ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing:
branches/development/src/parallel/ForceDecomposition.cpp (file contents), Revision 1538 by chuckv, Tue Jan 11 18:58:12 2011 UTC vs.
trunk/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 1993 by gezelter, Tue Apr 29 17:32:31 2014 UTC

# Line 1 | Line 1
1 < /**
2 < * @file ForceDecomposition.cpp
3 < * @author Charles Vardeman <cvardema.at.nd.edu>
4 < * @date 08/18/2010
5 < * @time 11:56am
6 < * @version 1.0
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
8 * @section LICENSE
9 * Copyright (c) 2010 The University of Notre Dame. All Rights Reserved.
10 *
4   * The University of Notre Dame grants you ("Licensee") a
5   * non-exclusive, royalty free, license to use, modify and
6   * redistribute this software in source and binary code form, provided
# Line 42 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42 + #include "parallel/ForceMatrixDecomposition.hpp"
43 + #include "math/SquareMatrix3.hpp"
44 + #include "nonbonded/NonBondedInteraction.hpp"
45 + #include "brains/SnapshotManager.hpp"
46 + #include "brains/PairList.hpp"
47  
48 + using namespace std;
49 + namespace OpenMD {
50  
51 +  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52  
53 < /*  -*- c++ -*-  */
54 < #include "config.h"
55 < #include <stdlib.h>
53 >    // In a parallel computation, row and colum scans must visit all
54 >    // surrounding cells (not just the 14 upper triangular blocks that
55 >    // are used when the processor can see all pairs)
56   #ifdef IS_MPI
57 < #include <mpi.h>
58 < #endif
57 >    cellOffsets_.clear();
58 >    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59 >    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60 >    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                          
61 >    cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62 >    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63 >    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64 >    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65 >    cellOffsets_.push_back( Vector3i( 0, 1,-1) );      
66 >    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 >    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68 >    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69 >    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 >    cellOffsets_.push_back( Vector3i(-1, 0, 0) );      
71 >    cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72 >    cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73 >    cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74 >    cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75 >    cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76 >    cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77 >    cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78 >    cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 >    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 >    cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81 >    cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82 >    cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83 >    cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84 >    cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 > #endif    
86 >  }
87  
58 #include <iostream>
59 #include <vector>
60 #include <algorithm>
61 #include <cmath>
62 #include "parallel/ForceDecomposition.hpp"
88  
89 +  /**
90 +   * distributeInitialData is essentially a copy of the older fortran
91 +   * SimulationSetup
92 +   */
93 +  void ForceMatrixDecomposition::distributeInitialData() {
94 +    snap_ = sman_->getCurrentSnapshot();
95 +    storageLayout_ = sman_->getStorageLayout();
96 +    ff_ = info_->getForceField();
97 +    nLocal_ = snap_->getNumberOfAtoms();
98 +  
99 +    nGroups_ = info_->getNLocalCutoffGroups();
100 +    // gather the information for atomtype IDs (atids):
101 +    idents = info_->getIdentArray();
102 +    regions = info_->getRegions();
103 +    AtomLocalToGlobal = info_->getGlobalAtomIndices();
104 +    cgLocalToGlobal = info_->getGlobalGroupIndices();
105 +    vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
106  
107 < using namespace std;
66 < using namespace OpenMD;
107 >    massFactors = info_->getMassFactors();
108  
109 < //__static
109 >    PairList* excludes = info_->getExcludedInteractions();
110 >    PairList* oneTwo = info_->getOneTwoInteractions();
111 >    PairList* oneThree = info_->getOneThreeInteractions();
112 >    PairList* oneFour = info_->getOneFourInteractions();
113 >    
114 >    if (needVelocities_)
115 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition |
116 >                                     DataStorage::dslVelocity);
117 >    else
118 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition);
119 >    
120   #ifdef IS_MPI
121 < static vector<MPI:Comm> communictors;
122 < #endif
121 >
122 >    MPI_Comm row = rowComm.getComm();
123 >    MPI_Comm col = colComm.getComm();
124  
125 < //____ MPITypeTraits
126 < template<typename T>
127 < struct MPITypeTraits;
125 >    AtomPlanIntRow = new Plan<int>(row, nLocal_);
126 >    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
127 >    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
128 >    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
129 >    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
130  
131 < #ifdef IS_MPI
132 < template<>
133 < struct MPITypeTraits<RealType> {
134 <  static const MPI::Datatype datatype;
135 < };
82 < const MPI_Datatype MPITypeTraits<RealType>::datatype = MY_MPI_REAL;
131 >    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
132 >    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
133 >    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
134 >    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
135 >    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
136  
137 < template<>
138 < struct MPITypeTraits<int> {
139 <  static const MPI::Datatype datatype;
140 < };
88 < const MPI::Datatype MPITypeTraits<int>::datatype = MPI_INT;
89 < #endif
137 >    cgPlanIntRow = new Plan<int>(row, nGroups_);
138 >    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
139 >    cgPlanIntColumn = new Plan<int>(col, nGroups_);
140 >    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
141  
142 < /**
143 < * Constructor for ForceDecomposition Parallel Decomposition Method
144 < * Will try to construct a symmetric grid of processors. Ideally, the
145 < * number of processors will be a square ex: 4, 9, 16, 25.
95 < *
96 < */
142 >    nAtomsInRow_ = AtomPlanIntRow->getSize();
143 >    nAtomsInCol_ = AtomPlanIntColumn->getSize();
144 >    nGroupsInRow_ = cgPlanIntRow->getSize();
145 >    nGroupsInCol_ = cgPlanIntColumn->getSize();
146  
147 < ForceDecomposition::ForceDecomposition() {
147 >    // Modify the data storage objects with the correct layouts and sizes:
148 >    atomRowData.resize(nAtomsInRow_);
149 >    atomRowData.setStorageLayout(storageLayout_);
150 >    atomColData.resize(nAtomsInCol_);
151 >    atomColData.setStorageLayout(storageLayout_);
152 >    cgRowData.resize(nGroupsInRow_);
153 >    cgRowData.setStorageLayout(DataStorage::dslPosition);
154 >    cgColData.resize(nGroupsInCol_);
155 >    if (needVelocities_)
156 >      // we only need column velocities if we need them.
157 >      cgColData.setStorageLayout(DataStorage::dslPosition |
158 >                                 DataStorage::dslVelocity);
159 >    else    
160 >      cgColData.setStorageLayout(DataStorage::dslPosition);
161 >      
162 >    identsRow.resize(nAtomsInRow_);
163 >    identsCol.resize(nAtomsInCol_);
164 >    
165 >    AtomPlanIntRow->gather(idents, identsRow);
166 >    AtomPlanIntColumn->gather(idents, identsCol);
167  
168 < #ifdef IS_MPI
169 <  int nProcs = MPI::COMM_WORLD.Get_size();
170 <  int worldRank = MPI::COMM_WORLD.Get_rank();
168 >    regionsRow.resize(nAtomsInRow_);
169 >    regionsCol.resize(nAtomsInCol_);
170 >    
171 >    AtomPlanIntRow->gather(regions, regionsRow);
172 >    AtomPlanIntColumn->gather(regions, regionsCol);
173 >    
174 >    // allocate memory for the parallel objects
175 >    atypesRow.resize(nAtomsInRow_);
176 >    atypesCol.resize(nAtomsInCol_);
177 >
178 >    for (int i = 0; i < nAtomsInRow_; i++)
179 >      atypesRow[i] = ff_->getAtomType(identsRow[i]);
180 >    for (int i = 0; i < nAtomsInCol_; i++)
181 >      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
182 >
183 >    pot_row.resize(nAtomsInRow_);
184 >    pot_col.resize(nAtomsInCol_);
185 >
186 >    expot_row.resize(nAtomsInRow_);
187 >    expot_col.resize(nAtomsInCol_);
188 >
189 >    AtomRowToGlobal.resize(nAtomsInRow_);
190 >    AtomColToGlobal.resize(nAtomsInCol_);
191 >    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
192 >    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
193 >
194 >    cgRowToGlobal.resize(nGroupsInRow_);
195 >    cgColToGlobal.resize(nGroupsInCol_);
196 >    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
197 >    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
198 >
199 >    massFactorsRow.resize(nAtomsInRow_);
200 >    massFactorsCol.resize(nAtomsInCol_);
201 >    AtomPlanRealRow->gather(massFactors, massFactorsRow);
202 >    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
203 >
204 >    groupListRow_.clear();
205 >    groupListRow_.resize(nGroupsInRow_);
206 >    for (int i = 0; i < nGroupsInRow_; i++) {
207 >      int gid = cgRowToGlobal[i];
208 >      for (int j = 0; j < nAtomsInRow_; j++) {
209 >        int aid = AtomRowToGlobal[j];
210 >        if (globalGroupMembership[aid] == gid)
211 >          groupListRow_[i].push_back(j);
212 >      }      
213 >    }
214 >
215 >    groupListCol_.clear();
216 >    groupListCol_.resize(nGroupsInCol_);
217 >    for (int i = 0; i < nGroupsInCol_; i++) {
218 >      int gid = cgColToGlobal[i];
219 >      for (int j = 0; j < nAtomsInCol_; j++) {
220 >        int aid = AtomColToGlobal[j];
221 >        if (globalGroupMembership[aid] == gid)
222 >          groupListCol_[i].push_back(j);
223 >      }      
224 >    }
225 >
226 >    excludesForAtom.clear();
227 >    excludesForAtom.resize(nAtomsInRow_);
228 >    toposForAtom.clear();
229 >    toposForAtom.resize(nAtomsInRow_);
230 >    topoDist.clear();
231 >    topoDist.resize(nAtomsInRow_);
232 >    for (int i = 0; i < nAtomsInRow_; i++) {
233 >      int iglob = AtomRowToGlobal[i];
234 >
235 >      for (int j = 0; j < nAtomsInCol_; j++) {
236 >        int jglob = AtomColToGlobal[j];
237 >
238 >        if (excludes->hasPair(iglob, jglob))
239 >          excludesForAtom[i].push_back(j);      
240 >        
241 >        if (oneTwo->hasPair(iglob, jglob)) {
242 >          toposForAtom[i].push_back(j);
243 >          topoDist[i].push_back(1);
244 >        } else {
245 >          if (oneThree->hasPair(iglob, jglob)) {
246 >            toposForAtom[i].push_back(j);
247 >            topoDist[i].push_back(2);
248 >          } else {
249 >            if (oneFour->hasPair(iglob, jglob)) {
250 >              toposForAtom[i].push_back(j);
251 >              topoDist[i].push_back(3);
252 >            }
253 >          }
254 >        }
255 >      }      
256 >    }
257 >
258 > #else
259 >    excludesForAtom.clear();
260 >    excludesForAtom.resize(nLocal_);
261 >    toposForAtom.clear();
262 >    toposForAtom.resize(nLocal_);
263 >    topoDist.clear();
264 >    topoDist.resize(nLocal_);
265 >
266 >    for (int i = 0; i < nLocal_; i++) {
267 >      int iglob = AtomLocalToGlobal[i];
268 >
269 >      for (int j = 0; j < nLocal_; j++) {
270 >        int jglob = AtomLocalToGlobal[j];
271 >
272 >        if (excludes->hasPair(iglob, jglob))
273 >          excludesForAtom[i].push_back(j);              
274 >        
275 >        if (oneTwo->hasPair(iglob, jglob)) {
276 >          toposForAtom[i].push_back(j);
277 >          topoDist[i].push_back(1);
278 >        } else {
279 >          if (oneThree->hasPair(iglob, jglob)) {
280 >            toposForAtom[i].push_back(j);
281 >            topoDist[i].push_back(2);
282 >          } else {
283 >            if (oneFour->hasPair(iglob, jglob)) {
284 >              toposForAtom[i].push_back(j);
285 >              topoDist[i].push_back(3);
286 >            }
287 >          }
288 >        }
289 >      }      
290 >    }
291   #endif
292  
293 <  // First time through, construct column stride.
294 <  if (communicators.size() == 0)
295 <  {
296 <    int nColumnsMax = (int) round(sqrt((float) nProcs));
297 <    for (int i = 0; i < nProcs; ++i)
298 <    {
299 <      if (nProcs%i==0) nColumns=i;
293 >    // allocate memory for the parallel objects
294 >    atypesLocal.resize(nLocal_);
295 >
296 >    for (int i = 0; i < nLocal_; i++)
297 >      atypesLocal[i] = ff_->getAtomType(idents[i]);
298 >
299 >    groupList_.clear();
300 >    groupList_.resize(nGroups_);
301 >    for (int i = 0; i < nGroups_; i++) {
302 >      int gid = cgLocalToGlobal[i];
303 >      for (int j = 0; j < nLocal_; j++) {
304 >        int aid = AtomLocalToGlobal[j];
305 >        if (globalGroupMembership[aid] == gid) {
306 >          groupList_[i].push_back(j);
307 >        }
308 >      }      
309      }
310  
311 <    int nRows = nProcs/nColumns;    
312 <    myRank_ = (int) worldRank%nColumns;
311 >
312 >    createGtypeCutoffMap();
313 >
314    }
315 <  else
316 <  {
317 <    myRank_ = myRank/nColumns;
318 <  }
319 <  MPI::Comm newComm = MPI:COMM_WORLD.Split(myRank_,0);
320 <  
123 <  isColumn_ = false;
124 <  
125 < }
315 >  
316 >  void ForceMatrixDecomposition::createGtypeCutoffMap() {
317 >    
318 >    GrCut.clear();
319 >    GrCutSq.clear();
320 >    GrlistSq.clear();
321  
322 < ForceDecomposition::gather(sendbuf, receivebuf){
323 <  communicators(myIndex_).Allgatherv();
324 < }
322 >    RealType tol = 1e-6;
323 >    largestRcut_ = 0.0;
324 >    int atid;
325 >    set<AtomType*> atypes = info_->getSimulatedAtomTypes();
326 >    
327 >    map<int, RealType> atypeCutoff;
328 >      
329 >    for (set<AtomType*>::iterator at = atypes.begin();
330 >         at != atypes.end(); ++at){
331 >      atid = (*at)->getIdent();
332 >      if (userChoseCutoff_)
333 >        atypeCutoff[atid] = userCutoff_;
334 >      else
335 >        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
336 >    }
337 >    
338 >    vector<RealType> gTypeCutoffs;
339 >    // first we do a single loop over the cutoff groups to find the
340 >    // largest cutoff for any atypes present in this group.
341 > #ifdef IS_MPI
342 >    vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
343 >    groupRowToGtype.resize(nGroupsInRow_);
344 >    for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
345 >      vector<int> atomListRow = getAtomsInGroupRow(cg1);
346 >      for (vector<int>::iterator ia = atomListRow.begin();
347 >           ia != atomListRow.end(); ++ia) {            
348 >        int atom1 = (*ia);
349 >        atid = identsRow[atom1];
350 >        if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
351 >          groupCutoffRow[cg1] = atypeCutoff[atid];
352 >        }
353 >      }
354 >
355 >      bool gTypeFound = false;
356 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
357 >        if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
358 >          groupRowToGtype[cg1] = gt;
359 >          gTypeFound = true;
360 >        }
361 >      }
362 >      if (!gTypeFound) {
363 >        gTypeCutoffs.push_back( groupCutoffRow[cg1] );
364 >        groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
365 >      }
366 >      
367 >    }
368 >    vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
369 >    groupColToGtype.resize(nGroupsInCol_);
370 >    for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
371 >      vector<int> atomListCol = getAtomsInGroupColumn(cg2);
372 >      for (vector<int>::iterator jb = atomListCol.begin();
373 >           jb != atomListCol.end(); ++jb) {            
374 >        int atom2 = (*jb);
375 >        atid = identsCol[atom2];
376 >        if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
377 >          groupCutoffCol[cg2] = atypeCutoff[atid];
378 >        }
379 >      }
380 >      bool gTypeFound = false;
381 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
382 >        if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
383 >          groupColToGtype[cg2] = gt;
384 >          gTypeFound = true;
385 >        }
386 >      }
387 >      if (!gTypeFound) {
388 >        gTypeCutoffs.push_back( groupCutoffCol[cg2] );
389 >        groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
390 >      }
391 >    }
392 > #else
393 >
394 >    vector<RealType> groupCutoff(nGroups_, 0.0);
395 >    groupToGtype.resize(nGroups_);
396 >    for (int cg1 = 0; cg1 < nGroups_; cg1++) {
397 >      groupCutoff[cg1] = 0.0;
398 >      vector<int> atomList = getAtomsInGroupRow(cg1);
399 >      for (vector<int>::iterator ia = atomList.begin();
400 >           ia != atomList.end(); ++ia) {            
401 >        int atom1 = (*ia);
402 >        atid = idents[atom1];
403 >        if (atypeCutoff[atid] > groupCutoff[cg1])
404 >          groupCutoff[cg1] = atypeCutoff[atid];
405 >      }
406 >      
407 >      bool gTypeFound = false;
408 >      for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) {
409 >        if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
410 >          groupToGtype[cg1] = gt;
411 >          gTypeFound = true;
412 >        }
413 >      }
414 >      if (!gTypeFound) {      
415 >        gTypeCutoffs.push_back( groupCutoff[cg1] );
416 >        groupToGtype[cg1] = gTypeCutoffs.size() - 1;
417 >      }      
418 >    }
419 > #endif
420  
421 +    // Now we find the maximum group cutoff value present in the simulation
422  
423 +    RealType groupMax = *max_element(gTypeCutoffs.begin(),
424 +                                     gTypeCutoffs.end());
425  
426 < ForceDecomposition::scatter(sbuffer, rbuffer){
427 <  communicators(myIndex_).Reduce_scatter(sbuffer, recevbuf. recvcounts, MPI::DOUBLE, MPI::SUM);
428 < }
426 > #ifdef IS_MPI
427 >    MPI_Allreduce(MPI_IN_PLACE, &groupMax, 1, MPI_REALTYPE,
428 >                  MPI_MAX, MPI_COMM_WORLD);
429 > #endif
430 >    
431 >    RealType tradRcut = groupMax;
432 >
433 >    GrCut.resize( gTypeCutoffs.size() );
434 >    GrCutSq.resize( gTypeCutoffs.size() );
435 >    GrlistSq.resize( gTypeCutoffs.size() );
436 >
437 >
438 >    for (unsigned int i = 0; i < gTypeCutoffs.size();  i++) {
439 >      GrCut[i].resize( gTypeCutoffs.size() , 0.0);
440 >      GrCutSq[i].resize( gTypeCutoffs.size(), 0.0 );
441 >      GrlistSq[i].resize( gTypeCutoffs.size(), 0.0 );
442 >
443 >      for (unsigned int j = 0; j < gTypeCutoffs.size();  j++) {      
444 >        RealType thisRcut;
445 >        switch(cutoffPolicy_) {
446 >        case TRADITIONAL:
447 >          thisRcut = tradRcut;
448 >          break;
449 >        case MIX:
450 >          thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
451 >          break;
452 >        case MAX:
453 >          thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
454 >          break;
455 >        default:
456 >          sprintf(painCave.errMsg,
457 >                  "ForceMatrixDecomposition::createGtypeCutoffMap "
458 >                  "hit an unknown cutoff policy!\n");
459 >          painCave.severity = OPENMD_ERROR;
460 >          painCave.isFatal = 1;
461 >          simError();
462 >          break;
463 >        }
464 >
465 >        GrCut[i][j] = thisRcut;
466 >        if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
467 >        GrCutSq[i][j] = thisRcut * thisRcut;
468 >        GrlistSq[i][j] = pow(thisRcut + skinThickness_, 2);
469 >
470 >        // pair<int,int> key = make_pair(i,j);
471 >        // gTypeCutoffMap[key].first = thisRcut;
472 >        // gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
473 >        // sanity check
474 >        
475 >        if (userChoseCutoff_) {
476 >          if (abs(GrCut[i][j] - userCutoff_) > 0.0001) {
477 >            sprintf(painCave.errMsg,
478 >                    "ForceMatrixDecomposition::createGtypeCutoffMap "
479 >                    "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
480 >            painCave.severity = OPENMD_ERROR;
481 >            painCave.isFatal = 1;
482 >            simError();            
483 >          }
484 >        }
485 >      }
486 >    }
487 >  }
488 >
489 >  void ForceMatrixDecomposition::getGroupCutoffs(int &cg1, int &cg2, RealType &rcut, RealType &rcutsq, RealType &rlistsq) {
490 >    int i, j;  
491 > #ifdef IS_MPI
492 >    i = groupRowToGtype[cg1];
493 >    j = groupColToGtype[cg2];
494 > #else
495 >    i = groupToGtype[cg1];
496 >    j = groupToGtype[cg2];
497 > #endif    
498 >    rcut = GrCut[i][j];
499 >    rcutsq = GrCutSq[i][j];
500 >    rlistsq = GrlistSq[i][j];
501 >    return;
502 >    //return gTypeCutoffMap[make_pair(i,j)];
503 >  }
504 >
505 >  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
506 >    for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) {
507 >      if (toposForAtom[atom1][j] == atom2)
508 >        return topoDist[atom1][j];
509 >    }                                          
510 >    return 0;
511 >  }
512 >
513 >  void ForceMatrixDecomposition::zeroWorkArrays() {
514 >    pairwisePot = 0.0;
515 >    embeddingPot = 0.0;
516 >    excludedPot = 0.0;
517 >    excludedSelfPot = 0.0;
518 >
519 > #ifdef IS_MPI
520 >    if (storageLayout_ & DataStorage::dslForce) {
521 >      fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
522 >      fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
523 >    }
524 >
525 >    if (storageLayout_ & DataStorage::dslTorque) {
526 >      fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
527 >      fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
528 >    }
529 >    
530 >    fill(pot_row.begin(), pot_row.end(),
531 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
532 >
533 >    fill(pot_col.begin(), pot_col.end(),
534 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
535 >
536 >    fill(expot_row.begin(), expot_row.end(),
537 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
538 >
539 >    fill(expot_col.begin(), expot_col.end(),
540 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
541 >
542 >    if (storageLayout_ & DataStorage::dslParticlePot) {    
543 >      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
544 >           0.0);
545 >      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
546 >           0.0);
547 >    }
548 >
549 >    if (storageLayout_ & DataStorage::dslDensity) {      
550 >      fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
551 >      fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
552 >    }
553 >
554 >    if (storageLayout_ & DataStorage::dslFunctional) {  
555 >      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
556 >           0.0);
557 >      fill(atomColData.functional.begin(), atomColData.functional.end(),
558 >           0.0);
559 >    }
560 >
561 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
562 >      fill(atomRowData.functionalDerivative.begin(),
563 >           atomRowData.functionalDerivative.end(), 0.0);
564 >      fill(atomColData.functionalDerivative.begin(),
565 >           atomColData.functionalDerivative.end(), 0.0);
566 >    }
567 >
568 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
569 >      fill(atomRowData.skippedCharge.begin(),
570 >           atomRowData.skippedCharge.end(), 0.0);
571 >      fill(atomColData.skippedCharge.begin(),
572 >           atomColData.skippedCharge.end(), 0.0);
573 >    }
574 >
575 >    if (storageLayout_ & DataStorage::dslFlucQForce) {      
576 >      fill(atomRowData.flucQFrc.begin(),
577 >           atomRowData.flucQFrc.end(), 0.0);
578 >      fill(atomColData.flucQFrc.begin(),
579 >           atomColData.flucQFrc.end(), 0.0);
580 >    }
581 >
582 >    if (storageLayout_ & DataStorage::dslElectricField) {    
583 >      fill(atomRowData.electricField.begin(),
584 >           atomRowData.electricField.end(), V3Zero);
585 >      fill(atomColData.electricField.begin(),
586 >           atomColData.electricField.end(), V3Zero);
587 >    }
588 >
589 >    if (storageLayout_ & DataStorage::dslSitePotential) {    
590 >      fill(atomRowData.sitePotential.begin(),
591 >           atomRowData.sitePotential.end(), 0.0);
592 >      fill(atomColData.sitePotential.begin(),
593 >           atomColData.sitePotential.end(), 0.0);
594 >    }
595 >
596 > #endif
597 >    // even in parallel, we need to zero out the local arrays:
598 >
599 >    if (storageLayout_ & DataStorage::dslParticlePot) {      
600 >      fill(snap_->atomData.particlePot.begin(),
601 >           snap_->atomData.particlePot.end(), 0.0);
602 >    }
603 >    
604 >    if (storageLayout_ & DataStorage::dslDensity) {      
605 >      fill(snap_->atomData.density.begin(),
606 >           snap_->atomData.density.end(), 0.0);
607 >    }
608 >
609 >    if (storageLayout_ & DataStorage::dslFunctional) {
610 >      fill(snap_->atomData.functional.begin(),
611 >           snap_->atomData.functional.end(), 0.0);
612 >    }
613 >
614 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
615 >      fill(snap_->atomData.functionalDerivative.begin(),
616 >           snap_->atomData.functionalDerivative.end(), 0.0);
617 >    }
618 >
619 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
620 >      fill(snap_->atomData.skippedCharge.begin(),
621 >           snap_->atomData.skippedCharge.end(), 0.0);
622 >    }
623 >
624 >    if (storageLayout_ & DataStorage::dslElectricField) {      
625 >      fill(snap_->atomData.electricField.begin(),
626 >           snap_->atomData.electricField.end(), V3Zero);
627 >    }
628 >    if (storageLayout_ & DataStorage::dslSitePotential) {      
629 >      fill(snap_->atomData.sitePotential.begin(),
630 >           snap_->atomData.sitePotential.end(), 0.0);
631 >    }
632 >  }
633 >
634 >
635 >  void ForceMatrixDecomposition::distributeData()  {
636 >    snap_ = sman_->getCurrentSnapshot();
637 >    storageLayout_ = sman_->getStorageLayout();
638 > #ifdef IS_MPI
639 >    
640 >    // gather up the atomic positions
641 >    AtomPlanVectorRow->gather(snap_->atomData.position,
642 >                              atomRowData.position);
643 >    AtomPlanVectorColumn->gather(snap_->atomData.position,
644 >                                 atomColData.position);
645 >    
646 >    // gather up the cutoff group positions
647 >
648 >    cgPlanVectorRow->gather(snap_->cgData.position,
649 >                            cgRowData.position);
650 >
651 >    cgPlanVectorColumn->gather(snap_->cgData.position,
652 >                               cgColData.position);
653 >
654 >
655 >
656 >    if (needVelocities_) {
657 >      // gather up the atomic velocities
658 >      AtomPlanVectorColumn->gather(snap_->atomData.velocity,
659 >                                   atomColData.velocity);
660 >      
661 >      cgPlanVectorColumn->gather(snap_->cgData.velocity,
662 >                                 cgColData.velocity);
663 >    }
664 >
665 >    
666 >    // if needed, gather the atomic rotation matrices
667 >    if (storageLayout_ & DataStorage::dslAmat) {
668 >      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
669 >                                atomRowData.aMat);
670 >      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
671 >                                   atomColData.aMat);
672 >    }
673 >
674 >    // if needed, gather the atomic eletrostatic information
675 >    if (storageLayout_ & DataStorage::dslDipole) {
676 >      AtomPlanVectorRow->gather(snap_->atomData.dipole,
677 >                                atomRowData.dipole);
678 >      AtomPlanVectorColumn->gather(snap_->atomData.dipole,
679 >                                   atomColData.dipole);
680 >    }
681 >
682 >    if (storageLayout_ & DataStorage::dslQuadrupole) {
683 >      AtomPlanMatrixRow->gather(snap_->atomData.quadrupole,
684 >                                atomRowData.quadrupole);
685 >      AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole,
686 >                                   atomColData.quadrupole);
687 >    }
688 >        
689 >    // if needed, gather the atomic fluctuating charge values
690 >    if (storageLayout_ & DataStorage::dslFlucQPosition) {
691 >      AtomPlanRealRow->gather(snap_->atomData.flucQPos,
692 >                              atomRowData.flucQPos);
693 >      AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
694 >                                 atomColData.flucQPos);
695 >    }
696 >
697 > #endif      
698 >  }
699 >  
700 >  /* collects information obtained during the pre-pair loop onto local
701 >   * data structures.
702 >   */
703 >  void ForceMatrixDecomposition::collectIntermediateData() {
704 >    snap_ = sman_->getCurrentSnapshot();
705 >    storageLayout_ = sman_->getStorageLayout();
706 > #ifdef IS_MPI
707 >    
708 >    if (storageLayout_ & DataStorage::dslDensity) {
709 >      
710 >      AtomPlanRealRow->scatter(atomRowData.density,
711 >                               snap_->atomData.density);
712 >      
713 >      int n = snap_->atomData.density.size();
714 >      vector<RealType> rho_tmp(n, 0.0);
715 >      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
716 >      for (int i = 0; i < n; i++)
717 >        snap_->atomData.density[i] += rho_tmp[i];
718 >    }
719 >
720 >    // this isn't necessary if we don't have polarizable atoms, but
721 >    // we'll leave it here for now.
722 >    if (storageLayout_ & DataStorage::dslElectricField) {
723 >      
724 >      AtomPlanVectorRow->scatter(atomRowData.electricField,
725 >                                 snap_->atomData.electricField);
726 >      
727 >      int n = snap_->atomData.electricField.size();
728 >      vector<Vector3d> field_tmp(n, V3Zero);
729 >      AtomPlanVectorColumn->scatter(atomColData.electricField,
730 >                                    field_tmp);
731 >      for (int i = 0; i < n; i++)
732 >        snap_->atomData.electricField[i] += field_tmp[i];
733 >    }
734 > #endif
735 >  }
736 >
737 >  /*
738 >   * redistributes information obtained during the pre-pair loop out to
739 >   * row and column-indexed data structures
740 >   */
741 >  void ForceMatrixDecomposition::distributeIntermediateData() {
742 >    snap_ = sman_->getCurrentSnapshot();
743 >    storageLayout_ = sman_->getStorageLayout();
744 > #ifdef IS_MPI
745 >    if (storageLayout_ & DataStorage::dslFunctional) {
746 >      AtomPlanRealRow->gather(snap_->atomData.functional,
747 >                              atomRowData.functional);
748 >      AtomPlanRealColumn->gather(snap_->atomData.functional,
749 >                                 atomColData.functional);
750 >    }
751 >    
752 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
753 >      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
754 >                              atomRowData.functionalDerivative);
755 >      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
756 >                                 atomColData.functionalDerivative);
757 >    }
758 > #endif
759 >  }
760 >  
761 >  
762 >  void ForceMatrixDecomposition::collectData() {
763 >    snap_ = sman_->getCurrentSnapshot();
764 >    storageLayout_ = sman_->getStorageLayout();
765 > #ifdef IS_MPI    
766 >    int n = snap_->atomData.force.size();
767 >    vector<Vector3d> frc_tmp(n, V3Zero);
768 >    
769 >    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
770 >    for (int i = 0; i < n; i++) {
771 >      snap_->atomData.force[i] += frc_tmp[i];
772 >      frc_tmp[i] = 0.0;
773 >    }
774 >    
775 >    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
776 >    for (int i = 0; i < n; i++) {
777 >      snap_->atomData.force[i] += frc_tmp[i];
778 >    }
779 >        
780 >    if (storageLayout_ & DataStorage::dslTorque) {
781 >
782 >      int nt = snap_->atomData.torque.size();
783 >      vector<Vector3d> trq_tmp(nt, V3Zero);
784 >
785 >      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
786 >      for (int i = 0; i < nt; i++) {
787 >        snap_->atomData.torque[i] += trq_tmp[i];
788 >        trq_tmp[i] = 0.0;
789 >      }
790 >      
791 >      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
792 >      for (int i = 0; i < nt; i++)
793 >        snap_->atomData.torque[i] += trq_tmp[i];
794 >    }
795 >
796 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {
797 >
798 >      int ns = snap_->atomData.skippedCharge.size();
799 >      vector<RealType> skch_tmp(ns, 0.0);
800 >
801 >      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
802 >      for (int i = 0; i < ns; i++) {
803 >        snap_->atomData.skippedCharge[i] += skch_tmp[i];
804 >        skch_tmp[i] = 0.0;
805 >      }
806 >      
807 >      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
808 >      for (int i = 0; i < ns; i++)
809 >        snap_->atomData.skippedCharge[i] += skch_tmp[i];
810 >            
811 >    }
812 >    
813 >    if (storageLayout_ & DataStorage::dslFlucQForce) {
814 >
815 >      int nq = snap_->atomData.flucQFrc.size();
816 >      vector<RealType> fqfrc_tmp(nq, 0.0);
817 >
818 >      AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
819 >      for (int i = 0; i < nq; i++) {
820 >        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
821 >        fqfrc_tmp[i] = 0.0;
822 >      }
823 >      
824 >      AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
825 >      for (int i = 0; i < nq; i++)
826 >        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
827 >            
828 >    }
829 >
830 >    if (storageLayout_ & DataStorage::dslElectricField) {
831 >
832 >      int nef = snap_->atomData.electricField.size();
833 >      vector<Vector3d> efield_tmp(nef, V3Zero);
834  
835 +      AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp);
836 +      for (int i = 0; i < nef; i++) {
837 +        snap_->atomData.electricField[i] += efield_tmp[i];
838 +        efield_tmp[i] = 0.0;
839 +      }
840 +      
841 +      AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp);
842 +      for (int i = 0; i < nef; i++)
843 +        snap_->atomData.electricField[i] += efield_tmp[i];
844 +    }
845  
846 +    if (storageLayout_ & DataStorage::dslSitePotential) {
847 +
848 +      int nsp = snap_->atomData.sitePotential.size();
849 +      vector<RealType> sp_tmp(nsp, 0.0);
850 +
851 +      AtomPlanRealRow->scatter(atomRowData.sitePotential, sp_tmp);
852 +      for (int i = 0; i < nsp; i++) {
853 +        snap_->atomData.sitePotential[i] += sp_tmp[i];
854 +        sp_tmp[i] = 0.0;
855 +      }
856 +      
857 +      AtomPlanRealColumn->scatter(atomColData.sitePotential, sp_tmp);
858 +      for (int i = 0; i < nsp; i++)
859 +        snap_->atomData.sitePotential[i] += sp_tmp[i];
860 +    }
861 +
862 +    nLocal_ = snap_->getNumberOfAtoms();
863 +
864 +    vector<potVec> pot_temp(nLocal_,
865 +                            Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
866 +    vector<potVec> expot_temp(nLocal_,
867 +                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
868 +
869 +    // scatter/gather pot_row into the members of my column
870 +          
871 +    AtomPlanPotRow->scatter(pot_row, pot_temp);
872 +    AtomPlanPotRow->scatter(expot_row, expot_temp);
873 +
874 +    for (int ii = 0;  ii < pot_temp.size(); ii++ )
875 +      pairwisePot += pot_temp[ii];
876 +
877 +    for (int ii = 0;  ii < expot_temp.size(); ii++ )
878 +      excludedPot += expot_temp[ii];
879 +        
880 +    if (storageLayout_ & DataStorage::dslParticlePot) {
881 +      // This is the pairwise contribution to the particle pot.  The
882 +      // embedding contribution is added in each of the low level
883 +      // non-bonded routines.  In single processor, this is done in
884 +      // unpackInteractionData, not in collectData.
885 +      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
886 +        for (int i = 0; i < nLocal_; i++) {
887 +          // factor of two is because the total potential terms are divided
888 +          // by 2 in parallel due to row/ column scatter      
889 +          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
890 +        }
891 +      }
892 +    }
893 +
894 +    fill(pot_temp.begin(), pot_temp.end(),
895 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
896 +    fill(expot_temp.begin(), expot_temp.end(),
897 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
898 +      
899 +    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
900 +    AtomPlanPotColumn->scatter(expot_col, expot_temp);    
901 +    
902 +    for (int ii = 0;  ii < pot_temp.size(); ii++ )
903 +      pairwisePot += pot_temp[ii];    
904 +
905 +    for (int ii = 0;  ii < expot_temp.size(); ii++ )
906 +      excludedPot += expot_temp[ii];    
907 +
908 +    if (storageLayout_ & DataStorage::dslParticlePot) {
909 +      // This is the pairwise contribution to the particle pot.  The
910 +      // embedding contribution is added in each of the low level
911 +      // non-bonded routines.  In single processor, this is done in
912 +      // unpackInteractionData, not in collectData.
913 +      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
914 +        for (int i = 0; i < nLocal_; i++) {
915 +          // factor of two is because the total potential terms are divided
916 +          // by 2 in parallel due to row/ column scatter      
917 +          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
918 +        }
919 +      }
920 +    }
921 +    
922 +    if (storageLayout_ & DataStorage::dslParticlePot) {
923 +      int npp = snap_->atomData.particlePot.size();
924 +      vector<RealType> ppot_temp(npp, 0.0);
925 +
926 +      // This is the direct or embedding contribution to the particle
927 +      // pot.
928 +      
929 +      AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
930 +      for (int i = 0; i < npp; i++) {
931 +        snap_->atomData.particlePot[i] += ppot_temp[i];
932 +      }
933 +
934 +      fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
935 +      
936 +      AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
937 +      for (int i = 0; i < npp; i++) {
938 +        snap_->atomData.particlePot[i] += ppot_temp[i];
939 +      }
940 +    }
941 +
942 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
943 +      RealType ploc1 = pairwisePot[ii];
944 +      RealType ploc2 = 0.0;
945 +      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
946 +      pairwisePot[ii] = ploc2;
947 +    }
948 +
949 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
950 +      RealType ploc1 = excludedPot[ii];
951 +      RealType ploc2 = 0.0;
952 +      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
953 +      excludedPot[ii] = ploc2;
954 +    }
955 +
956 +    // Here be dragons.
957 +    MPI_Comm col = colComm.getComm();
958 +
959 +    MPI_Allreduce(MPI_IN_PLACE,
960 +                  &snap_->frameData.conductiveHeatFlux[0], 3,
961 +                  MPI_REALTYPE, MPI_SUM, col);
962 +
963 +
964 + #endif
965 +
966 +  }
967 +
968 +  /**
969 +   * Collects information obtained during the post-pair (and embedding
970 +   * functional) loops onto local data structures.
971 +   */
972 +  void ForceMatrixDecomposition::collectSelfData() {
973 +    snap_ = sman_->getCurrentSnapshot();
974 +    storageLayout_ = sman_->getStorageLayout();
975 +
976 + #ifdef IS_MPI
977 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
978 +      RealType ploc1 = embeddingPot[ii];
979 +      RealType ploc2 = 0.0;
980 +      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
981 +      embeddingPot[ii] = ploc2;
982 +    }    
983 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
984 +      RealType ploc1 = excludedSelfPot[ii];
985 +      RealType ploc2 = 0.0;
986 +      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
987 +      excludedSelfPot[ii] = ploc2;
988 +    }    
989 + #endif
990 +    
991 +  }
992 +
993 +
994 +
995 +  int& ForceMatrixDecomposition::getNAtomsInRow() {  
996 + #ifdef IS_MPI
997 +    return nAtomsInRow_;
998 + #else
999 +    return nLocal_;
1000 + #endif
1001 +  }
1002 +
1003 +  /**
1004 +   * returns the list of atoms belonging to this group.  
1005 +   */
1006 +  vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
1007 + #ifdef IS_MPI
1008 +    return groupListRow_[cg1];
1009 + #else
1010 +    return groupList_[cg1];
1011 + #endif
1012 +  }
1013 +
1014 +  vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
1015 + #ifdef IS_MPI
1016 +    return groupListCol_[cg2];
1017 + #else
1018 +    return groupList_[cg2];
1019 + #endif
1020 +  }
1021 +  
1022 +  Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
1023 +    Vector3d d;
1024 +    
1025 + #ifdef IS_MPI
1026 +    d = cgColData.position[cg2] - cgRowData.position[cg1];
1027 + #else
1028 +    d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
1029 + #endif
1030 +    
1031 +    if (usePeriodicBoundaryConditions_) {
1032 +      snap_->wrapVector(d);
1033 +    }
1034 +    return d;    
1035 +  }
1036 +
1037 +  Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
1038 + #ifdef IS_MPI
1039 +    return cgColData.velocity[cg2];
1040 + #else
1041 +    return snap_->cgData.velocity[cg2];
1042 + #endif
1043 +  }
1044 +
1045 +  Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
1046 + #ifdef IS_MPI
1047 +    return atomColData.velocity[atom2];
1048 + #else
1049 +    return snap_->atomData.velocity[atom2];
1050 + #endif
1051 +  }
1052 +
1053 +
1054 +  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
1055 +
1056 +    Vector3d d;
1057 +    
1058 + #ifdef IS_MPI
1059 +    d = cgRowData.position[cg1] - atomRowData.position[atom1];
1060 + #else
1061 +    d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
1062 + #endif
1063 +    if (usePeriodicBoundaryConditions_) {
1064 +      snap_->wrapVector(d);
1065 +    }
1066 +    return d;    
1067 +  }
1068 +  
1069 +  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
1070 +    Vector3d d;
1071 +    
1072 + #ifdef IS_MPI
1073 +    d = cgColData.position[cg2] - atomColData.position[atom2];
1074 + #else
1075 +    d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
1076 + #endif
1077 +    if (usePeriodicBoundaryConditions_) {
1078 +      snap_->wrapVector(d);
1079 +    }
1080 +    return d;    
1081 +  }
1082 +
1083 +  RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) {
1084 + #ifdef IS_MPI
1085 +    return massFactorsRow[atom1];
1086 + #else
1087 +    return massFactors[atom1];
1088 + #endif
1089 +  }
1090 +
1091 +  RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
1092 + #ifdef IS_MPI
1093 +    return massFactorsCol[atom2];
1094 + #else
1095 +    return massFactors[atom2];
1096 + #endif
1097 +
1098 +  }
1099 +    
1100 +  Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
1101 +    Vector3d d;
1102 +    
1103 + #ifdef IS_MPI
1104 +    d = atomColData.position[atom2] - atomRowData.position[atom1];
1105 + #else
1106 +    d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
1107 + #endif
1108 +    if (usePeriodicBoundaryConditions_) {
1109 +      snap_->wrapVector(d);
1110 +    }
1111 +    return d;    
1112 +  }
1113 +
1114 +  vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
1115 +    return excludesForAtom[atom1];
1116 +  }
1117 +
1118 +  /**
1119 +   * We need to exclude some overcounted interactions that result from
1120 +   * the parallel decomposition.
1121 +   */
1122 +  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) {
1123 +    int unique_id_1, unique_id_2;
1124 +        
1125 + #ifdef IS_MPI
1126 +    // in MPI, we have to look up the unique IDs for each atom
1127 +    unique_id_1 = AtomRowToGlobal[atom1];
1128 +    unique_id_2 = AtomColToGlobal[atom2];
1129 +    // group1 = cgRowToGlobal[cg1];
1130 +    // group2 = cgColToGlobal[cg2];
1131 + #else
1132 +    unique_id_1 = AtomLocalToGlobal[atom1];
1133 +    unique_id_2 = AtomLocalToGlobal[atom2];
1134 +    int group1 = cgLocalToGlobal[cg1];
1135 +    int group2 = cgLocalToGlobal[cg2];
1136 + #endif  
1137 +
1138 +    if (unique_id_1 == unique_id_2) return true;
1139 +
1140 + #ifdef IS_MPI
1141 +    // this prevents us from doing the pair on multiple processors
1142 +    if (unique_id_1 < unique_id_2) {
1143 +      if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
1144 +    } else {
1145 +      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1146 +    }
1147 + #endif    
1148 +
1149 + #ifndef IS_MPI
1150 +    if (group1 == group2) {
1151 +      if (unique_id_1 < unique_id_2) return true;
1152 +    }
1153 + #endif
1154 +    
1155 +    return false;
1156 +  }
1157 +
1158 +  /**
1159 +   * We need to handle the interactions for atoms who are involved in
1160 +   * the same rigid body as well as some short range interactions
1161 +   * (bonds, bends, torsions) differently from other interactions.
1162 +   * We'll still visit the pairwise routines, but with a flag that
1163 +   * tells those routines to exclude the pair from direct long range
1164 +   * interactions.  Some indirect interactions (notably reaction
1165 +   * field) must still be handled for these pairs.
1166 +   */
1167 +  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
1168 +
1169 +    // excludesForAtom was constructed to use row/column indices in the MPI
1170 +    // version, and to use local IDs in the non-MPI version:
1171 +    
1172 +    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
1173 +         i != excludesForAtom[atom1].end(); ++i) {
1174 +      if ( (*i) == atom2 ) return true;
1175 +    }
1176 +
1177 +    return false;
1178 +  }
1179 +
1180 +
1181 +  void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
1182 + #ifdef IS_MPI
1183 +    atomRowData.force[atom1] += fg;
1184 + #else
1185 +    snap_->atomData.force[atom1] += fg;
1186 + #endif
1187 +  }
1188 +
1189 +  void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
1190 + #ifdef IS_MPI
1191 +    atomColData.force[atom2] += fg;
1192 + #else
1193 +    snap_->atomData.force[atom2] += fg;
1194 + #endif
1195 +  }
1196 +
1197 +    // filling interaction blocks with pointers
1198 +  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1199 +                                                     int atom1, int atom2) {
1200 +
1201 +    idat.excluded = excludeAtomPair(atom1, atom2);
1202 +  
1203 + #ifdef IS_MPI
1204 +    //idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
1205 +    idat.atid1 = identsRow[atom1];
1206 +    idat.atid2 = identsCol[atom2];
1207 +
1208 +    if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) {
1209 +      idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]);
1210 +    } else {
1211 +      idat.sameRegion = false;
1212 +    }
1213 +
1214 +    if (storageLayout_ & DataStorage::dslAmat) {
1215 +      idat.A1 = &(atomRowData.aMat[atom1]);
1216 +      idat.A2 = &(atomColData.aMat[atom2]);
1217 +    }
1218 +    
1219 +    if (storageLayout_ & DataStorage::dslTorque) {
1220 +      idat.t1 = &(atomRowData.torque[atom1]);
1221 +      idat.t2 = &(atomColData.torque[atom2]);
1222 +    }
1223 +
1224 +    if (storageLayout_ & DataStorage::dslDipole) {
1225 +      idat.dipole1 = &(atomRowData.dipole[atom1]);
1226 +      idat.dipole2 = &(atomColData.dipole[atom2]);
1227 +    }
1228 +
1229 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1230 +      idat.quadrupole1 = &(atomRowData.quadrupole[atom1]);
1231 +      idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1232 +    }
1233 +
1234 +    if (storageLayout_ & DataStorage::dslDensity) {
1235 +      idat.rho1 = &(atomRowData.density[atom1]);
1236 +      idat.rho2 = &(atomColData.density[atom2]);
1237 +    }
1238 +
1239 +    if (storageLayout_ & DataStorage::dslFunctional) {
1240 +      idat.frho1 = &(atomRowData.functional[atom1]);
1241 +      idat.frho2 = &(atomColData.functional[atom2]);
1242 +    }
1243 +
1244 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1245 +      idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1246 +      idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1247 +    }
1248 +
1249 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1250 +      idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1251 +      idat.particlePot2 = &(atomColData.particlePot[atom2]);
1252 +    }
1253 +
1254 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1255 +      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1256 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1257 +    }
1258 +
1259 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1260 +      idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1261 +      idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1262 +    }
1263 +
1264 + #else
1265 +    
1266 +    //idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
1267 +    idat.atid1 = idents[atom1];
1268 +    idat.atid2 = idents[atom2];
1269 +
1270 +    if (regions[atom1] >= 0 && regions[atom2] >= 0) {
1271 +      idat.sameRegion = (regions[atom1] == regions[atom2]);
1272 +    } else {
1273 +      idat.sameRegion = false;
1274 +    }
1275 +
1276 +    if (storageLayout_ & DataStorage::dslAmat) {
1277 +      idat.A1 = &(snap_->atomData.aMat[atom1]);
1278 +      idat.A2 = &(snap_->atomData.aMat[atom2]);
1279 +    }
1280 +
1281 +    if (storageLayout_ & DataStorage::dslTorque) {
1282 +      idat.t1 = &(snap_->atomData.torque[atom1]);
1283 +      idat.t2 = &(snap_->atomData.torque[atom2]);
1284 +    }
1285 +
1286 +    if (storageLayout_ & DataStorage::dslDipole) {
1287 +      idat.dipole1 = &(snap_->atomData.dipole[atom1]);
1288 +      idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1289 +    }
1290 +
1291 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1292 +      idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]);
1293 +      idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1294 +    }
1295 +
1296 +    if (storageLayout_ & DataStorage::dslDensity) {    
1297 +      idat.rho1 = &(snap_->atomData.density[atom1]);
1298 +      idat.rho2 = &(snap_->atomData.density[atom2]);
1299 +    }
1300 +
1301 +    if (storageLayout_ & DataStorage::dslFunctional) {
1302 +      idat.frho1 = &(snap_->atomData.functional[atom1]);
1303 +      idat.frho2 = &(snap_->atomData.functional[atom2]);
1304 +    }
1305 +
1306 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1307 +      idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1308 +      idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1309 +    }
1310 +
1311 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1312 +      idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1313 +      idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1314 +    }
1315 +
1316 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
1317 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1318 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1319 +    }
1320 +
1321 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1322 +      idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1323 +      idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1324 +    }
1325 +
1326 + #endif
1327 +  }
1328 +
1329 +  
1330 +  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
1331 + #ifdef IS_MPI
1332 +    pot_row[atom1] += RealType(0.5) *  *(idat.pot);
1333 +    pot_col[atom2] += RealType(0.5) *  *(idat.pot);
1334 +    expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot);
1335 +    expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot);
1336 +
1337 +    atomRowData.force[atom1] += *(idat.f1);
1338 +    atomColData.force[atom2] -= *(idat.f1);
1339 +
1340 +    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1341 +      atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1342 +      atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1343 +    }
1344 +
1345 +    if (storageLayout_ & DataStorage::dslElectricField) {              
1346 +      atomRowData.electricField[atom1] += *(idat.eField1);
1347 +      atomColData.electricField[atom2] += *(idat.eField2);
1348 +    }
1349 +
1350 +    if (storageLayout_ & DataStorage::dslSitePotential) {              
1351 +      atomRowData.sitePotential[atom1] += *(idat.sPot1);
1352 +      atomColData.sitePotential[atom2] += *(idat.sPot2);
1353 +    }
1354 +
1355 + #else
1356 +    pairwisePot += *(idat.pot);
1357 +    excludedPot += *(idat.excludedPot);
1358 +
1359 +    snap_->atomData.force[atom1] += *(idat.f1);
1360 +    snap_->atomData.force[atom2] -= *(idat.f1);
1361 +
1362 +    if (idat.doParticlePot) {
1363 +      // This is the pairwise contribution to the particle pot.  The
1364 +      // embedding contribution is added in each of the low level
1365 +      // non-bonded routines.  In parallel, this calculation is done
1366 +      // in collectData, not in unpackInteractionData.
1367 +      snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1368 +      snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1369 +    }
1370 +    
1371 +    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1372 +      snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1373 +      snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1374 +    }
1375 +
1376 +    if (storageLayout_ & DataStorage::dslElectricField) {              
1377 +      snap_->atomData.electricField[atom1] += *(idat.eField1);
1378 +      snap_->atomData.electricField[atom2] += *(idat.eField2);
1379 +    }
1380 +
1381 +    if (storageLayout_ & DataStorage::dslSitePotential) {              
1382 +      snap_->atomData.sitePotential[atom1] += *(idat.sPot1);
1383 +      snap_->atomData.sitePotential[atom2] += *(idat.sPot2);
1384 +    }
1385 +
1386 + #endif
1387 +    
1388 +  }
1389 +
1390 +  /*
1391 +   * buildNeighborList
1392 +   *
1393 +   * first element of pair is row-indexed CutoffGroup
1394 +   * second element of pair is column-indexed CutoffGroup
1395 +   */
1396 +  void ForceMatrixDecomposition::buildNeighborList(vector<pair<int,int> >& neighborList) {
1397 +    
1398 +    neighborList.clear();
1399 +    groupCutoffs cuts;
1400 +    bool doAllPairs = false;
1401 +
1402 +    RealType rList_ = (largestRcut_ + skinThickness_);
1403 +    RealType rcut, rcutsq, rlistsq;
1404 +    Snapshot* snap_ = sman_->getCurrentSnapshot();
1405 +    Mat3x3d box;
1406 +    Mat3x3d invBox;
1407 +
1408 +    Vector3d rs, scaled, dr;
1409 +    Vector3i whichCell;
1410 +    int cellIndex;
1411 +
1412 + #ifdef IS_MPI
1413 +    cellListRow_.clear();
1414 +    cellListCol_.clear();
1415 + #else
1416 +    cellList_.clear();
1417 + #endif
1418 +    
1419 +    if (!usePeriodicBoundaryConditions_) {
1420 +      box = snap_->getBoundingBox();
1421 +      invBox = snap_->getInvBoundingBox();
1422 +    } else {
1423 +      box = snap_->getHmat();
1424 +      invBox = snap_->getInvHmat();
1425 +    }
1426 +    
1427 +    Vector3d boxX = box.getColumn(0);
1428 +    Vector3d boxY = box.getColumn(1);
1429 +    Vector3d boxZ = box.getColumn(2);
1430 +    
1431 +    nCells_.x() = int( boxX.length() / rList_ );
1432 +    nCells_.y() = int( boxY.length() / rList_ );
1433 +    nCells_.z() = int( boxZ.length() / rList_ );
1434 +    
1435 +    // handle small boxes where the cell offsets can end up repeating cells
1436 +    
1437 +    if (nCells_.x() < 3) doAllPairs = true;
1438 +    if (nCells_.y() < 3) doAllPairs = true;
1439 +    if (nCells_.z() < 3) doAllPairs = true;
1440 +    
1441 +    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1442 +    
1443 + #ifdef IS_MPI
1444 +    cellListRow_.resize(nCtot);
1445 +    cellListCol_.resize(nCtot);
1446 + #else
1447 +    cellList_.resize(nCtot);
1448 + #endif
1449 +    
1450 +    if (!doAllPairs) {
1451 + #ifdef IS_MPI
1452 +      
1453 +      for (int i = 0; i < nGroupsInRow_; i++) {
1454 +        rs = cgRowData.position[i];
1455 +        
1456 +        // scaled positions relative to the box vectors
1457 +        scaled = invBox * rs;
1458 +        
1459 +        // wrap the vector back into the unit box by subtracting integer box
1460 +        // numbers
1461 +        for (int j = 0; j < 3; j++) {
1462 +          scaled[j] -= roundMe(scaled[j]);
1463 +          scaled[j] += 0.5;
1464 +          // Handle the special case when an object is exactly on the
1465 +          // boundary (a scaled coordinate of 1.0 is the same as
1466 +          // scaled coordinate of 0.0)
1467 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1468 +        }
1469 +        
1470 +        // find xyz-indices of cell that cutoffGroup is in.
1471 +        whichCell.x() = nCells_.x() * scaled.x();
1472 +        whichCell.y() = nCells_.y() * scaled.y();
1473 +        whichCell.z() = nCells_.z() * scaled.z();
1474 +        
1475 +        // find single index of this cell:
1476 +        cellIndex = Vlinear(whichCell, nCells_);
1477 +        
1478 +        // add this cutoff group to the list of groups in this cell;
1479 +        cellListRow_[cellIndex].push_back(i);
1480 +      }
1481 +      for (int i = 0; i < nGroupsInCol_; i++) {
1482 +        rs = cgColData.position[i];
1483 +        
1484 +        // scaled positions relative to the box vectors
1485 +        scaled = invBox * rs;
1486 +        
1487 +        // wrap the vector back into the unit box by subtracting integer box
1488 +        // numbers
1489 +        for (int j = 0; j < 3; j++) {
1490 +          scaled[j] -= roundMe(scaled[j]);
1491 +          scaled[j] += 0.5;
1492 +          // Handle the special case when an object is exactly on the
1493 +          // boundary (a scaled coordinate of 1.0 is the same as
1494 +          // scaled coordinate of 0.0)
1495 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1496 +        }
1497 +        
1498 +        // find xyz-indices of cell that cutoffGroup is in.
1499 +        whichCell.x() = nCells_.x() * scaled.x();
1500 +        whichCell.y() = nCells_.y() * scaled.y();
1501 +        whichCell.z() = nCells_.z() * scaled.z();
1502 +        
1503 +        // find single index of this cell:
1504 +        cellIndex = Vlinear(whichCell, nCells_);
1505 +        
1506 +        // add this cutoff group to the list of groups in this cell;
1507 +        cellListCol_[cellIndex].push_back(i);
1508 +      }
1509 +      
1510 + #else
1511 +      for (int i = 0; i < nGroups_; i++) {
1512 +        rs = snap_->cgData.position[i];
1513 +        
1514 +        // scaled positions relative to the box vectors
1515 +        scaled = invBox * rs;
1516 +        
1517 +        // wrap the vector back into the unit box by subtracting integer box
1518 +        // numbers
1519 +        for (int j = 0; j < 3; j++) {
1520 +          scaled[j] -= roundMe(scaled[j]);
1521 +          scaled[j] += 0.5;
1522 +          // Handle the special case when an object is exactly on the
1523 +          // boundary (a scaled coordinate of 1.0 is the same as
1524 +          // scaled coordinate of 0.0)
1525 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1526 +        }
1527 +        
1528 +        // find xyz-indices of cell that cutoffGroup is in.
1529 +        whichCell.x() = int(nCells_.x() * scaled.x());
1530 +        whichCell.y() = int(nCells_.y() * scaled.y());
1531 +        whichCell.z() = int(nCells_.z() * scaled.z());
1532 +        
1533 +        // find single index of this cell:
1534 +        cellIndex = Vlinear(whichCell, nCells_);
1535 +        
1536 +        // add this cutoff group to the list of groups in this cell;
1537 +        cellList_[cellIndex].push_back(i);
1538 +      }
1539 +
1540 + #endif
1541 +
1542 +      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1543 +        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1544 +          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1545 +            Vector3i m1v(m1x, m1y, m1z);
1546 +            int m1 = Vlinear(m1v, nCells_);
1547 +            
1548 +            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1549 +                 os != cellOffsets_.end(); ++os) {
1550 +              
1551 +              Vector3i m2v = m1v + (*os);
1552 +            
1553 +
1554 +              if (m2v.x() >= nCells_.x()) {
1555 +                m2v.x() = 0;          
1556 +              } else if (m2v.x() < 0) {
1557 +                m2v.x() = nCells_.x() - 1;
1558 +              }
1559 +              
1560 +              if (m2v.y() >= nCells_.y()) {
1561 +                m2v.y() = 0;          
1562 +              } else if (m2v.y() < 0) {
1563 +                m2v.y() = nCells_.y() - 1;
1564 +              }
1565 +              
1566 +              if (m2v.z() >= nCells_.z()) {
1567 +                m2v.z() = 0;          
1568 +              } else if (m2v.z() < 0) {
1569 +                m2v.z() = nCells_.z() - 1;
1570 +              }
1571 +
1572 +              int m2 = Vlinear (m2v, nCells_);
1573 +              
1574 + #ifdef IS_MPI
1575 +              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1576 +                   j1 != cellListRow_[m1].end(); ++j1) {
1577 +                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1578 +                     j2 != cellListCol_[m2].end(); ++j2) {
1579 +                  
1580 +                  // In parallel, we need to visit *all* pairs of row
1581 +                  // & column indicies and will divide labor in the
1582 +                  // force evaluation later.
1583 +                  dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1584 +                  if (usePeriodicBoundaryConditions_) {
1585 +                    snap_->wrapVector(dr);
1586 +                  }
1587 +                  getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq );
1588 +                  if (dr.lengthSquare() < rlistsq) {
1589 +                    neighborList.push_back(make_pair((*j1), (*j2)));
1590 +                  }                  
1591 +                }
1592 +              }
1593 + #else
1594 +              for (vector<int>::iterator j1 = cellList_[m1].begin();
1595 +                   j1 != cellList_[m1].end(); ++j1) {
1596 +                for (vector<int>::iterator j2 = cellList_[m2].begin();
1597 +                     j2 != cellList_[m2].end(); ++j2) {
1598 +    
1599 +                  // Always do this if we're in different cells or if
1600 +                  // we're in the same cell and the global index of
1601 +                  // the j2 cutoff group is greater than or equal to
1602 +                  // the j1 cutoff group.  Note that Rappaport's code
1603 +                  // has a "less than" conditional here, but that
1604 +                  // deals with atom-by-atom computation.  OpenMD
1605 +                  // allows atoms within a single cutoff group to
1606 +                  // interact with each other.
1607 +
1608 +                  if (m2 != m1 || (*j2) >= (*j1) ) {
1609 +
1610 +                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1611 +                    if (usePeriodicBoundaryConditions_) {
1612 +                      snap_->wrapVector(dr);
1613 +                    }
1614 +                    getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq );
1615 +                    if (dr.lengthSquare() < rlistsq) {
1616 +                      neighborList.push_back(make_pair((*j1), (*j2)));
1617 +                    }
1618 +                  }
1619 +                }
1620 +              }
1621 + #endif
1622 +            }
1623 +          }
1624 +        }
1625 +      }
1626 +    } else {
1627 +      // branch to do all cutoff group pairs
1628 + #ifdef IS_MPI
1629 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1630 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {    
1631 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1632 +          if (usePeriodicBoundaryConditions_) {
1633 +            snap_->wrapVector(dr);
1634 +          }
1635 +          getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq);
1636 +          if (dr.lengthSquare() < rlistsq) {
1637 +            neighborList.push_back(make_pair(j1, j2));
1638 +          }
1639 +        }
1640 +      }      
1641 + #else
1642 +      // include all groups here.
1643 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1644 +        // include self group interactions j2 == j1
1645 +        for (int j2 = j1; j2 < nGroups_; j2++) {
1646 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1647 +          if (usePeriodicBoundaryConditions_) {
1648 +            snap_->wrapVector(dr);
1649 +          }
1650 +          getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq );
1651 +          if (dr.lengthSquare() < rlistsq) {
1652 +            neighborList.push_back(make_pair(j1, j2));
1653 +          }
1654 +        }    
1655 +      }
1656 + #endif
1657 +    }
1658 +      
1659 +    // save the local cutoff group positions for the check that is
1660 +    // done on each loop:
1661 +    saved_CG_positions_.clear();
1662 +    for (int i = 0; i < nGroups_; i++)
1663 +      saved_CG_positions_.push_back(snap_->cgData.position[i]);
1664 +  }
1665 + } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines