458 +           atomColData.skippedCharge.end(), 0.0);
459 +    }
460 +
461 + #else
462 +    
463 +    if (storageLayout_ & DataStorage::dslParticlePot) {      
464 +      fill(snap_->atomData.particlePot.begin(),
465 +           snap_->atomData.particlePot.end(), 0.0);
466 +    }
467 +    
468 +    if (storageLayout_ & DataStorage::dslDensity) {      
469 +      fill(snap_->atomData.density.begin(),
470 +           snap_->atomData.density.end(), 0.0);
471 +    }
472 +    if (storageLayout_ & DataStorage::dslFunctional) {
473 +      fill(snap_->atomData.functional.begin(),
474 +           snap_->atomData.functional.end(), 0.0);
475 +    }
476 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
477 +      fill(snap_->atomData.functionalDerivative.begin(),
478 +           snap_->atomData.functionalDerivative.end(), 0.0);
479 +    }
480 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
481 +      fill(snap_->atomData.skippedCharge.begin(),
482 +           snap_->atomData.skippedCharge.end(), 0.0);
483 +    }
484 + #endif
485 +    
486 +  }
487 +
488 +
489    void ForceMatrixDecomposition::distributeData()  {
490      snap_ = sman_->getCurrentSnapshot();
491      storageLayout_ = sman_->getStorageLayout();
# Line 155 | Line 521 | namespace OpenMD {
521   #endif      
522    }
523    
524 +  /* collects information obtained during the pre-pair loop onto local
525 +   * data structures.
526 +   */
527    void ForceMatrixDecomposition::collectIntermediateData() {
528      snap_ = sman_->getCurrentSnapshot();
529      storageLayout_ = sman_->getStorageLayout();
# Line 166 | Line 535 | namespace OpenMD {
535                                 snap_->atomData.density);
536        
537        int n = snap_->atomData.density.size();
538 <      std::vector<RealType> rho_tmp(n, 0.0);
538 >      vector<RealType> rho_tmp(n, 0.0);
539        AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
540        for (int i = 0; i < n; i++)
541          snap_->atomData.density[i] += rho_tmp[i];
542      }
543   #endif
544    }
545 <  
545 >
546 >  /*
547 >   * redistributes information obtained during the pre-pair loop out to
548 >   * row and column-indexed data structures
549 >   */
550    void ForceMatrixDecomposition::distributeIntermediateData() {
551      snap_ = sman_->getCurrentSnapshot();
552      storageLayout_ = sman_->getStorageLayout();
# Line 215 | Line 588 | namespace OpenMD {
588      
589      if (storageLayout_ & DataStorage::dslTorque) {
590  
591 <      int nt = snap_->atomData.force.size();
591 >      int nt = snap_->atomData.torque.size();
592        vector<Vector3d> trq_tmp(nt, V3Zero);
593  
594        AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
595 <      for (int i = 0; i < n; i++) {
595 >      for (int i = 0; i < nt; i++) {
596          snap_->atomData.torque[i] += trq_tmp[i];
597          trq_tmp[i] = 0.0;
598        }
599        
600        AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
601 <      for (int i = 0; i < n; i++)
601 >      for (int i = 0; i < nt; i++)
602          snap_->atomData.torque[i] += trq_tmp[i];
603      }
231    
232    int nLocal = snap_->getNumberOfAtoms();
604  
605 <    vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES,
606 <                                       vector<RealType> (nLocal, 0.0));
607 <    
608 <    for (int i = 0; i < N_INTERACTION_FAMILIES; i++) {
609 <      AtomCommRealRow->scatter(pot_row[i], pot_temp[i]);
610 <      for (int ii = 0;  ii < pot_temp[i].size(); ii++ ) {
611 <        pot_local[i] += pot_temp[i][ii];
605 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {
606 >
607 >      int ns = snap_->atomData.skippedCharge.size();
608 >      vector<RealType> skch_tmp(ns, 0.0);
609 >
610 >      AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
611 >      for (int i = 0; i < ns; i++) {
612 >        snap_->atomData.skippedCharge[i] = skch_tmp[i];
613 >        skch_tmp[i] = 0.0;
614        }
615 +      
616 +      AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
617 +      for (int i = 0; i < ns; i++)
618 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
619      }
620 +    
621 +    nLocal_ = snap_->getNumberOfAtoms();
622 +
623 +    vector<potVec> pot_temp(nLocal_,
624 +                            Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
625 +
626 +    // scatter/gather pot_row into the members of my column
627 +          
628 +    AtomCommPotRow->scatter(pot_row, pot_temp);
629 +
630 +    for (int ii = 0;  ii < pot_temp.size(); ii++ )
631 +      pairwisePot += pot_temp[ii];
632 +    
633 +    fill(pot_temp.begin(), pot_temp.end(),
634 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
635 +      
636 +    AtomCommPotColumn->scatter(pot_col, pot_temp);    
637 +    
638 +    for (int ii = 0;  ii < pot_temp.size(); ii++ )
639 +      pairwisePot += pot_temp[ii];    
640   #endif
641 +
642    }
643  
644 +  int ForceMatrixDecomposition::getNAtomsInRow() {  
645 + #ifdef IS_MPI
646 +    return nAtomsInRow_;
647 + #else
648 +    return nLocal_;
649 + #endif
650 +  }
651 +
652 +  /**
653 +   * returns the list of atoms belonging to this group.  
654 +   */
655 +  vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
656 + #ifdef IS_MPI
657 +    return groupListRow_[cg1];
658 + #else
659 +    return groupList_[cg1];
660 + #endif
661 +  }
662 +
663 +  vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
664 + #ifdef IS_MPI
665 +    return groupListCol_[cg2];
666 + #else
667 +    return groupList_[cg2];
668 + #endif
669 +  }
670    
671    Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
672      Vector3d d;
# Line 284 | Line 708 | namespace OpenMD {
708      snap_->wrapVector(d);
709      return d;    
710    }
711 +
712 +  RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
713 + #ifdef IS_MPI
714 +    return massFactorsRow[atom1];
715 + #else
716 +    return massFactors[atom1];
717 + #endif
718 +  }
719 +
720 +  RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
721 + #ifdef IS_MPI
722 +    return massFactorsCol[atom2];
723 + #else
724 +    return massFactors[atom2];
725 + #endif
726 +
727 +  }
728      
729    Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
730      Vector3d d;
# Line 298 | Line 739 | namespace OpenMD {
739      return d;    
740    }
741  
742 +  vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
743 +    return excludesForAtom[atom1];
744 +  }
745 +
746 +  /**
747 +   * We need to exclude some overcounted interactions that result from
748 +   * the parallel decomposition.
749 +   */
750 +  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
751 +    int unique_id_1, unique_id_2;
752 +
753 + #ifdef IS_MPI
754 +    // in MPI, we have to look up the unique IDs for each atom
755 +    unique_id_1 = AtomRowToGlobal[atom1];
756 +    unique_id_2 = AtomColToGlobal[atom2];
757 +
758 +    // this situation should only arise in MPI simulations
759 +    if (unique_id_1 == unique_id_2) return true;
760 +    
761 +    // this prevents us from doing the pair on multiple processors
762 +    if (unique_id_1 < unique_id_2) {
763 +      if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
764 +    } else {
765 +      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
766 +    }
767 + #endif
768 +    return false;
769 +  }
770 +
771 +  /**
772 +   * We need to handle the interactions for atoms who are involved in
773 +   * the same rigid body as well as some short range interactions
774 +   * (bonds, bends, torsions) differently from other interactions.
775 +   * We'll still visit the pairwise routines, but with a flag that
776 +   * tells those routines to exclude the pair from direct long range
777 +   * interactions.  Some indirect interactions (notably reaction
778 +   * field) must still be handled for these pairs.
779 +   */
780 +  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
781 +    int unique_id_2;
782 +    
783 + #ifdef IS_MPI
784 +    // in MPI, we have to look up the unique IDs for the row atom.
785 +    unique_id_2 = AtomColToGlobal[atom2];
786 + #else
787 +    // in the normal loop, the atom numbers are unique
788 +    unique_id_2 = atom2;
789 + #endif
790 +    
791 +    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
792 +         i != excludesForAtom[atom1].end(); ++i) {
793 +      if ( (*i) == unique_id_2 ) return true;
794 +    }
795 +
796 +    return false;
797 +  }
798 +
799 +
800    void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
801   #ifdef IS_MPI
802      atomRowData.force[atom1] += fg;
# Line 312 | Line 811 | namespace OpenMD {
811   #else
812      snap_->atomData.force[atom2] += fg;
813   #endif
315
814    }
815  
816      // filling interaction blocks with pointers
817 <  InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) {    
817 >  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
818 >                                                     int atom1, int atom2) {
819  
820 <    InteractionData idat;
820 >    idat.excluded = excludeAtomPair(atom1, atom2);
821 >  
822   #ifdef IS_MPI
823 +    
824 +    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
825 +                             ff_->getAtomType(identsCol[atom2]) );
826 +    
827      if (storageLayout_ & DataStorage::dslAmat) {
828        idat.A1 = &(atomRowData.aMat[atom1]);
829        idat.A2 = &(atomColData.aMat[atom2]);
830      }
831 <
831 >    
832      if (storageLayout_ & DataStorage::dslElectroFrame) {
833        idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
834        idat.eFrame2 = &(atomColData.electroFrame[atom2]);
# Line 340 | Line 844 | namespace OpenMD {
844        idat.rho2 = &(atomColData.density[atom2]);
845      }
846  
847 +    if (storageLayout_ & DataStorage::dslFunctional) {
848 +      idat.frho1 = &(atomRowData.functional[atom1]);
849 +      idat.frho2 = &(atomColData.functional[atom2]);
850 +    }
851 +
852      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
853        idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
854        idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
855      }
856 +
857 +    if (storageLayout_ & DataStorage::dslParticlePot) {
858 +      idat.particlePot1 = &(atomRowData.particlePot[atom1]);
859 +      idat.particlePot2 = &(atomColData.particlePot[atom2]);
860 +    }
861 +
862 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
863 +      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
864 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
865 +    }
866 +
867   #else
868 +
869 +    idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
870 +                             ff_->getAtomType(idents[atom2]) );
871 +
872      if (storageLayout_ & DataStorage::dslAmat) {
873        idat.A1 = &(snap_->atomData.aMat[atom1]);
874        idat.A2 = &(snap_->atomData.aMat[atom2]);
# Line 360 | Line 884 | namespace OpenMD {
884        idat.t2 = &(snap_->atomData.torque[atom2]);
885      }
886  
887 <    if (storageLayout_ & DataStorage::dslDensity) {
887 >    if (storageLayout_ & DataStorage::dslDensity) {    
888        idat.rho1 = &(snap_->atomData.density[atom1]);
889        idat.rho2 = &(snap_->atomData.density[atom2]);
890      }
891  
892 +    if (storageLayout_ & DataStorage::dslFunctional) {
893 +      idat.frho1 = &(snap_->atomData.functional[atom1]);
894 +      idat.frho2 = &(snap_->atomData.functional[atom2]);
895 +    }
896 +
897      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
898        idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
899        idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
900      }
901 +
902 +    if (storageLayout_ & DataStorage::dslParticlePot) {
903 +      idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
904 +      idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
905 +    }
906 +
907 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
908 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
909 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
910 +    }
911   #endif
373    
912    }
913 <  InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){
914 <    InteractionData idat;
915 <    skippedCharge1
378 <      skippedCharge2
379 <      rij
380 <      d
381 <    electroMult
382 <    sw
383 <    f
913 >
914 >  
915 >  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
916   #ifdef IS_MPI
917 +    pot_row[atom1] += 0.5 *  *(idat.pot);
918 +    pot_col[atom2] += 0.5 *  *(idat.pot);
919  
920 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
921 <      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
922 <      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
923 <    }
390 <    if (storageLayout_ & DataStorage::dslTorque) {
391 <      idat.t1 = &(atomRowData.torque[atom1]);
392 <      idat.t2 = &(atomColData.torque[atom2]);
393 <    }
920 >    atomRowData.force[atom1] += *(idat.f1);
921 >    atomColData.force[atom2] -= *(idat.f1);
922 > #else
923 >    pairwisePot += *(idat.pot);
924  
925 +    snap_->atomData.force[atom1] += *(idat.f1);
926 +    snap_->atomData.force[atom2] -= *(idat.f1);
927 + #endif
928      
929    }
397  SelfData ForceMatrixDecomposition::fillSelfData(int atom1) {
398  }
930  
400
931    /*
932     * buildNeighborList
933     *
934     * first element of pair is row-indexed CutoffGroup
935     * second element of pair is column-indexed CutoffGroup
936     */
937 <  vector<pair<int, int> >  buildNeighborList() {
938 <    Vector3d dr, invWid, rs, shift;
939 <    Vector3i cc, m1v, m2s;
940 <    RealType rrNebr;
941 <    int c, j1, j2, m1, m1x, m1y, m1z, m2, n, offset;
937 >  vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
938 >      
939 >    vector<pair<int, int> > neighborList;
940 >    groupCutoffs cuts;
941 >    bool doAllPairs = false;
942  
943 + #ifdef IS_MPI
944 +    cellListRow_.clear();
945 +    cellListCol_.clear();
946 + #else
947 +    cellList_.clear();
948 + #endif
949  
950 <    vector<pair<int, int> > neighborList;  
951 <    Vector3i nCells;
952 <    Vector3d invWid, r;
417 <
418 <    rList_ = (rCut_ + skinThickness_);
419 <    rl2 = rList_ * rList_;
420 <
421 <    snap_ = sman_->getCurrentSnapshot();
950 >    RealType rList_ = (largestRcut_ + skinThickness_);
951 >    RealType rl2 = rList_ * rList_;
952 >    Snapshot* snap_ = sman_->getCurrentSnapshot();
953      Mat3x3d Hmat = snap_->getHmat();
954      Vector3d Hx = Hmat.getColumn(0);
955      Vector3d Hy = Hmat.getColumn(1);
956      Vector3d Hz = Hmat.getColumn(2);
957  
958 <    nCells.x() = (int) ( Hx.length() )/ rList_;
959 <    nCells.y() = (int) ( Hy.length() )/ rList_;
960 <    nCells.z() = (int) ( Hz.length() )/ rList_;
958 >    nCells_.x() = (int) ( Hx.length() )/ rList_;
959 >    nCells_.y() = (int) ( Hy.length() )/ rList_;
960 >    nCells_.z() = (int) ( Hz.length() )/ rList_;
961  
962 <    for (i = 0; i < nGroupsInRow; i++) {
432 <      rs = cgRowData.position[i];
433 <      snap_->scaleVector(rs);    
434 <    }
962 >    // handle small boxes where the cell offsets can end up repeating cells
963      
964 +    if (nCells_.x() < 3) doAllPairs = true;
965 +    if (nCells_.y() < 3) doAllPairs = true;
966 +    if (nCells_.z() < 3) doAllPairs = true;
967  
968 <    VDiv (invWid, cells, region);
969 <    for (n = nMol; n < nMol + cells.componentProduct(); n ++) cellList[n] = -1;
970 <    for (n = 0; n < nMol; n ++) {
971 <      VSAdd (rs, mol[n].r, 0.5, region);
972 <      VMul (cc, rs, invWid);
442 <      c = VLinear (cc, cells) + nMol;
443 <      cellList[n] = cellList[c];
444 <      cellList[c] = n;
445 <    }
446 <    nebrTabLen = 0;
447 <    for (m1z = 0; m1z < cells.z(); m1z++) {
448 <      for (m1y = 0; m1y < cells.y(); m1y++) {
449 <        for (m1x = 0; m1x < cells.x(); m1x++) {
450 <          Vector3i m1v(m1x, m1y, m1z);
451 <          m1 = VLinear(m1v, cells) + nMol;
452 <          for (offset = 0; offset < nOffset_; offset++) {
453 <            m2v = m1v + cellOffsets_[offset];
454 <            shift = V3Zero();
968 >    Mat3x3d invHmat = snap_->getInvHmat();
969 >    Vector3d rs, scaled, dr;
970 >    Vector3i whichCell;
971 >    int cellIndex;
972 >    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
973  
974 <            if (m2v.x() >= cells.x) {
975 <              m2v.x() = 0;          
976 <              shift.x() = region.x();  
977 <            } else if (m2v.x() < 0) {
978 <              m2v.x() = cells.x() - 1;
979 <              shift.x() = - region.x();
462 <            }
974 > #ifdef IS_MPI
975 >    cellListRow_.resize(nCtot);
976 >    cellListCol_.resize(nCtot);
977 > #else
978 >    cellList_.resize(nCtot);
979 > #endif
980  
981 <            if (m2v.y() >= cells.y()) {
982 <              m2v.y() = 0;          
466 <              shift.y() = region.y();  
467 <            } else if (m2v.y() < 0) {
468 <              m2v.y() = cells.y() - 1;
469 <              shift.y() = - region.y();
470 <            }
981 >    if (!doAllPairs) {
982 > #ifdef IS_MPI
983  
984 <            m2 = VLinear (m2v, cells) + nMol;
985 <            for (j1 = cellList[m1]; j1 >= 0; j1 = cellList[j1]) {
986 <              for (j2 = cellList[m2]; j2 >= 0; j2 = cellList[j2]) {
987 <                if (m1 != m2 || j2 < j1) {
988 <                  dr = mol[j1].r - mol[j2].r;
989 <                  VSub (dr, mol[j1].r, mol[j2].r);
990 <                  VVSub (dr, shift);
991 <                  if (VLenSq (dr) < rrNebr) {
992 <                    neighborList.push_back(make_pair(j1, j2));
984 >      for (int i = 0; i < nGroupsInRow_; i++) {
985 >        rs = cgRowData.position[i];
986 >        
987 >        // scaled positions relative to the box vectors
988 >        scaled = invHmat * rs;
989 >        
990 >        // wrap the vector back into the unit box by subtracting integer box
991 >        // numbers
992 >        for (int j = 0; j < 3; j++) {
993 >          scaled[j] -= roundMe(scaled[j]);
994 >          scaled[j] += 0.5;
995 >        }
996 >        
997 >        // find xyz-indices of cell that cutoffGroup is in.
998 >        whichCell.x() = nCells_.x() * scaled.x();
999 >        whichCell.y() = nCells_.y() * scaled.y();
1000 >        whichCell.z() = nCells_.z() * scaled.z();
1001 >        
1002 >        // find single index of this cell:
1003 >        cellIndex = Vlinear(whichCell, nCells_);
1004 >        
1005 >        // add this cutoff group to the list of groups in this cell;
1006 >        cellListRow_[cellIndex].push_back(i);
1007 >      }
1008 >      
1009 >      for (int i = 0; i < nGroupsInCol_; i++) {
1010 >        rs = cgColData.position[i];
1011 >        
1012 >        // scaled positions relative to the box vectors
1013 >        scaled = invHmat * rs;
1014 >        
1015 >        // wrap the vector back into the unit box by subtracting integer box
1016 >        // numbers
1017 >        for (int j = 0; j < 3; j++) {
1018 >          scaled[j] -= roundMe(scaled[j]);
1019 >          scaled[j] += 0.5;
1020 >        }
1021 >        
1022 >        // find xyz-indices of cell that cutoffGroup is in.
1023 >        whichCell.x() = nCells_.x() * scaled.x();
1024 >        whichCell.y() = nCells_.y() * scaled.y();
1025 >        whichCell.z() = nCells_.z() * scaled.z();
1026 >        
1027 >        // find single index of this cell:
1028 >        cellIndex = Vlinear(whichCell, nCells_);
1029 >        
1030 >        // add this cutoff group to the list of groups in this cell;
1031 >        cellListCol_[cellIndex].push_back(i);
1032 >      }
1033 > #else
1034 >      for (int i = 0; i < nGroups_; i++) {
1035 >        rs = snap_->cgData.position[i];
1036 >        
1037 >        // scaled positions relative to the box vectors
1038 >        scaled = invHmat * rs;
1039 >        
1040 >        // wrap the vector back into the unit box by subtracting integer box
1041 >        // numbers
1042 >        for (int j = 0; j < 3; j++) {
1043 >          scaled[j] -= roundMe(scaled[j]);
1044 >          scaled[j] += 0.5;
1045 >        }
1046 >        
1047 >        // find xyz-indices of cell that cutoffGroup is in.
1048 >        whichCell.x() = nCells_.x() * scaled.x();
1049 >        whichCell.y() = nCells_.y() * scaled.y();
1050 >        whichCell.z() = nCells_.z() * scaled.z();
1051 >        
1052 >        // find single index of this cell:
1053 >        cellIndex = Vlinear(whichCell, nCells_);      
1054 >        
1055 >        // add this cutoff group to the list of groups in this cell;
1056 >        cellList_[cellIndex].push_back(i);
1057 >      }
1058 > #endif
1059 >
1060 >      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1061 >        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1062 >          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1063 >            Vector3i m1v(m1x, m1y, m1z);
1064 >            int m1 = Vlinear(m1v, nCells_);
1065 >            
1066 >            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1067 >                 os != cellOffsets_.end(); ++os) {
1068 >              
1069 >              Vector3i m2v = m1v + (*os);
1070 >              
1071 >              if (m2v.x() >= nCells_.x()) {
1072 >                m2v.x() = 0;          
1073 >              } else if (m2v.x() < 0) {
1074 >                m2v.x() = nCells_.x() - 1;
1075 >              }
1076 >              
1077 >              if (m2v.y() >= nCells_.y()) {
1078 >                m2v.y() = 0;          
1079 >              } else if (m2v.y() < 0) {
1080 >                m2v.y() = nCells_.y() - 1;
1081 >              }
1082 >              
1083 >              if (m2v.z() >= nCells_.z()) {
1084 >                m2v.z() = 0;          
1085 >              } else if (m2v.z() < 0) {
1086 >                m2v.z() = nCells_.z() - 1;
1087 >              }
1088 >              
1089 >              int m2 = Vlinear (m2v, nCells_);
1090 >              
1091 > #ifdef IS_MPI
1092 >              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1093 >                   j1 != cellListRow_[m1].end(); ++j1) {
1094 >                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1095 >                     j2 != cellListCol_[m2].end(); ++j2) {
1096 >                  
1097 >                  // Always do this if we're in different cells or if
1098 >                  // we're in the same cell and the global index of the
1099 >                  // j2 cutoff group is less than the j1 cutoff group
1100 >                  
1101 >                  if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1102 >                    dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1103 >                    snap_->wrapVector(dr);
1104 >                    cuts = getGroupCutoffs( (*j1), (*j2) );
1105 >                    if (dr.lengthSquare() < cuts.third) {
1106 >                      neighborList.push_back(make_pair((*j1), (*j2)));
1107 >                    }
1108                    }
1109                  }
1110                }
1111 + #else
1112 +              
1113 +              for (vector<int>::iterator j1 = cellList_[m1].begin();
1114 +                   j1 != cellList_[m1].end(); ++j1) {
1115 +                for (vector<int>::iterator j2 = cellList_[m2].begin();
1116 +                     j2 != cellList_[m2].end(); ++j2) {
1117 +                  
1118 +                  // Always do this if we're in different cells or if
1119 +                  // we're in the same cell and the global index of the
1120 +                  // j2 cutoff group is less than the j1 cutoff group
1121 +                  
1122 +                  if (m2 != m1 || (*j2) < (*j1)) {
1123 +                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1124 +                    snap_->wrapVector(dr);
1125 +                    cuts = getGroupCutoffs( (*j1), (*j2) );
1126 +                    if (dr.lengthSquare() < cuts.third) {
1127 +                      neighborList.push_back(make_pair((*j1), (*j2)));
1128 +                    }
1129 +                  }
1130 +                }
1131 +              }
1132 + #endif
1133              }
1134            }
1135          }
1136        }
1137 +    } else {
1138 +      // branch to do all cutoff group pairs
1139 + #ifdef IS_MPI
1140 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1141 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {      
1142 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1143 +          snap_->wrapVector(dr);
1144 +          cuts = getGroupCutoffs( j1, j2 );
1145 +          if (dr.lengthSquare() < cuts.third) {
1146 +            neighborList.push_back(make_pair(j1, j2));
1147 +          }
1148 +        }
1149 +      }
1150 + #else
1151 +      for (int j1 = 0; j1 < nGroups_ - 1; j1++) {
1152 +        for (int j2 = j1 + 1; j2 < nGroups_; j2++) {
1153 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1154 +          snap_->wrapVector(dr);
1155 +          cuts = getGroupCutoffs( j1, j2 );
1156 +          if (dr.lengthSquare() < cuts.third) {
1157 +            neighborList.push_back(make_pair(j1, j2));
1158 +          }
1159 +        }
1160 +      }        
1161 + #endif
1162      }
1163 +      
1164 +    // save the local cutoff group positions for the check that is
1165 +    // done on each loop:
1166 +    saved_CG_positions_.clear();
1167 +    for (int i = 0; i < nGroups_; i++)
1168 +      saved_CG_positions_.push_back(snap_->cgData.position[i]);
1169 +    
1170 +    return neighborList;
1171    }
490
491  
1172   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines