ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing:
branches/development/src/parallel/ForceDecomposition.cpp (file contents), Revision 1547 by gezelter, Mon Apr 11 18:44:16 2011 UTC vs.
trunk/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 2061 by gezelter, Tue Mar 3 16:24:44 2015 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42 < #include "parallel/ForceDecomposition.hpp"
42 > #include "parallel/ForceMatrixDecomposition.hpp"
43   #include "math/SquareMatrix3.hpp"
44   #include "nonbonded/NonBondedInteraction.hpp"
45   #include "brains/SnapshotManager.hpp"
46 + #include "brains/PairList.hpp"
47  
48   using namespace std;
49   namespace OpenMD {
50  
51 +  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52 +
53 +    // Row and colum scans must visit all surrounding cells
54 +    cellOffsets_.clear();
55 +    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
56 +    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
57 +    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                          
58 +    cellOffsets_.push_back( Vector3i(-1, 0,-1) );
59 +    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
60 +    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
61 +    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
62 +    cellOffsets_.push_back( Vector3i( 0, 1,-1) );      
63 +    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
64 +    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
65 +    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
66 +    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
67 +    cellOffsets_.push_back( Vector3i(-1, 0, 0) );      
68 +    cellOffsets_.push_back( Vector3i( 0, 0, 0) );
69 +    cellOffsets_.push_back( Vector3i( 1, 0, 0) );
70 +    cellOffsets_.push_back( Vector3i(-1, 1, 0) );
71 +    cellOffsets_.push_back( Vector3i( 0, 1, 0) );
72 +    cellOffsets_.push_back( Vector3i( 1, 1, 0) );
73 +    cellOffsets_.push_back( Vector3i(-1,-1, 1) );
74 +    cellOffsets_.push_back( Vector3i( 0,-1, 1) );
75 +    cellOffsets_.push_back( Vector3i( 1,-1, 1) );
76 +    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
77 +    cellOffsets_.push_back( Vector3i( 0, 0, 1) );
78 +    cellOffsets_.push_back( Vector3i( 1, 0, 1) );
79 +    cellOffsets_.push_back( Vector3i(-1, 1, 1) );
80 +    cellOffsets_.push_back( Vector3i( 0, 1, 1) );
81 +    cellOffsets_.push_back( Vector3i( 1, 1, 1) );
82 +  }
83 +
84 +
85    /**
86     * distributeInitialData is essentially a copy of the older fortran
87     * SimulationSetup
88     */
89 <  
90 <  void ForceDecomposition::distributeInitialData() {
91 < #ifdef IS_MPI    
92 <    Snapshot* snap = sman_->getCurrentSnapshot();
93 <    int nLocal = snap->getNumberOfAtoms();
94 <    int nGroups = snap->getNumberOfCutoffGroups();
89 >  void ForceMatrixDecomposition::distributeInitialData() {
90 >    snap_ = sman_->getCurrentSnapshot();
91 >    storageLayout_ = sman_->getStorageLayout();
92 >    ff_ = info_->getForceField();
93 >    nLocal_ = snap_->getNumberOfAtoms();
94 >  
95 >    nGroups_ = info_->getNLocalCutoffGroups();
96 >    // gather the information for atomtype IDs (atids):
97 >    idents = info_->getIdentArray();
98 >    regions = info_->getRegions();
99 >    AtomLocalToGlobal = info_->getGlobalAtomIndices();
100 >    cgLocalToGlobal = info_->getGlobalGroupIndices();
101 >    vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
102  
103 <    AtomCommIntI = new Communicator<Row,int>(nLocal);
61 <    AtomCommRealI = new Communicator<Row,RealType>(nLocal);
62 <    AtomCommVectorI = new Communicator<Row,Vector3d>(nLocal);
63 <    AtomCommMatrixI = new Communicator<Row,Mat3x3d>(nLocal);
103 >    massFactors = info_->getMassFactors();
104  
105 <    AtomCommIntJ = new Communicator<Column,int>(nLocal);
106 <    AtomCommRealJ = new Communicator<Column,RealType>(nLocal);
107 <    AtomCommVectorJ = new Communicator<Column,Vector3d>(nLocal);
108 <    AtomCommMatrixJ = new Communicator<Column,Mat3x3d>(nLocal);
105 >    PairList* excludes = info_->getExcludedInteractions();
106 >    PairList* oneTwo = info_->getOneTwoInteractions();
107 >    PairList* oneThree = info_->getOneThreeInteractions();
108 >    PairList* oneFour = info_->getOneFourInteractions();
109 >    
110 >    if (needVelocities_)
111 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition |
112 >                                     DataStorage::dslVelocity);
113 >    else
114 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition);
115 >    
116 > #ifdef IS_MPI
117 >
118 >    MPI_Comm row = rowComm.getComm();
119 >    MPI_Comm col = colComm.getComm();
120  
121 <    cgCommIntI = new Communicator<Row,int>(nGroups);
122 <    cgCommVectorI = new Communicator<Row,Vector3d>(nGroups);
123 <    cgCommIntJ = new Communicator<Column,int>(nGroups);
124 <    cgCommVectorJ = new Communicator<Column,Vector3d>(nGroups);
121 >    AtomPlanIntRow = new Plan<int>(row, nLocal_);
122 >    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
123 >    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
124 >    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
125 >    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
126  
127 <    int nAtomsInRow = AtomCommIntI->getSize();
128 <    int nAtomsInCol = AtomCommIntJ->getSize();
129 <    int nGroupsInRow = cgCommIntI->getSize();
130 <    int nGroupsInCol = cgCommIntJ->getSize();
127 >    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
128 >    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
129 >    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
130 >    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
131 >    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
132  
133 <    vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES,
134 <                                      vector<RealType> (nAtomsInRow, 0.0));
135 <    vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES,
136 <                                      vector<RealType> (nAtomsInCol, 0.0));
133 >    cgPlanIntRow = new Plan<int>(row, nGroups_);
134 >    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
135 >    cgPlanIntColumn = new Plan<int>(col, nGroups_);
136 >    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
137 >
138 >    nAtomsInRow_ = AtomPlanIntRow->getSize();
139 >    nAtomsInCol_ = AtomPlanIntColumn->getSize();
140 >    nGroupsInRow_ = cgPlanIntRow->getSize();
141 >    nGroupsInCol_ = cgPlanIntColumn->getSize();
142 >
143 >    // Modify the data storage objects with the correct layouts and sizes:
144 >    atomRowData.resize(nAtomsInRow_);
145 >    atomRowData.setStorageLayout(storageLayout_);
146 >    atomColData.resize(nAtomsInCol_);
147 >    atomColData.setStorageLayout(storageLayout_);
148 >    cgRowData.resize(nGroupsInRow_);
149 >    cgRowData.setStorageLayout(DataStorage::dslPosition);
150 >    cgColData.resize(nGroupsInCol_);
151 >    if (needVelocities_)
152 >      // we only need column velocities if we need them.
153 >      cgColData.setStorageLayout(DataStorage::dslPosition |
154 >                                 DataStorage::dslVelocity);
155 >    else    
156 >      cgColData.setStorageLayout(DataStorage::dslPosition);
157 >      
158 >    identsRow.resize(nAtomsInRow_);
159 >    identsCol.resize(nAtomsInCol_);
160      
161 <    vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0);
161 >    AtomPlanIntRow->gather(idents, identsRow);
162 >    AtomPlanIntColumn->gather(idents, identsCol);
163  
164 <    // gather the information for atomtype IDs (atids):
165 <    vector<int> identsLocal = info_->getIdentArray();
166 <    identsRow.reserve(nAtomsInRow);
167 <    identsCol.reserve(nAtomsInCol);
164 >    regionsRow.resize(nAtomsInRow_);
165 >    regionsCol.resize(nAtomsInCol_);
166 >    
167 >    AtomPlanIntRow->gather(regions, regionsRow);
168 >    AtomPlanIntColumn->gather(regions, regionsCol);
169 >    
170 >    // allocate memory for the parallel objects
171 >    atypesRow.resize(nAtomsInRow_);
172 >    atypesCol.resize(nAtomsInCol_);
173  
174 <    AtomCommIntI->gather(identsLocal, identsRow);
175 <    AtomCommIntJ->gather(identsLocal, identsCol);
174 >    for (int i = 0; i < nAtomsInRow_; i++)
175 >      atypesRow[i] = ff_->getAtomType(identsRow[i]);
176 >    for (int i = 0; i < nAtomsInCol_; i++)
177 >      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
178  
179 <    AtomLocalToGlobal = info_->getLocalToGlobalAtomIndex();
180 <    AtomCommIntI->gather(AtomLocalToGlobal, AtomRowToGlobal);
97 <    AtomCommIntJ->gather(AtomLocalToGlobal, AtomColToGlobal);
179 >    pot_row.resize(nAtomsInRow_);
180 >    pot_col.resize(nAtomsInCol_);
181  
182 <    cgLocalToGlobal = info_->getLocalToGlobalCutoffGroupIndex();
183 <    cgCommIntI->gather(cgLocalToGlobal, cgRowToGlobal);
101 <    cgCommIntJ->gather(cgLocalToGlobal, cgColToGlobal);
182 >    expot_row.resize(nAtomsInRow_);
183 >    expot_col.resize(nAtomsInCol_);
184  
185 <    
185 >    AtomRowToGlobal.resize(nAtomsInRow_);
186 >    AtomColToGlobal.resize(nAtomsInCol_);
187 >    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
188 >    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
189  
190 <    // still need:
191 <    // topoDist
192 <    // exclude
190 >    cgRowToGlobal.resize(nGroupsInRow_);
191 >    cgColToGlobal.resize(nGroupsInCol_);
192 >    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
193 >    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
194 >
195 >    massFactorsRow.resize(nAtomsInRow_);
196 >    massFactorsCol.resize(nAtomsInCol_);
197 >    AtomPlanRealRow->gather(massFactors, massFactorsRow);
198 >    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
199 >
200 >    groupListRow_.clear();
201 >    groupListRow_.resize(nGroupsInRow_);
202 >    for (int i = 0; i < nGroupsInRow_; i++) {
203 >      int gid = cgRowToGlobal[i];
204 >      for (int j = 0; j < nAtomsInRow_; j++) {
205 >        int aid = AtomRowToGlobal[j];
206 >        if (globalGroupMembership[aid] == gid)
207 >          groupListRow_[i].push_back(j);
208 >      }      
209 >    }
210 >
211 >    groupListCol_.clear();
212 >    groupListCol_.resize(nGroupsInCol_);
213 >    for (int i = 0; i < nGroupsInCol_; i++) {
214 >      int gid = cgColToGlobal[i];
215 >      for (int j = 0; j < nAtomsInCol_; j++) {
216 >        int aid = AtomColToGlobal[j];
217 >        if (globalGroupMembership[aid] == gid)
218 >          groupListCol_[i].push_back(j);
219 >      }      
220 >    }
221 >
222 >    excludesForAtom.clear();
223 >    excludesForAtom.resize(nAtomsInRow_);
224 >    toposForAtom.clear();
225 >    toposForAtom.resize(nAtomsInRow_);
226 >    topoDist.clear();
227 >    topoDist.resize(nAtomsInRow_);
228 >    for (int i = 0; i < nAtomsInRow_; i++) {
229 >      int iglob = AtomRowToGlobal[i];
230 >
231 >      for (int j = 0; j < nAtomsInCol_; j++) {
232 >        int jglob = AtomColToGlobal[j];
233 >
234 >        if (excludes->hasPair(iglob, jglob))
235 >          excludesForAtom[i].push_back(j);      
236 >        
237 >        if (oneTwo->hasPair(iglob, jglob)) {
238 >          toposForAtom[i].push_back(j);
239 >          topoDist[i].push_back(1);
240 >        } else {
241 >          if (oneThree->hasPair(iglob, jglob)) {
242 >            toposForAtom[i].push_back(j);
243 >            topoDist[i].push_back(2);
244 >          } else {
245 >            if (oneFour->hasPair(iglob, jglob)) {
246 >              toposForAtom[i].push_back(j);
247 >              topoDist[i].push_back(3);
248 >            }
249 >          }
250 >        }
251 >      }      
252 >    }
253 >
254 > #else
255 >    excludesForAtom.clear();
256 >    excludesForAtom.resize(nLocal_);
257 >    toposForAtom.clear();
258 >    toposForAtom.resize(nLocal_);
259 >    topoDist.clear();
260 >    topoDist.resize(nLocal_);
261 >
262 >    for (int i = 0; i < nLocal_; i++) {
263 >      int iglob = AtomLocalToGlobal[i];
264 >
265 >      for (int j = 0; j < nLocal_; j++) {
266 >        int jglob = AtomLocalToGlobal[j];
267 >
268 >        if (excludes->hasPair(iglob, jglob))
269 >          excludesForAtom[i].push_back(j);              
270 >        
271 >        if (oneTwo->hasPair(iglob, jglob)) {
272 >          toposForAtom[i].push_back(j);
273 >          topoDist[i].push_back(1);
274 >        } else {
275 >          if (oneThree->hasPair(iglob, jglob)) {
276 >            toposForAtom[i].push_back(j);
277 >            topoDist[i].push_back(2);
278 >          } else {
279 >            if (oneFour->hasPair(iglob, jglob)) {
280 >              toposForAtom[i].push_back(j);
281 >              topoDist[i].push_back(3);
282 >            }
283 >          }
284 >        }
285 >      }      
286 >    }
287   #endif
288 +
289 +    // allocate memory for the parallel objects
290 +    atypesLocal.resize(nLocal_);
291 +
292 +    for (int i = 0; i < nLocal_; i++)
293 +      atypesLocal[i] = ff_->getAtomType(idents[i]);
294 +
295 +    groupList_.clear();
296 +    groupList_.resize(nGroups_);
297 +    for (int i = 0; i < nGroups_; i++) {
298 +      int gid = cgLocalToGlobal[i];
299 +      for (int j = 0; j < nLocal_; j++) {
300 +        int aid = AtomLocalToGlobal[j];
301 +        if (globalGroupMembership[aid] == gid) {
302 +          groupList_[i].push_back(j);
303 +        }
304 +      }      
305 +    }    
306    }
307      
308 +  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
309 +    for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) {
310 +      if (toposForAtom[atom1][j] == atom2)
311 +        return topoDist[atom1][j];
312 +    }                                          
313 +    return 0;
314 +  }
315  
316 +  void ForceMatrixDecomposition::zeroWorkArrays() {
317 +    pairwisePot = 0.0;
318 +    embeddingPot = 0.0;
319 +    excludedPot = 0.0;
320 +    excludedSelfPot = 0.0;
321  
113  void ForceDecomposition::distributeData()  {
322   #ifdef IS_MPI
323 <    Snapshot* snap = sman_->getCurrentSnapshot();
323 >    if (storageLayout_ & DataStorage::dslForce) {
324 >      fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
325 >      fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
326 >    }
327 >
328 >    if (storageLayout_ & DataStorage::dslTorque) {
329 >      fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
330 >      fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
331 >    }
332 >    
333 >    fill(pot_row.begin(), pot_row.end(),
334 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
335 >
336 >    fill(pot_col.begin(), pot_col.end(),
337 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
338 >
339 >    fill(expot_row.begin(), expot_row.end(),
340 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
341 >
342 >    fill(expot_col.begin(), expot_col.end(),
343 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
344 >
345 >    if (storageLayout_ & DataStorage::dslParticlePot) {    
346 >      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
347 >           0.0);
348 >      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
349 >           0.0);
350 >    }
351 >
352 >    if (storageLayout_ & DataStorage::dslDensity) {      
353 >      fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
354 >      fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
355 >    }
356 >
357 >    if (storageLayout_ & DataStorage::dslFunctional) {  
358 >      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
359 >           0.0);
360 >      fill(atomColData.functional.begin(), atomColData.functional.end(),
361 >           0.0);
362 >    }
363 >
364 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
365 >      fill(atomRowData.functionalDerivative.begin(),
366 >           atomRowData.functionalDerivative.end(), 0.0);
367 >      fill(atomColData.functionalDerivative.begin(),
368 >           atomColData.functionalDerivative.end(), 0.0);
369 >    }
370 >
371 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
372 >      fill(atomRowData.skippedCharge.begin(),
373 >           atomRowData.skippedCharge.end(), 0.0);
374 >      fill(atomColData.skippedCharge.begin(),
375 >           atomColData.skippedCharge.end(), 0.0);
376 >    }
377 >
378 >    if (storageLayout_ & DataStorage::dslFlucQForce) {      
379 >      fill(atomRowData.flucQFrc.begin(),
380 >           atomRowData.flucQFrc.end(), 0.0);
381 >      fill(atomColData.flucQFrc.begin(),
382 >           atomColData.flucQFrc.end(), 0.0);
383 >    }
384 >
385 >    if (storageLayout_ & DataStorage::dslElectricField) {    
386 >      fill(atomRowData.electricField.begin(),
387 >           atomRowData.electricField.end(), V3Zero);
388 >      fill(atomColData.electricField.begin(),
389 >           atomColData.electricField.end(), V3Zero);
390 >    }
391 >
392 >    if (storageLayout_ & DataStorage::dslSitePotential) {    
393 >      fill(atomRowData.sitePotential.begin(),
394 >           atomRowData.sitePotential.end(), 0.0);
395 >      fill(atomColData.sitePotential.begin(),
396 >           atomColData.sitePotential.end(), 0.0);
397 >    }
398 >
399 > #endif
400 >    // even in parallel, we need to zero out the local arrays:
401 >
402 >    if (storageLayout_ & DataStorage::dslParticlePot) {      
403 >      fill(snap_->atomData.particlePot.begin(),
404 >           snap_->atomData.particlePot.end(), 0.0);
405 >    }
406 >    
407 >    if (storageLayout_ & DataStorage::dslDensity) {      
408 >      fill(snap_->atomData.density.begin(),
409 >           snap_->atomData.density.end(), 0.0);
410 >    }
411 >
412 >    if (storageLayout_ & DataStorage::dslFunctional) {
413 >      fill(snap_->atomData.functional.begin(),
414 >           snap_->atomData.functional.end(), 0.0);
415 >    }
416 >
417 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
418 >      fill(snap_->atomData.functionalDerivative.begin(),
419 >           snap_->atomData.functionalDerivative.end(), 0.0);
420 >    }
421 >
422 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
423 >      fill(snap_->atomData.skippedCharge.begin(),
424 >           snap_->atomData.skippedCharge.end(), 0.0);
425 >    }
426 >
427 >    if (storageLayout_ & DataStorage::dslElectricField) {      
428 >      fill(snap_->atomData.electricField.begin(),
429 >           snap_->atomData.electricField.end(), V3Zero);
430 >    }
431 >    if (storageLayout_ & DataStorage::dslSitePotential) {      
432 >      fill(snap_->atomData.sitePotential.begin(),
433 >           snap_->atomData.sitePotential.end(), 0.0);
434 >    }
435 >  }
436 >
437 >
438 >  void ForceMatrixDecomposition::distributeData()  {
439 >  
440 > #ifdef IS_MPI
441 >
442 >    snap_ = sman_->getCurrentSnapshot();
443 >    storageLayout_ = sman_->getStorageLayout();
444      
445 +    bool needsCG = true;
446 +    if(info_->getNCutoffGroups() != info_->getNAtoms())
447 +      needsCG = false;
448 +
449      // gather up the atomic positions
450 <    AtomCommVectorI->gather(snap->atomData.position,
451 <                            snap->atomIData.position);
452 <    AtomCommVectorJ->gather(snap->atomData.position,
453 <                            snap->atomJData.position);
450 >    AtomPlanVectorRow->gather(snap_->atomData.position,
451 >                              atomRowData.position);
452 >    AtomPlanVectorColumn->gather(snap_->atomData.position,
453 >                                 atomColData.position);
454      
455      // gather up the cutoff group positions
456 <    cgCommVectorI->gather(snap->cgData.position,
457 <                          snap->cgIData.position);
458 <    cgCommVectorJ->gather(snap->cgData.position,
459 <                          snap->cgJData.position);
456 >
457 >    if (needsCG) {
458 >      cgPlanVectorRow->gather(snap_->cgData.position,
459 >                              cgRowData.position);
460 >      
461 >      cgPlanVectorColumn->gather(snap_->cgData.position,
462 >                                 cgColData.position);
463 >    }
464 >
465 >
466 >    if (needVelocities_) {
467 >      // gather up the atomic velocities
468 >      AtomPlanVectorColumn->gather(snap_->atomData.velocity,
469 >                                   atomColData.velocity);
470 >
471 >      if (needsCG) {        
472 >        cgPlanVectorColumn->gather(snap_->cgData.velocity,
473 >                                   cgColData.velocity);
474 >      }
475 >    }
476 >
477      
478      // if needed, gather the atomic rotation matrices
479 <    if (snap->atomData.getStorageLayout() & DataStorage::dslAmat) {
480 <      AtomCommMatrixI->gather(snap->atomData.aMat,
481 <                              snap->atomIData.aMat);
482 <      AtomCommMatrixJ->gather(snap->atomData.aMat,
483 <                              snap->atomJData.aMat);
479 >    if (storageLayout_ & DataStorage::dslAmat) {
480 >      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
481 >                                atomRowData.aMat);
482 >      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
483 >                                   atomColData.aMat);
484      }
485 <    
486 <    // if needed, gather the atomic eletrostatic frames
487 <    if (snap->atomData.getStorageLayout() & DataStorage::dslElectroFrame) {
488 <      AtomCommMatrixI->gather(snap->atomData.electroFrame,
489 <                              snap->atomIData.electroFrame);
490 <      AtomCommMatrixJ->gather(snap->atomData.electroFrame,
491 <                              snap->atomJData.electroFrame);
485 >
486 >    // if needed, gather the atomic eletrostatic information
487 >    if (storageLayout_ & DataStorage::dslDipole) {
488 >      AtomPlanVectorRow->gather(snap_->atomData.dipole,
489 >                                atomRowData.dipole);
490 >      AtomPlanVectorColumn->gather(snap_->atomData.dipole,
491 >                                   atomColData.dipole);
492      }
493 +
494 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
495 +      AtomPlanMatrixRow->gather(snap_->atomData.quadrupole,
496 +                                atomRowData.quadrupole);
497 +      AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole,
498 +                                   atomColData.quadrupole);
499 +    }
500 +        
501 +    // if needed, gather the atomic fluctuating charge values
502 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {
503 +      AtomPlanRealRow->gather(snap_->atomData.flucQPos,
504 +                              atomRowData.flucQPos);
505 +      AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
506 +                                 atomColData.flucQPos);
507 +    }
508 +
509   #endif      
510    }
511    
512 <  void ForceDecomposition::collectIntermediateData() {
512 >  /* collects information obtained during the pre-pair loop onto local
513 >   * data structures.
514 >   */
515 >  void ForceMatrixDecomposition::collectIntermediateData() {
516 >    snap_ = sman_->getCurrentSnapshot();
517 >    storageLayout_ = sman_->getStorageLayout();
518   #ifdef IS_MPI
149    Snapshot* snap = sman_->getCurrentSnapshot();
519      
520 <    if (snap->atomData.getStorageLayout() & DataStorage::dslDensity) {
520 >    if (storageLayout_ & DataStorage::dslDensity) {
521 >      
522 >      AtomPlanRealRow->scatter(atomRowData.density,
523 >                               snap_->atomData.density);
524 >      
525 >      int n = snap_->atomData.density.size();
526 >      vector<RealType> rho_tmp(n, 0.0);
527 >      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
528 >      for (int i = 0; i < n; i++)
529 >        snap_->atomData.density[i] += rho_tmp[i];
530 >    }
531  
532 <      AtomCommRealI->scatter(snap->atomIData.density,
533 <                             snap->atomData.density);
534 <
535 <      int n = snap->atomData.density.size();
536 <      std::vector<RealType> rho_tmp(n, 0.0);
537 <      AtomCommRealJ->scatter(snap->atomJData.density, rho_tmp);
532 >    // this isn't necessary if we don't have polarizable atoms, but
533 >    // we'll leave it here for now.
534 >    if (storageLayout_ & DataStorage::dslElectricField) {
535 >      
536 >      AtomPlanVectorRow->scatter(atomRowData.electricField,
537 >                                 snap_->atomData.electricField);
538 >      
539 >      int n = snap_->atomData.electricField.size();
540 >      vector<Vector3d> field_tmp(n, V3Zero);
541 >      AtomPlanVectorColumn->scatter(atomColData.electricField,
542 >                                    field_tmp);
543        for (int i = 0; i < n; i++)
544 <        snap->atomData.density[i] += rho_tmp[i];
544 >        snap_->atomData.electricField[i] += field_tmp[i];
545      }
546   #endif
547    }
548 <  
549 <  void ForceDecomposition::distributeIntermediateData() {
548 >
549 >  /*
550 >   * redistributes information obtained during the pre-pair loop out to
551 >   * row and column-indexed data structures
552 >   */
553 >  void ForceMatrixDecomposition::distributeIntermediateData() {
554 >    snap_ = sman_->getCurrentSnapshot();
555 >    storageLayout_ = sman_->getStorageLayout();
556   #ifdef IS_MPI
557 <    Snapshot* snap = sman_->getCurrentSnapshot();
558 <    if (snap->atomData.getStorageLayout() & DataStorage::dslFunctional) {
559 <      AtomCommRealI->gather(snap->atomData.functional,
560 <                            snap->atomIData.functional);
561 <      AtomCommRealJ->gather(snap->atomData.functional,
172 <                            snap->atomJData.functional);
557 >    if (storageLayout_ & DataStorage::dslFunctional) {
558 >      AtomPlanRealRow->gather(snap_->atomData.functional,
559 >                              atomRowData.functional);
560 >      AtomPlanRealColumn->gather(snap_->atomData.functional,
561 >                                 atomColData.functional);
562      }
563      
564 <    if (snap->atomData.getStorageLayout() & DataStorage::dslFunctionalDerivative) {
565 <      AtomCommRealI->gather(snap->atomData.functionalDerivative,
566 <                            snap->atomIData.functionalDerivative);
567 <      AtomCommRealJ->gather(snap->atomData.functionalDerivative,
568 <                            snap->atomJData.functionalDerivative);
564 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
565 >      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
566 >                              atomRowData.functionalDerivative);
567 >      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
568 >                                 atomColData.functionalDerivative);
569      }
570   #endif
571    }
572    
573    
574 <  void ForceDecomposition::collectData() {
575 < #ifdef IS_MPI
576 <    Snapshot* snap = sman_->getCurrentSnapshot();
577 <    
578 <    int n = snap->atomData.force.size();
574 >  void ForceMatrixDecomposition::collectData() {
575 >    snap_ = sman_->getCurrentSnapshot();
576 >    storageLayout_ = sman_->getStorageLayout();
577 > #ifdef IS_MPI    
578 >    int n = snap_->atomData.force.size();
579      vector<Vector3d> frc_tmp(n, V3Zero);
580      
581 <    AtomCommVectorI->scatter(snap->atomIData.force, frc_tmp);
581 >    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
582      for (int i = 0; i < n; i++) {
583 <      snap->atomData.force[i] += frc_tmp[i];
583 >      snap_->atomData.force[i] += frc_tmp[i];
584        frc_tmp[i] = 0.0;
585      }
586      
587 <    AtomCommVectorJ->scatter(snap->atomJData.force, frc_tmp);
588 <    for (int i = 0; i < n; i++)
589 <      snap->atomData.force[i] += frc_tmp[i];
590 <    
591 <    
592 <    if (snap->atomData.getStorageLayout() & DataStorage::dslTorque) {
587 >    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
588 >    for (int i = 0; i < n; i++) {
589 >      snap_->atomData.force[i] += frc_tmp[i];
590 >    }
591 >        
592 >    if (storageLayout_ & DataStorage::dslTorque) {
593  
594 <      int nt = snap->atomData.force.size();
594 >      int nt = snap_->atomData.torque.size();
595        vector<Vector3d> trq_tmp(nt, V3Zero);
596  
597 <      AtomCommVectorI->scatter(snap->atomIData.torque, trq_tmp);
598 <      for (int i = 0; i < n; i++) {
599 <        snap->atomData.torque[i] += trq_tmp[i];
597 >      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
598 >      for (int i = 0; i < nt; i++) {
599 >        snap_->atomData.torque[i] += trq_tmp[i];
600          trq_tmp[i] = 0.0;
601        }
602        
603 <      AtomCommVectorJ->scatter(snap->atomJData.torque, trq_tmp);
604 <      for (int i = 0; i < n; i++)
605 <        snap->atomData.torque[i] += trq_tmp[i];
603 >      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
604 >      for (int i = 0; i < nt; i++)
605 >        snap_->atomData.torque[i] += trq_tmp[i];
606      }
607 +
608 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
609 +
610 +      int ns = snap_->atomData.skippedCharge.size();
611 +      vector<RealType> skch_tmp(ns, 0.0);
612 +
613 +      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
614 +      for (int i = 0; i < ns; i++) {
615 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
616 +        skch_tmp[i] = 0.0;
617 +      }
618 +      
619 +      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
620 +      for (int i = 0; i < ns; i++)
621 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
622 +            
623 +    }
624      
625 <    int nLocal = snap->getNumberOfAtoms();
625 >    if (storageLayout_ & DataStorage::dslFlucQForce) {
626  
627 <    vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES,
628 <                                       vector<RealType> (nLocal, 0.0));
627 >      int nq = snap_->atomData.flucQFrc.size();
628 >      vector<RealType> fqfrc_tmp(nq, 0.0);
629 >
630 >      AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
631 >      for (int i = 0; i < nq; i++) {
632 >        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
633 >        fqfrc_tmp[i] = 0.0;
634 >      }
635 >      
636 >      AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
637 >      for (int i = 0; i < nq; i++)
638 >        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
639 >            
640 >    }
641 >
642 >    if (storageLayout_ & DataStorage::dslElectricField) {
643 >
644 >      int nef = snap_->atomData.electricField.size();
645 >      vector<Vector3d> efield_tmp(nef, V3Zero);
646 >
647 >      AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp);
648 >      for (int i = 0; i < nef; i++) {
649 >        snap_->atomData.electricField[i] += efield_tmp[i];
650 >        efield_tmp[i] = 0.0;
651 >      }
652 >      
653 >      AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp);
654 >      for (int i = 0; i < nef; i++)
655 >        snap_->atomData.electricField[i] += efield_tmp[i];
656 >    }
657 >
658 >    if (storageLayout_ & DataStorage::dslSitePotential) {
659 >
660 >      int nsp = snap_->atomData.sitePotential.size();
661 >      vector<RealType> sp_tmp(nsp, 0.0);
662 >
663 >      AtomPlanRealRow->scatter(atomRowData.sitePotential, sp_tmp);
664 >      for (int i = 0; i < nsp; i++) {
665 >        snap_->atomData.sitePotential[i] += sp_tmp[i];
666 >        sp_tmp[i] = 0.0;
667 >      }
668 >      
669 >      AtomPlanRealColumn->scatter(atomColData.sitePotential, sp_tmp);
670 >      for (int i = 0; i < nsp; i++)
671 >        snap_->atomData.sitePotential[i] += sp_tmp[i];
672 >    }
673 >
674 >    nLocal_ = snap_->getNumberOfAtoms();
675 >
676 >    vector<potVec> pot_temp(nLocal_,
677 >                            Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
678 >    vector<potVec> expot_temp(nLocal_,
679 >                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
680 >
681 >    // scatter/gather pot_row into the members of my column
682 >          
683 >    AtomPlanPotRow->scatter(pot_row, pot_temp);
684 >    AtomPlanPotRow->scatter(expot_row, expot_temp);
685 >
686 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
687 >      pairwisePot += pot_temp[ii];
688 >
689 >    for (int ii = 0;  ii < expot_temp.size(); ii++ )
690 >      excludedPot += expot_temp[ii];
691 >        
692 >    if (storageLayout_ & DataStorage::dslParticlePot) {
693 >      // This is the pairwise contribution to the particle pot.  The
694 >      // embedding contribution is added in each of the low level
695 >      // non-bonded routines.  In single processor, this is done in
696 >      // unpackInteractionData, not in collectData.
697 >      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
698 >        for (int i = 0; i < nLocal_; i++) {
699 >          // factor of two is because the total potential terms are divided
700 >          // by 2 in parallel due to row/ column scatter      
701 >          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
702 >        }
703 >      }
704 >    }
705 >
706 >    fill(pot_temp.begin(), pot_temp.end(),
707 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
708 >    fill(expot_temp.begin(), expot_temp.end(),
709 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
710 >      
711 >    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
712 >    AtomPlanPotColumn->scatter(expot_col, expot_temp);    
713      
714 <    for (int i = 0; i < N_INTERACTION_FAMILIES; i++) {
715 <      AtomCommRealI->scatter(pot_row[i], pot_temp[i]);
716 <      for (int ii = 0;  ii < pot_temp[i].size(); ii++ ) {
717 <        pot_local[i] += pot_temp[i][ii];
714 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
715 >      pairwisePot += pot_temp[ii];    
716 >
717 >    for (int ii = 0;  ii < expot_temp.size(); ii++ )
718 >      excludedPot += expot_temp[ii];    
719 >
720 >    if (storageLayout_ & DataStorage::dslParticlePot) {
721 >      // This is the pairwise contribution to the particle pot.  The
722 >      // embedding contribution is added in each of the low level
723 >      // non-bonded routines.  In single processor, this is done in
724 >      // unpackInteractionData, not in collectData.
725 >      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
726 >        for (int i = 0; i < nLocal_; i++) {
727 >          // factor of two is because the total potential terms are divided
728 >          // by 2 in parallel due to row/ column scatter      
729 >          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
730 >        }
731 >      }
732 >    }
733 >    
734 >    if (storageLayout_ & DataStorage::dslParticlePot) {
735 >      int npp = snap_->atomData.particlePot.size();
736 >      vector<RealType> ppot_temp(npp, 0.0);
737 >
738 >      // This is the direct or embedding contribution to the particle
739 >      // pot.
740 >      
741 >      AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
742 >      for (int i = 0; i < npp; i++) {
743 >        snap_->atomData.particlePot[i] += ppot_temp[i];
744 >      }
745 >
746 >      fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
747 >      
748 >      AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
749 >      for (int i = 0; i < npp; i++) {
750 >        snap_->atomData.particlePot[i] += ppot_temp[i];
751 >      }
752 >    }
753 >
754 >    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
755 >      RealType ploc1 = pairwisePot[ii];
756 >      RealType ploc2 = 0.0;
757 >      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
758 >      pairwisePot[ii] = ploc2;
759 >    }
760 >
761 >    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
762 >      RealType ploc1 = excludedPot[ii];
763 >      RealType ploc2 = 0.0;
764 >      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
765 >      excludedPot[ii] = ploc2;
766 >    }
767 >
768 >    // Here be dragons.
769 >    MPI_Comm col = colComm.getComm();
770 >
771 >    MPI_Allreduce(MPI_IN_PLACE,
772 >                  &snap_->frameData.conductiveHeatFlux[0], 3,
773 >                  MPI_REALTYPE, MPI_SUM, col);
774 >
775 >
776 > #endif
777 >
778 >  }
779 >
780 >  /**
781 >   * Collects information obtained during the post-pair (and embedding
782 >   * functional) loops onto local data structures.
783 >   */
784 >  void ForceMatrixDecomposition::collectSelfData() {
785 >    snap_ = sman_->getCurrentSnapshot();
786 >    storageLayout_ = sman_->getStorageLayout();
787 >
788 > #ifdef IS_MPI
789 >    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
790 >      RealType ploc1 = embeddingPot[ii];
791 >      RealType ploc2 = 0.0;
792 >      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
793 >      embeddingPot[ii] = ploc2;
794 >    }    
795 >    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
796 >      RealType ploc1 = excludedSelfPot[ii];
797 >      RealType ploc2 = 0.0;
798 >      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
799 >      excludedSelfPot[ii] = ploc2;
800 >    }    
801 > #endif
802 >    
803 >  }
804 >
805 >
806 >
807 >  int& ForceMatrixDecomposition::getNAtomsInRow() {  
808 > #ifdef IS_MPI
809 >    return nAtomsInRow_;
810 > #else
811 >    return nLocal_;
812 > #endif
813 >  }
814 >
815 >  /**
816 >   * returns the list of atoms belonging to this group.  
817 >   */
818 >  vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
819 > #ifdef IS_MPI
820 >    return groupListRow_[cg1];
821 > #else
822 >    return groupList_[cg1];
823 > #endif
824 >  }
825 >
826 >  vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
827 > #ifdef IS_MPI
828 >    return groupListCol_[cg2];
829 > #else
830 >    return groupList_[cg2];
831 > #endif
832 >  }
833 >  
834 >  Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
835 >    Vector3d d;
836 >    
837 > #ifdef IS_MPI
838 >    d = cgColData.position[cg2] - cgRowData.position[cg1];
839 > #else
840 >    d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
841 > #endif
842 >    
843 >    if (usePeriodicBoundaryConditions_) {
844 >      snap_->wrapVector(d);
845 >    }
846 >    return d;    
847 >  }
848 >
849 >  Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
850 > #ifdef IS_MPI
851 >    return cgColData.velocity[cg2];
852 > #else
853 >    return snap_->cgData.velocity[cg2];
854 > #endif
855 >  }
856 >
857 >  Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
858 > #ifdef IS_MPI
859 >    return atomColData.velocity[atom2];
860 > #else
861 >    return snap_->atomData.velocity[atom2];
862 > #endif
863 >  }
864 >
865 >
866 >  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
867 >
868 >    Vector3d d;
869 >    
870 > #ifdef IS_MPI
871 >    d = cgRowData.position[cg1] - atomRowData.position[atom1];
872 > #else
873 >    d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
874 > #endif
875 >    if (usePeriodicBoundaryConditions_) {
876 >      snap_->wrapVector(d);
877 >    }
878 >    return d;    
879 >  }
880 >  
881 >  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
882 >    Vector3d d;
883 >    
884 > #ifdef IS_MPI
885 >    d = cgColData.position[cg2] - atomColData.position[atom2];
886 > #else
887 >    d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
888 > #endif
889 >    if (usePeriodicBoundaryConditions_) {
890 >      snap_->wrapVector(d);
891 >    }
892 >    return d;    
893 >  }
894 >
895 >  RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) {
896 > #ifdef IS_MPI
897 >    return massFactorsRow[atom1];
898 > #else
899 >    return massFactors[atom1];
900 > #endif
901 >  }
902 >
903 >  RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
904 > #ifdef IS_MPI
905 >    return massFactorsCol[atom2];
906 > #else
907 >    return massFactors[atom2];
908 > #endif
909 >
910 >  }
911 >    
912 >  Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
913 >    Vector3d d;
914 >    
915 > #ifdef IS_MPI
916 >    d = atomColData.position[atom2] - atomRowData.position[atom1];
917 > #else
918 >    d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
919 > #endif
920 >    if (usePeriodicBoundaryConditions_) {
921 >      snap_->wrapVector(d);
922 >    }
923 >    return d;    
924 >  }
925 >
926 >  vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
927 >    return excludesForAtom[atom1];
928 >  }
929 >
930 >  /**
931 >   * We need to exclude some overcounted interactions that result from
932 >   * the parallel decomposition.
933 >   */
934 >  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) {
935 >    int unique_id_1, unique_id_2;
936 >        
937 > #ifdef IS_MPI
938 >    // in MPI, we have to look up the unique IDs for each atom
939 >    unique_id_1 = AtomRowToGlobal[atom1];
940 >    unique_id_2 = AtomColToGlobal[atom2];
941 >    // group1 = cgRowToGlobal[cg1];
942 >    // group2 = cgColToGlobal[cg2];
943 > #else
944 >    unique_id_1 = AtomLocalToGlobal[atom1];
945 >    unique_id_2 = AtomLocalToGlobal[atom2];
946 >    int group1 = cgLocalToGlobal[cg1];
947 >    int group2 = cgLocalToGlobal[cg2];
948 > #endif  
949 >
950 >    if (unique_id_1 == unique_id_2) return true;
951 >
952 > #ifdef IS_MPI
953 >    // this prevents us from doing the pair on multiple processors
954 >    if (unique_id_1 < unique_id_2) {
955 >      if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
956 >    } else {
957 >      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
958 >    }
959 > #endif    
960 >
961 > #ifndef IS_MPI
962 >    if (group1 == group2) {
963 >      if (unique_id_1 < unique_id_2) return true;
964 >    }
965 > #endif
966 >    
967 >    return false;
968 >  }
969 >
970 >  /**
971 >   * We need to handle the interactions for atoms who are involved in
972 >   * the same rigid body as well as some short range interactions
973 >   * (bonds, bends, torsions) differently from other interactions.
974 >   * We'll still visit the pairwise routines, but with a flag that
975 >   * tells those routines to exclude the pair from direct long range
976 >   * interactions.  Some indirect interactions (notably reaction
977 >   * field) must still be handled for these pairs.
978 >   */
979 >  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
980 >
981 >    // excludesForAtom was constructed to use row/column indices in the MPI
982 >    // version, and to use local IDs in the non-MPI version:
983 >    
984 >    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
985 >         i != excludesForAtom[atom1].end(); ++i) {
986 >      if ( (*i) == atom2 ) return true;
987 >    }
988 >
989 >    return false;
990 >  }
991 >
992 >
993 >  void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
994 > #ifdef IS_MPI
995 >    atomRowData.force[atom1] += fg;
996 > #else
997 >    snap_->atomData.force[atom1] += fg;
998 > #endif
999 >  }
1000 >
1001 >  void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
1002 > #ifdef IS_MPI
1003 >    atomColData.force[atom2] += fg;
1004 > #else
1005 >    snap_->atomData.force[atom2] += fg;
1006 > #endif
1007 >  }
1008 >
1009 >    // filling interaction blocks with pointers
1010 >  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1011 >                                                     int atom1, int atom2,
1012 >                                                     bool newAtom1) {
1013 >
1014 >    idat.excluded = excludeAtomPair(atom1, atom2);
1015 >
1016 >    if (newAtom1) {
1017 >      
1018 > #ifdef IS_MPI
1019 >      idat.atid1 = identsRow[atom1];
1020 >      idat.atid2 = identsCol[atom2];
1021 >      
1022 >      if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) {
1023 >        idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]);
1024 >      } else {
1025 >        idat.sameRegion = false;
1026        }
1027 +      
1028 +      if (storageLayout_ & DataStorage::dslAmat) {
1029 +        idat.A1 = &(atomRowData.aMat[atom1]);
1030 +        idat.A2 = &(atomColData.aMat[atom2]);
1031 +      }
1032 +      
1033 +      if (storageLayout_ & DataStorage::dslTorque) {
1034 +        idat.t1 = &(atomRowData.torque[atom1]);
1035 +        idat.t2 = &(atomColData.torque[atom2]);
1036 +      }
1037 +      
1038 +      if (storageLayout_ & DataStorage::dslDipole) {
1039 +        idat.dipole1 = &(atomRowData.dipole[atom1]);
1040 +        idat.dipole2 = &(atomColData.dipole[atom2]);
1041 +      }
1042 +      
1043 +      if (storageLayout_ & DataStorage::dslQuadrupole) {
1044 +        idat.quadrupole1 = &(atomRowData.quadrupole[atom1]);
1045 +        idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1046 +      }
1047 +      
1048 +      if (storageLayout_ & DataStorage::dslDensity) {
1049 +        idat.rho1 = &(atomRowData.density[atom1]);
1050 +        idat.rho2 = &(atomColData.density[atom2]);
1051 +      }
1052 +      
1053 +      if (storageLayout_ & DataStorage::dslFunctional) {
1054 +        idat.frho1 = &(atomRowData.functional[atom1]);
1055 +        idat.frho2 = &(atomColData.functional[atom2]);
1056 +      }
1057 +      
1058 +      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1059 +        idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1060 +        idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1061 +      }
1062 +      
1063 +      if (storageLayout_ & DataStorage::dslParticlePot) {
1064 +        idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1065 +        idat.particlePot2 = &(atomColData.particlePot[atom2]);
1066 +      }
1067 +      
1068 +      if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1069 +        idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1070 +        idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1071 +      }
1072 +      
1073 +      if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1074 +        idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1075 +        idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1076 +      }
1077 +      
1078 + #else
1079 +      
1080 +      idat.atid1 = idents[atom1];
1081 +      idat.atid2 = idents[atom2];
1082 +      
1083 +      if (regions[atom1] >= 0 && regions[atom2] >= 0) {
1084 +        idat.sameRegion = (regions[atom1] == regions[atom2]);
1085 +      } else {
1086 +        idat.sameRegion = false;
1087 +      }
1088 +      
1089 +      if (storageLayout_ & DataStorage::dslAmat) {
1090 +        idat.A1 = &(snap_->atomData.aMat[atom1]);
1091 +        idat.A2 = &(snap_->atomData.aMat[atom2]);
1092 +      }
1093 +      
1094 +      if (storageLayout_ & DataStorage::dslTorque) {
1095 +        idat.t1 = &(snap_->atomData.torque[atom1]);
1096 +        idat.t2 = &(snap_->atomData.torque[atom2]);
1097 +      }
1098 +      
1099 +      if (storageLayout_ & DataStorage::dslDipole) {
1100 +        idat.dipole1 = &(snap_->atomData.dipole[atom1]);
1101 +        idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1102 +      }
1103 +      
1104 +      if (storageLayout_ & DataStorage::dslQuadrupole) {
1105 +        idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]);
1106 +        idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1107 +      }
1108 +      
1109 +      if (storageLayout_ & DataStorage::dslDensity) {    
1110 +        idat.rho1 = &(snap_->atomData.density[atom1]);
1111 +        idat.rho2 = &(snap_->atomData.density[atom2]);
1112 +      }
1113 +      
1114 +      if (storageLayout_ & DataStorage::dslFunctional) {
1115 +        idat.frho1 = &(snap_->atomData.functional[atom1]);
1116 +        idat.frho2 = &(snap_->atomData.functional[atom2]);
1117 +      }
1118 +      
1119 +      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1120 +        idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1121 +        idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1122 +      }
1123 +      
1124 +      if (storageLayout_ & DataStorage::dslParticlePot) {
1125 +        idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1126 +        idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1127 +      }
1128 +      
1129 +      if (storageLayout_ & DataStorage::dslSkippedCharge) {
1130 +        idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1131 +        idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1132 +      }
1133 +      
1134 +      if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1135 +        idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1136 +        idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1137 +      }
1138 + #endif
1139 +      
1140 +    } else {
1141 +      // atom1 is not new, so don't bother updating properties of that atom:
1142 + #ifdef IS_MPI
1143 +    idat.atid2 = identsCol[atom2];
1144 +
1145 +    if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) {
1146 +      idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]);
1147 +    } else {
1148 +      idat.sameRegion = false;
1149      }
1150 +
1151 +    if (storageLayout_ & DataStorage::dslAmat) {
1152 +      idat.A2 = &(atomColData.aMat[atom2]);
1153 +    }
1154 +    
1155 +    if (storageLayout_ & DataStorage::dslTorque) {
1156 +      idat.t2 = &(atomColData.torque[atom2]);
1157 +    }
1158 +
1159 +    if (storageLayout_ & DataStorage::dslDipole) {
1160 +      idat.dipole2 = &(atomColData.dipole[atom2]);
1161 +    }
1162 +
1163 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1164 +      idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1165 +    }
1166 +
1167 +    if (storageLayout_ & DataStorage::dslDensity) {
1168 +      idat.rho2 = &(atomColData.density[atom2]);
1169 +    }
1170 +
1171 +    if (storageLayout_ & DataStorage::dslFunctional) {
1172 +      idat.frho2 = &(atomColData.functional[atom2]);
1173 +    }
1174 +
1175 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1176 +      idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1177 +    }
1178 +
1179 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1180 +      idat.particlePot2 = &(atomColData.particlePot[atom2]);
1181 +    }
1182 +
1183 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1184 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1185 +    }
1186 +
1187 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {
1188 +      idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1189 +    }
1190 +
1191 + #else  
1192 +    idat.atid2 = idents[atom2];
1193 +
1194 +    if (regions[atom1] >= 0 && regions[atom2] >= 0) {
1195 +      idat.sameRegion = (regions[atom1] == regions[atom2]);
1196 +    } else {
1197 +      idat.sameRegion = false;
1198 +    }
1199 +
1200 +    if (storageLayout_ & DataStorage::dslAmat) {
1201 +      idat.A2 = &(snap_->atomData.aMat[atom2]);
1202 +    }
1203 +
1204 +    if (storageLayout_ & DataStorage::dslTorque) {
1205 +      idat.t2 = &(snap_->atomData.torque[atom2]);
1206 +    }
1207 +
1208 +    if (storageLayout_ & DataStorage::dslDipole) {
1209 +      idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1210 +    }
1211 +
1212 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1213 +      idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1214 +    }
1215 +
1216 +    if (storageLayout_ & DataStorage::dslDensity) {    
1217 +      idat.rho2 = &(snap_->atomData.density[atom2]);
1218 +    }
1219 +
1220 +    if (storageLayout_ & DataStorage::dslFunctional) {
1221 +      idat.frho2 = &(snap_->atomData.functional[atom2]);
1222 +    }
1223 +
1224 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1225 +      idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1226 +    }
1227 +
1228 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1229 +      idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1230 +    }
1231 +
1232 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
1233 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1234 +    }
1235 +
1236 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1237 +      idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1238 +    }
1239 +
1240   #endif
1241 +    }
1242    }
1243    
1244 +  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat,
1245 +                                                       int atom1, int atom2) {  
1246 + #ifdef IS_MPI
1247 +    pot_row[atom1] += RealType(0.5) *  *(idat.pot);
1248 +    pot_col[atom2] += RealType(0.5) *  *(idat.pot);
1249 +    expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot);
1250 +    expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot);
1251 +
1252 +    atomRowData.force[atom1] += *(idat.f1);
1253 +    atomColData.force[atom2] -= *(idat.f1);
1254 +
1255 +    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1256 +      atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1257 +      atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1258 +    }
1259 +
1260 +    if (storageLayout_ & DataStorage::dslElectricField) {              
1261 +      atomRowData.electricField[atom1] += *(idat.eField1);
1262 +      atomColData.electricField[atom2] += *(idat.eField2);
1263 +    }
1264 +
1265 +    if (storageLayout_ & DataStorage::dslSitePotential) {              
1266 +      atomRowData.sitePotential[atom1] += *(idat.sPot1);
1267 +      atomColData.sitePotential[atom2] += *(idat.sPot2);
1268 +    }
1269 +
1270 + #else
1271 +    pairwisePot += *(idat.pot);
1272 +    excludedPot += *(idat.excludedPot);
1273 +
1274 +    snap_->atomData.force[atom1] += *(idat.f1);
1275 +    snap_->atomData.force[atom2] -= *(idat.f1);
1276 +
1277 +    if (idat.doParticlePot) {
1278 +      // This is the pairwise contribution to the particle pot.  The
1279 +      // embedding contribution is added in each of the low level
1280 +      // non-bonded routines.  In parallel, this calculation is done
1281 +      // in collectData, not in unpackInteractionData.
1282 +      snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1283 +      snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1284 +    }
1285 +    
1286 +    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1287 +      snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1288 +      snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1289 +    }
1290 +
1291 +    if (storageLayout_ & DataStorage::dslElectricField) {              
1292 +      snap_->atomData.electricField[atom1] += *(idat.eField1);
1293 +      snap_->atomData.electricField[atom2] += *(idat.eField2);
1294 +    }
1295 +
1296 +    if (storageLayout_ & DataStorage::dslSitePotential) {              
1297 +      snap_->atomData.sitePotential[atom1] += *(idat.sPot1);
1298 +      snap_->atomData.sitePotential[atom2] += *(idat.sPot2);
1299 +    }
1300 +
1301 + #endif
1302 +    
1303 +  }
1304 +
1305 +  /*
1306 +   * buildNeighborList
1307 +   *
1308 +   * Constructs the Verlet neighbor list for a force-matrix
1309 +   * decomposition.  In this case, each processor is responsible for
1310 +   * row-site interactions with column-sites.
1311 +   *
1312 +   * neighborList is returned as a packed array of neighboring
1313 +   * column-ordered CutoffGroups.  The starting position in
1314 +   * neighborList for each row-ordered CutoffGroup is given by the
1315 +   * returned vector point.
1316 +   */
1317 +  void ForceMatrixDecomposition::buildNeighborList(vector<int>& neighborList,
1318 +                                                   vector<int>& point) {
1319 +    neighborList.clear();
1320 +    point.clear();
1321 +    int len = 0;
1322 +    
1323 +    bool doAllPairs = false;
1324 +
1325 +    Snapshot* snap_ = sman_->getCurrentSnapshot();
1326 +    Mat3x3d box;
1327 +    Mat3x3d invBox;
1328 +
1329 +    Vector3d rs, scaled, dr;
1330 +    Vector3i whichCell;
1331 +    int cellIndex;
1332 +
1333 + #ifdef IS_MPI
1334 +    cellListRow_.clear();
1335 +    cellListCol_.clear();
1336 +    point.resize(nGroupsInRow_+1);
1337 + #else
1338 +    cellList_.clear();
1339 +    point.resize(nGroups_+1);
1340 + #endif
1341 +    
1342 +    if (!usePeriodicBoundaryConditions_) {
1343 +      box = snap_->getBoundingBox();
1344 +      invBox = snap_->getInvBoundingBox();
1345 +    } else {
1346 +      box = snap_->getHmat();
1347 +      invBox = snap_->getInvHmat();
1348 +    }
1349 +    
1350 +    Vector3d A = box.getColumn(0);
1351 +    Vector3d B = box.getColumn(1);
1352 +    Vector3d C = box.getColumn(2);
1353 +
1354 +    // Required for triclinic cells
1355 +    Vector3d AxB = cross(A, B);
1356 +    Vector3d BxC = cross(B, C);
1357 +    Vector3d CxA = cross(C, A);
1358 +
1359 +    // unit vectors perpendicular to the faces of the triclinic cell:
1360 +    AxB.normalize();
1361 +    BxC.normalize();
1362 +    CxA.normalize();
1363 +
1364 +    // A set of perpendicular lengths in triclinic cells:
1365 +    RealType Wa = abs(dot(A, BxC));
1366 +    RealType Wb = abs(dot(B, CxA));
1367 +    RealType Wc = abs(dot(C, AxB));
1368 +    
1369 +    nCells_.x() = int( Wa / rList_ );
1370 +    nCells_.y() = int( Wb / rList_ );
1371 +    nCells_.z() = int( Wc / rList_ );
1372 +    
1373 +    // handle small boxes where the cell offsets can end up repeating cells
1374 +    if (nCells_.x() < 3) doAllPairs = true;
1375 +    if (nCells_.y() < 3) doAllPairs = true;
1376 +    if (nCells_.z() < 3) doAllPairs = true;
1377 +    
1378 +    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1379 +    
1380 + #ifdef IS_MPI
1381 +    cellListRow_.resize(nCtot);
1382 +    cellListCol_.resize(nCtot);
1383 + #else
1384 +    cellList_.resize(nCtot);
1385 + #endif
1386 +    
1387 +    if (!doAllPairs) {
1388 +      
1389 + #ifdef IS_MPI
1390 +      
1391 +      for (int i = 0; i < nGroupsInRow_; i++) {
1392 +        rs = cgRowData.position[i];
1393 +        
1394 +        // scaled positions relative to the box vectors
1395 +        scaled = invBox * rs;
1396 +        
1397 +        // wrap the vector back into the unit box by subtracting integer box
1398 +        // numbers
1399 +        for (int j = 0; j < 3; j++) {
1400 +          scaled[j] -= roundMe(scaled[j]);
1401 +          scaled[j] += 0.5;
1402 +          // Handle the special case when an object is exactly on the
1403 +          // boundary (a scaled coordinate of 1.0 is the same as
1404 +          // scaled coordinate of 0.0)
1405 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1406 +        }
1407 +        
1408 +        // find xyz-indices of cell that cutoffGroup is in.
1409 +        whichCell.x() = nCells_.x() * scaled.x();
1410 +        whichCell.y() = nCells_.y() * scaled.y();
1411 +        whichCell.z() = nCells_.z() * scaled.z();
1412 +        
1413 +        // find single index of this cell:
1414 +        cellIndex = Vlinear(whichCell, nCells_);
1415 +        
1416 +        // add this cutoff group to the list of groups in this cell;
1417 +        cellListRow_[cellIndex].push_back(i);
1418 +      }
1419 +      for (int i = 0; i < nGroupsInCol_; i++) {
1420 +        rs = cgColData.position[i];
1421 +        
1422 +        // scaled positions relative to the box vectors
1423 +        scaled = invBox * rs;
1424 +        
1425 +        // wrap the vector back into the unit box by subtracting integer box
1426 +        // numbers
1427 +        for (int j = 0; j < 3; j++) {
1428 +          scaled[j] -= roundMe(scaled[j]);
1429 +          scaled[j] += 0.5;
1430 +          // Handle the special case when an object is exactly on the
1431 +          // boundary (a scaled coordinate of 1.0 is the same as
1432 +          // scaled coordinate of 0.0)
1433 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1434 +        }
1435 +        
1436 +        // find xyz-indices of cell that cutoffGroup is in.
1437 +        whichCell.x() = nCells_.x() * scaled.x();
1438 +        whichCell.y() = nCells_.y() * scaled.y();
1439 +        whichCell.z() = nCells_.z() * scaled.z();
1440 +        
1441 +        // find single index of this cell:
1442 +        cellIndex = Vlinear(whichCell, nCells_);
1443 +        
1444 +        // add this cutoff group to the list of groups in this cell;
1445 +        cellListCol_[cellIndex].push_back(i);
1446 +      }
1447 +            
1448 + #else
1449 +      for (int i = 0; i < nGroups_; i++) {
1450 +        rs = snap_->cgData.position[i];
1451 +        
1452 +        // scaled positions relative to the box vectors
1453 +        scaled = invBox * rs;
1454 +        
1455 +        // wrap the vector back into the unit box by subtracting integer box
1456 +        // numbers
1457 +        for (int j = 0; j < 3; j++) {
1458 +          scaled[j] -= roundMe(scaled[j]);
1459 +          scaled[j] += 0.5;
1460 +          // Handle the special case when an object is exactly on the
1461 +          // boundary (a scaled coordinate of 1.0 is the same as
1462 +          // scaled coordinate of 0.0)
1463 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1464 +        }
1465 +        
1466 +        // find xyz-indices of cell that cutoffGroup is in.
1467 +        whichCell.x() = int(nCells_.x() * scaled.x());
1468 +        whichCell.y() = int(nCells_.y() * scaled.y());
1469 +        whichCell.z() = int(nCells_.z() * scaled.z());
1470 +        
1471 +        // find single index of this cell:
1472 +        cellIndex = Vlinear(whichCell, nCells_);
1473 +        
1474 +        // add this cutoff group to the list of groups in this cell;
1475 +        cellList_[cellIndex].push_back(i);
1476 +      }
1477 +
1478 + #endif
1479 +
1480 + #ifdef IS_MPI
1481 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1482 +        rs = cgRowData.position[j1];
1483 + #else
1484 +
1485 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1486 +        rs = snap_->cgData.position[j1];
1487 + #endif
1488 +        point[j1] = len;
1489 +        
1490 +        // scaled positions relative to the box vectors
1491 +        scaled = invBox * rs;
1492 +        
1493 +        // wrap the vector back into the unit box by subtracting integer box
1494 +        // numbers
1495 +        for (int j = 0; j < 3; j++) {
1496 +          scaled[j] -= roundMe(scaled[j]);
1497 +          scaled[j] += 0.5;
1498 +          // Handle the special case when an object is exactly on the
1499 +          // boundary (a scaled coordinate of 1.0 is the same as
1500 +          // scaled coordinate of 0.0)
1501 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1502 +        }
1503 +        
1504 +        // find xyz-indices of cell that cutoffGroup is in.
1505 +        whichCell.x() = nCells_.x() * scaled.x();
1506 +        whichCell.y() = nCells_.y() * scaled.y();
1507 +        whichCell.z() = nCells_.z() * scaled.z();
1508 +        
1509 +        // find single index of this cell:
1510 +        int m1 = Vlinear(whichCell, nCells_);
1511 +
1512 +        for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1513 +             os != cellOffsets_.end(); ++os) {
1514 +              
1515 +          Vector3i m2v = whichCell + (*os);
1516 +
1517 +          if (m2v.x() >= nCells_.x()) {
1518 +            m2v.x() = 0;          
1519 +          } else if (m2v.x() < 0) {
1520 +            m2v.x() = nCells_.x() - 1;
1521 +          }
1522 +          
1523 +          if (m2v.y() >= nCells_.y()) {
1524 +            m2v.y() = 0;          
1525 +          } else if (m2v.y() < 0) {
1526 +            m2v.y() = nCells_.y() - 1;
1527 +          }
1528 +          
1529 +          if (m2v.z() >= nCells_.z()) {
1530 +            m2v.z() = 0;          
1531 +          } else if (m2v.z() < 0) {
1532 +            m2v.z() = nCells_.z() - 1;
1533 +          }
1534 +          int m2 = Vlinear (m2v, nCells_);                                      
1535 + #ifdef IS_MPI
1536 +          for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1537 +               j2 != cellListCol_[m2].end(); ++j2) {
1538 +            
1539 +            // In parallel, we need to visit *all* pairs of row
1540 +            // & column indicies and will divide labor in the
1541 +            // force evaluation later.
1542 +            dr = cgColData.position[(*j2)] - rs;
1543 +            if (usePeriodicBoundaryConditions_) {
1544 +              snap_->wrapVector(dr);
1545 +            }
1546 +            if (dr.lengthSquare() < rListSq_) {
1547 +              neighborList.push_back( (*j2) );
1548 +              ++len;
1549 +            }                
1550 +          }        
1551 + #else
1552 +          for (vector<int>::iterator j2 = cellList_[m2].begin();
1553 +               j2 != cellList_[m2].end(); ++j2) {
1554 +          
1555 +            // Always do this if we're in different cells or if
1556 +            // we're in the same cell and the global index of
1557 +            // the j2 cutoff group is greater than or equal to
1558 +            // the j1 cutoff group.  Note that Rappaport's code
1559 +            // has a "less than" conditional here, but that
1560 +            // deals with atom-by-atom computation.  OpenMD
1561 +            // allows atoms within a single cutoff group to
1562 +            // interact with each other.
1563 +            
1564 +            if ( (*j2) >= j1 ) {
1565 +              
1566 +              dr = snap_->cgData.position[(*j2)] - rs;
1567 +              if (usePeriodicBoundaryConditions_) {
1568 +                snap_->wrapVector(dr);
1569 +              }
1570 +              if ( dr.lengthSquare() < rListSq_) {
1571 +                neighborList.push_back( (*j2) );
1572 +                ++len;
1573 +              }
1574 +            }
1575 +          }                
1576 + #endif
1577 +        }
1578 +      }      
1579 +    } else {
1580 +      // branch to do all cutoff group pairs
1581 + #ifdef IS_MPI
1582 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1583 +        point[j1] = len;
1584 +        rs = cgRowData.position[j1];
1585 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {    
1586 +          dr = cgColData.position[j2] - rs;
1587 +          if (usePeriodicBoundaryConditions_) {
1588 +            snap_->wrapVector(dr);
1589 +          }
1590 +          if (dr.lengthSquare() < rListSq_) {
1591 +            neighborList.push_back( j2 );
1592 +            ++len;
1593 +          }
1594 +        }
1595 +      }      
1596 + #else
1597 +      // include all groups here.
1598 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1599 +        point[j1] = len;
1600 +        rs = snap_->cgData.position[j1];
1601 +        // include self group interactions j2 == j1
1602 +        for (int j2 = j1; j2 < nGroups_; j2++) {
1603 +          dr = snap_->cgData.position[j2] - rs;
1604 +          if (usePeriodicBoundaryConditions_) {
1605 +            snap_->wrapVector(dr);
1606 +          }
1607 +          if (dr.lengthSquare() < rListSq_) {
1608 +            neighborList.push_back( j2 );
1609 +            ++len;
1610 +          }
1611 +        }    
1612 +      }
1613 + #endif
1614 +    }
1615 +
1616 + #ifdef IS_MPI
1617 +    point[nGroupsInRow_] = len;
1618 + #else
1619 +    point[nGroups_] = len;
1620 + #endif
1621 +  
1622 +    // save the local cutoff group positions for the check that is
1623 +    // done on each loop:
1624 +    saved_CG_positions_.clear();
1625 +    saved_CG_positions_.reserve(nGroups_);
1626 +    for (int i = 0; i < nGroups_; i++)
1627 +      saved_CG_positions_.push_back(snap_->cgData.position[i]);
1628 +  }
1629   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines