ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
Revision: 1613
Committed: Thu Aug 18 20:18:19 2011 UTC (13 years, 8 months ago) by gezelter
Original Path: branches/development/src/parallel/ForceMatrixDecomposition.cpp
File size: 41919 byte(s)
Log Message:
Fixed a parallel bug in computing exclude lists.
Added file versioning information in MD files.
Still tracking down cutoff group bugs.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41 #include "parallel/ForceMatrixDecomposition.hpp"
42 #include "math/SquareMatrix3.hpp"
43 #include "nonbonded/NonBondedInteraction.hpp"
44 #include "brains/SnapshotManager.hpp"
45 #include "brains/PairList.hpp"
46
47 using namespace std;
48 namespace OpenMD {
49
50 ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
51
52 // In a parallel computation, row and colum scans must visit all
53 // surrounding cells (not just the 14 upper triangular blocks that
54 // are used when the processor can see all pairs)
55 #ifdef IS_MPI
56 cellOffsets_.clear();
57 cellOffsets_.push_back( Vector3i(-1,-1,-1) );
58 cellOffsets_.push_back( Vector3i( 0,-1,-1) );
59 cellOffsets_.push_back( Vector3i( 1,-1,-1) );
60 cellOffsets_.push_back( Vector3i(-1, 0,-1) );
61 cellOffsets_.push_back( Vector3i( 0, 0,-1) );
62 cellOffsets_.push_back( Vector3i( 1, 0,-1) );
63 cellOffsets_.push_back( Vector3i(-1, 1,-1) );
64 cellOffsets_.push_back( Vector3i( 0, 1,-1) );
65 cellOffsets_.push_back( Vector3i( 1, 1,-1) );
66 cellOffsets_.push_back( Vector3i(-1,-1, 0) );
67 cellOffsets_.push_back( Vector3i( 0,-1, 0) );
68 cellOffsets_.push_back( Vector3i( 1,-1, 0) );
69 cellOffsets_.push_back( Vector3i(-1, 0, 0) );
70 cellOffsets_.push_back( Vector3i( 0, 0, 0) );
71 cellOffsets_.push_back( Vector3i( 1, 0, 0) );
72 cellOffsets_.push_back( Vector3i(-1, 1, 0) );
73 cellOffsets_.push_back( Vector3i( 0, 1, 0) );
74 cellOffsets_.push_back( Vector3i( 1, 1, 0) );
75 cellOffsets_.push_back( Vector3i(-1,-1, 1) );
76 cellOffsets_.push_back( Vector3i( 0,-1, 1) );
77 cellOffsets_.push_back( Vector3i( 1,-1, 1) );
78 cellOffsets_.push_back( Vector3i(-1, 0, 1) );
79 cellOffsets_.push_back( Vector3i( 0, 0, 1) );
80 cellOffsets_.push_back( Vector3i( 1, 0, 1) );
81 cellOffsets_.push_back( Vector3i(-1, 1, 1) );
82 cellOffsets_.push_back( Vector3i( 0, 1, 1) );
83 cellOffsets_.push_back( Vector3i( 1, 1, 1) );
84 #endif
85 }
86
87
88 /**
89 * distributeInitialData is essentially a copy of the older fortran
90 * SimulationSetup
91 */
92 void ForceMatrixDecomposition::distributeInitialData() {
93 snap_ = sman_->getCurrentSnapshot();
94 storageLayout_ = sman_->getStorageLayout();
95 ff_ = info_->getForceField();
96 nLocal_ = snap_->getNumberOfAtoms();
97
98 nGroups_ = info_->getNLocalCutoffGroups();
99 // gather the information for atomtype IDs (atids):
100 idents = info_->getIdentArray();
101 AtomLocalToGlobal = info_->getGlobalAtomIndices();
102 cgLocalToGlobal = info_->getGlobalGroupIndices();
103 vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
104
105 massFactors = info_->getMassFactors();
106
107 PairList* excludes = info_->getExcludedInteractions();
108 PairList* oneTwo = info_->getOneTwoInteractions();
109 PairList* oneThree = info_->getOneThreeInteractions();
110 PairList* oneFour = info_->getOneFourInteractions();
111
112 #ifdef IS_MPI
113
114 MPI::Intracomm row = rowComm.getComm();
115 MPI::Intracomm col = colComm.getComm();
116
117 AtomPlanIntRow = new Plan<int>(row, nLocal_);
118 AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
119 AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
120 AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
121 AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
122
123 AtomPlanIntColumn = new Plan<int>(col, nLocal_);
124 AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
125 AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
126 AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
127 AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
128
129 cgPlanIntRow = new Plan<int>(row, nGroups_);
130 cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
131 cgPlanIntColumn = new Plan<int>(col, nGroups_);
132 cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
133
134 nAtomsInRow_ = AtomPlanIntRow->getSize();
135 nAtomsInCol_ = AtomPlanIntColumn->getSize();
136 nGroupsInRow_ = cgPlanIntRow->getSize();
137 nGroupsInCol_ = cgPlanIntColumn->getSize();
138
139 // Modify the data storage objects with the correct layouts and sizes:
140 atomRowData.resize(nAtomsInRow_);
141 atomRowData.setStorageLayout(storageLayout_);
142 atomColData.resize(nAtomsInCol_);
143 atomColData.setStorageLayout(storageLayout_);
144 cgRowData.resize(nGroupsInRow_);
145 cgRowData.setStorageLayout(DataStorage::dslPosition);
146 cgColData.resize(nGroupsInCol_);
147 cgColData.setStorageLayout(DataStorage::dslPosition);
148
149 identsRow.resize(nAtomsInRow_);
150 identsCol.resize(nAtomsInCol_);
151
152 AtomPlanIntRow->gather(idents, identsRow);
153 AtomPlanIntColumn->gather(idents, identsCol);
154
155 // allocate memory for the parallel objects
156 atypesRow.resize(nAtomsInRow_);
157 atypesCol.resize(nAtomsInCol_);
158
159 for (int i = 0; i < nAtomsInRow_; i++)
160 atypesRow[i] = ff_->getAtomType(identsRow[i]);
161 for (int i = 0; i < nAtomsInCol_; i++)
162 atypesCol[i] = ff_->getAtomType(identsCol[i]);
163
164 pot_row.resize(nAtomsInRow_);
165 pot_col.resize(nAtomsInCol_);
166
167 AtomRowToGlobal.resize(nAtomsInRow_);
168 AtomColToGlobal.resize(nAtomsInCol_);
169 AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
170 AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
171
172 cgRowToGlobal.resize(nGroupsInRow_);
173 cgColToGlobal.resize(nGroupsInCol_);
174 cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
175 cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
176
177 massFactorsRow.resize(nAtomsInRow_);
178 massFactorsCol.resize(nAtomsInCol_);
179 AtomPlanRealRow->gather(massFactors, massFactorsRow);
180 AtomPlanRealColumn->gather(massFactors, massFactorsCol);
181
182 groupListRow_.clear();
183 groupListRow_.resize(nGroupsInRow_);
184 for (int i = 0; i < nGroupsInRow_; i++) {
185 int gid = cgRowToGlobal[i];
186 for (int j = 0; j < nAtomsInRow_; j++) {
187 int aid = AtomRowToGlobal[j];
188 if (globalGroupMembership[aid] == gid)
189 groupListRow_[i].push_back(j);
190 }
191 }
192
193 groupListCol_.clear();
194 groupListCol_.resize(nGroupsInCol_);
195 for (int i = 0; i < nGroupsInCol_; i++) {
196 int gid = cgColToGlobal[i];
197 for (int j = 0; j < nAtomsInCol_; j++) {
198 int aid = AtomColToGlobal[j];
199 if (globalGroupMembership[aid] == gid)
200 groupListCol_[i].push_back(j);
201 }
202 }
203
204 excludesForAtom.clear();
205 excludesForAtom.resize(nAtomsInRow_);
206 toposForAtom.clear();
207 toposForAtom.resize(nAtomsInRow_);
208 topoDist.clear();
209 topoDist.resize(nAtomsInRow_);
210 for (int i = 0; i < nAtomsInRow_; i++) {
211 int iglob = AtomRowToGlobal[i];
212
213 for (int j = 0; j < nAtomsInCol_; j++) {
214 int jglob = AtomColToGlobal[j];
215
216 if (excludes->hasPair(iglob, jglob))
217 excludesForAtom[i].push_back(j);
218
219 if (oneTwo->hasPair(iglob, jglob)) {
220 toposForAtom[i].push_back(j);
221 topoDist[i].push_back(1);
222 } else {
223 if (oneThree->hasPair(iglob, jglob)) {
224 toposForAtom[i].push_back(j);
225 topoDist[i].push_back(2);
226 } else {
227 if (oneFour->hasPair(iglob, jglob)) {
228 toposForAtom[i].push_back(j);
229 topoDist[i].push_back(3);
230 }
231 }
232 }
233 }
234 }
235
236 #else
237 excludesForAtom.clear();
238 excludesForAtom.resize(nLocal_);
239 toposForAtom.clear();
240 toposForAtom.resize(nLocal_);
241 topoDist.clear();
242 topoDist.resize(nLocal_);
243
244 for (int i = 0; i < nLocal_; i++) {
245 int iglob = AtomLocalToGlobal[i];
246
247 for (int j = 0; j < nLocal_; j++) {
248 int jglob = AtomLocalToGlobal[j];
249
250 if (excludes->hasPair(iglob, jglob))
251 excludesForAtom[i].push_back(j);
252
253
254 if (oneTwo->hasPair(iglob, jglob)) {
255 toposForAtom[i].push_back(j);
256 topoDist[i].push_back(1);
257 } else {
258 if (oneThree->hasPair(iglob, jglob)) {
259 toposForAtom[i].push_back(j);
260 topoDist[i].push_back(2);
261 } else {
262 if (oneFour->hasPair(iglob, jglob)) {
263 toposForAtom[i].push_back(j);
264 topoDist[i].push_back(3);
265 }
266 }
267 }
268 }
269 }
270 #endif
271
272 // allocate memory for the parallel objects
273 atypesLocal.resize(nLocal_);
274
275 for (int i = 0; i < nLocal_; i++)
276 atypesLocal[i] = ff_->getAtomType(idents[i]);
277
278 groupList_.clear();
279 groupList_.resize(nGroups_);
280 for (int i = 0; i < nGroups_; i++) {
281 int gid = cgLocalToGlobal[i];
282 for (int j = 0; j < nLocal_; j++) {
283 int aid = AtomLocalToGlobal[j];
284 if (globalGroupMembership[aid] == gid) {
285 groupList_[i].push_back(j);
286 }
287 }
288 }
289
290
291 createGtypeCutoffMap();
292
293 }
294
295 void ForceMatrixDecomposition::createGtypeCutoffMap() {
296
297 RealType tol = 1e-6;
298 largestRcut_ = 0.0;
299 RealType rc;
300 int atid;
301 set<AtomType*> atypes = info_->getSimulatedAtomTypes();
302
303 map<int, RealType> atypeCutoff;
304
305 for (set<AtomType*>::iterator at = atypes.begin();
306 at != atypes.end(); ++at){
307 atid = (*at)->getIdent();
308 if (userChoseCutoff_)
309 atypeCutoff[atid] = userCutoff_;
310 else
311 atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
312 }
313
314 vector<RealType> gTypeCutoffs;
315 // first we do a single loop over the cutoff groups to find the
316 // largest cutoff for any atypes present in this group.
317 #ifdef IS_MPI
318 vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
319 groupRowToGtype.resize(nGroupsInRow_);
320 for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
321 vector<int> atomListRow = getAtomsInGroupRow(cg1);
322 for (vector<int>::iterator ia = atomListRow.begin();
323 ia != atomListRow.end(); ++ia) {
324 int atom1 = (*ia);
325 atid = identsRow[atom1];
326 if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
327 groupCutoffRow[cg1] = atypeCutoff[atid];
328 }
329 }
330
331 bool gTypeFound = false;
332 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
333 if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
334 groupRowToGtype[cg1] = gt;
335 gTypeFound = true;
336 }
337 }
338 if (!gTypeFound) {
339 gTypeCutoffs.push_back( groupCutoffRow[cg1] );
340 groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
341 }
342
343 }
344 vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
345 groupColToGtype.resize(nGroupsInCol_);
346 for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
347 vector<int> atomListCol = getAtomsInGroupColumn(cg2);
348 for (vector<int>::iterator jb = atomListCol.begin();
349 jb != atomListCol.end(); ++jb) {
350 int atom2 = (*jb);
351 atid = identsCol[atom2];
352 if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
353 groupCutoffCol[cg2] = atypeCutoff[atid];
354 }
355 }
356 bool gTypeFound = false;
357 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
358 if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
359 groupColToGtype[cg2] = gt;
360 gTypeFound = true;
361 }
362 }
363 if (!gTypeFound) {
364 gTypeCutoffs.push_back( groupCutoffCol[cg2] );
365 groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
366 }
367 }
368 #else
369
370 vector<RealType> groupCutoff(nGroups_, 0.0);
371 groupToGtype.resize(nGroups_);
372 for (int cg1 = 0; cg1 < nGroups_; cg1++) {
373 groupCutoff[cg1] = 0.0;
374 vector<int> atomList = getAtomsInGroupRow(cg1);
375 for (vector<int>::iterator ia = atomList.begin();
376 ia != atomList.end(); ++ia) {
377 int atom1 = (*ia);
378 atid = idents[atom1];
379 if (atypeCutoff[atid] > groupCutoff[cg1])
380 groupCutoff[cg1] = atypeCutoff[atid];
381 }
382
383 bool gTypeFound = false;
384 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
385 if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
386 groupToGtype[cg1] = gt;
387 gTypeFound = true;
388 }
389 }
390 if (!gTypeFound) {
391 gTypeCutoffs.push_back( groupCutoff[cg1] );
392 groupToGtype[cg1] = gTypeCutoffs.size() - 1;
393 }
394 }
395 #endif
396
397 // Now we find the maximum group cutoff value present in the simulation
398
399 RealType groupMax = *max_element(gTypeCutoffs.begin(),
400 gTypeCutoffs.end());
401
402 #ifdef IS_MPI
403 MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
404 MPI::MAX);
405 #endif
406
407 RealType tradRcut = groupMax;
408
409 for (int i = 0; i < gTypeCutoffs.size(); i++) {
410 for (int j = 0; j < gTypeCutoffs.size(); j++) {
411 RealType thisRcut;
412 switch(cutoffPolicy_) {
413 case TRADITIONAL:
414 thisRcut = tradRcut;
415 break;
416 case MIX:
417 thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
418 break;
419 case MAX:
420 thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
421 break;
422 default:
423 sprintf(painCave.errMsg,
424 "ForceMatrixDecomposition::createGtypeCutoffMap "
425 "hit an unknown cutoff policy!\n");
426 painCave.severity = OPENMD_ERROR;
427 painCave.isFatal = 1;
428 simError();
429 break;
430 }
431
432 pair<int,int> key = make_pair(i,j);
433 gTypeCutoffMap[key].first = thisRcut;
434 if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
435 gTypeCutoffMap[key].second = thisRcut*thisRcut;
436 gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
437 // sanity check
438
439 if (userChoseCutoff_) {
440 if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
441 sprintf(painCave.errMsg,
442 "ForceMatrixDecomposition::createGtypeCutoffMap "
443 "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
444 painCave.severity = OPENMD_ERROR;
445 painCave.isFatal = 1;
446 simError();
447 }
448 }
449 }
450 }
451 }
452
453
454 groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
455 int i, j;
456 #ifdef IS_MPI
457 i = groupRowToGtype[cg1];
458 j = groupColToGtype[cg2];
459 #else
460 i = groupToGtype[cg1];
461 j = groupToGtype[cg2];
462 #endif
463 return gTypeCutoffMap[make_pair(i,j)];
464 }
465
466 int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
467 for (int j = 0; j < toposForAtom[atom1].size(); j++) {
468 if (toposForAtom[atom1][j] == atom2)
469 return topoDist[atom1][j];
470 }
471 return 0;
472 }
473
474 void ForceMatrixDecomposition::zeroWorkArrays() {
475 pairwisePot = 0.0;
476 embeddingPot = 0.0;
477
478 #ifdef IS_MPI
479 if (storageLayout_ & DataStorage::dslForce) {
480 fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
481 fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
482 }
483
484 if (storageLayout_ & DataStorage::dslTorque) {
485 fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
486 fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
487 }
488
489 fill(pot_row.begin(), pot_row.end(),
490 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
491
492 fill(pot_col.begin(), pot_col.end(),
493 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
494
495 if (storageLayout_ & DataStorage::dslParticlePot) {
496 fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
497 0.0);
498 fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
499 0.0);
500 }
501
502 if (storageLayout_ & DataStorage::dslDensity) {
503 fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
504 fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
505 }
506
507 if (storageLayout_ & DataStorage::dslFunctional) {
508 fill(atomRowData.functional.begin(), atomRowData.functional.end(),
509 0.0);
510 fill(atomColData.functional.begin(), atomColData.functional.end(),
511 0.0);
512 }
513
514 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
515 fill(atomRowData.functionalDerivative.begin(),
516 atomRowData.functionalDerivative.end(), 0.0);
517 fill(atomColData.functionalDerivative.begin(),
518 atomColData.functionalDerivative.end(), 0.0);
519 }
520
521 if (storageLayout_ & DataStorage::dslSkippedCharge) {
522 fill(atomRowData.skippedCharge.begin(),
523 atomRowData.skippedCharge.end(), 0.0);
524 fill(atomColData.skippedCharge.begin(),
525 atomColData.skippedCharge.end(), 0.0);
526 }
527
528 #endif
529 // even in parallel, we need to zero out the local arrays:
530
531 if (storageLayout_ & DataStorage::dslParticlePot) {
532 fill(snap_->atomData.particlePot.begin(),
533 snap_->atomData.particlePot.end(), 0.0);
534 }
535
536 if (storageLayout_ & DataStorage::dslDensity) {
537 fill(snap_->atomData.density.begin(),
538 snap_->atomData.density.end(), 0.0);
539 }
540 if (storageLayout_ & DataStorage::dslFunctional) {
541 fill(snap_->atomData.functional.begin(),
542 snap_->atomData.functional.end(), 0.0);
543 }
544 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
545 fill(snap_->atomData.functionalDerivative.begin(),
546 snap_->atomData.functionalDerivative.end(), 0.0);
547 }
548 if (storageLayout_ & DataStorage::dslSkippedCharge) {
549 fill(snap_->atomData.skippedCharge.begin(),
550 snap_->atomData.skippedCharge.end(), 0.0);
551 }
552
553 }
554
555
556 void ForceMatrixDecomposition::distributeData() {
557 snap_ = sman_->getCurrentSnapshot();
558 storageLayout_ = sman_->getStorageLayout();
559 #ifdef IS_MPI
560
561 // gather up the atomic positions
562 AtomPlanVectorRow->gather(snap_->atomData.position,
563 atomRowData.position);
564 AtomPlanVectorColumn->gather(snap_->atomData.position,
565 atomColData.position);
566
567 // gather up the cutoff group positions
568
569 cgPlanVectorRow->gather(snap_->cgData.position,
570 cgRowData.position);
571
572 cgPlanVectorColumn->gather(snap_->cgData.position,
573 cgColData.position);
574
575
576 // if needed, gather the atomic rotation matrices
577 if (storageLayout_ & DataStorage::dslAmat) {
578 AtomPlanMatrixRow->gather(snap_->atomData.aMat,
579 atomRowData.aMat);
580 AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
581 atomColData.aMat);
582 }
583
584 // if needed, gather the atomic eletrostatic frames
585 if (storageLayout_ & DataStorage::dslElectroFrame) {
586 AtomPlanMatrixRow->gather(snap_->atomData.electroFrame,
587 atomRowData.electroFrame);
588 AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame,
589 atomColData.electroFrame);
590 }
591
592 #endif
593 }
594
595 /* collects information obtained during the pre-pair loop onto local
596 * data structures.
597 */
598 void ForceMatrixDecomposition::collectIntermediateData() {
599 snap_ = sman_->getCurrentSnapshot();
600 storageLayout_ = sman_->getStorageLayout();
601 #ifdef IS_MPI
602
603 if (storageLayout_ & DataStorage::dslDensity) {
604
605 AtomPlanRealRow->scatter(atomRowData.density,
606 snap_->atomData.density);
607
608 int n = snap_->atomData.density.size();
609 vector<RealType> rho_tmp(n, 0.0);
610 AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
611 for (int i = 0; i < n; i++)
612 snap_->atomData.density[i] += rho_tmp[i];
613 }
614 #endif
615 }
616
617 /*
618 * redistributes information obtained during the pre-pair loop out to
619 * row and column-indexed data structures
620 */
621 void ForceMatrixDecomposition::distributeIntermediateData() {
622 snap_ = sman_->getCurrentSnapshot();
623 storageLayout_ = sman_->getStorageLayout();
624 #ifdef IS_MPI
625 if (storageLayout_ & DataStorage::dslFunctional) {
626 AtomPlanRealRow->gather(snap_->atomData.functional,
627 atomRowData.functional);
628 AtomPlanRealColumn->gather(snap_->atomData.functional,
629 atomColData.functional);
630 }
631
632 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
633 AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
634 atomRowData.functionalDerivative);
635 AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
636 atomColData.functionalDerivative);
637 }
638 #endif
639 }
640
641
642 void ForceMatrixDecomposition::collectData() {
643 snap_ = sman_->getCurrentSnapshot();
644 storageLayout_ = sman_->getStorageLayout();
645 #ifdef IS_MPI
646 int n = snap_->atomData.force.size();
647 vector<Vector3d> frc_tmp(n, V3Zero);
648
649 AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
650 for (int i = 0; i < n; i++) {
651 snap_->atomData.force[i] += frc_tmp[i];
652 frc_tmp[i] = 0.0;
653 }
654
655 AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
656 for (int i = 0; i < n; i++) {
657 snap_->atomData.force[i] += frc_tmp[i];
658 }
659
660 if (storageLayout_ & DataStorage::dslTorque) {
661
662 int nt = snap_->atomData.torque.size();
663 vector<Vector3d> trq_tmp(nt, V3Zero);
664
665 AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
666 for (int i = 0; i < nt; i++) {
667 snap_->atomData.torque[i] += trq_tmp[i];
668 trq_tmp[i] = 0.0;
669 }
670
671 AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
672 for (int i = 0; i < nt; i++)
673 snap_->atomData.torque[i] += trq_tmp[i];
674 }
675
676 if (storageLayout_ & DataStorage::dslSkippedCharge) {
677
678 int ns = snap_->atomData.skippedCharge.size();
679 vector<RealType> skch_tmp(ns, 0.0);
680
681 AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
682 for (int i = 0; i < ns; i++) {
683 snap_->atomData.skippedCharge[i] += skch_tmp[i];
684 skch_tmp[i] = 0.0;
685 }
686
687 AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
688 for (int i = 0; i < ns; i++)
689 snap_->atomData.skippedCharge[i] += skch_tmp[i];
690
691 }
692
693 nLocal_ = snap_->getNumberOfAtoms();
694
695 vector<potVec> pot_temp(nLocal_,
696 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
697
698 // scatter/gather pot_row into the members of my column
699
700 AtomPlanPotRow->scatter(pot_row, pot_temp);
701
702 for (int ii = 0; ii < pot_temp.size(); ii++ )
703 pairwisePot += pot_temp[ii];
704
705 fill(pot_temp.begin(), pot_temp.end(),
706 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
707
708 AtomPlanPotColumn->scatter(pot_col, pot_temp);
709
710 for (int ii = 0; ii < pot_temp.size(); ii++ )
711 pairwisePot += pot_temp[ii];
712
713 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
714 RealType ploc1 = pairwisePot[ii];
715 RealType ploc2 = 0.0;
716 MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
717 pairwisePot[ii] = ploc2;
718 }
719
720 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
721 RealType ploc1 = embeddingPot[ii];
722 RealType ploc2 = 0.0;
723 MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
724 embeddingPot[ii] = ploc2;
725 }
726
727 #endif
728
729 }
730
731 int ForceMatrixDecomposition::getNAtomsInRow() {
732 #ifdef IS_MPI
733 return nAtomsInRow_;
734 #else
735 return nLocal_;
736 #endif
737 }
738
739 /**
740 * returns the list of atoms belonging to this group.
741 */
742 vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
743 #ifdef IS_MPI
744 return groupListRow_[cg1];
745 #else
746 return groupList_[cg1];
747 #endif
748 }
749
750 vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
751 #ifdef IS_MPI
752 return groupListCol_[cg2];
753 #else
754 return groupList_[cg2];
755 #endif
756 }
757
758 Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
759 Vector3d d;
760
761 #ifdef IS_MPI
762 d = cgColData.position[cg2] - cgRowData.position[cg1];
763 #else
764 d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
765 #endif
766
767 snap_->wrapVector(d);
768 return d;
769 }
770
771
772 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
773
774 Vector3d d;
775
776 #ifdef IS_MPI
777 d = cgRowData.position[cg1] - atomRowData.position[atom1];
778 #else
779 d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
780 #endif
781
782 snap_->wrapVector(d);
783 return d;
784 }
785
786 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
787 Vector3d d;
788
789 #ifdef IS_MPI
790 d = cgColData.position[cg2] - atomColData.position[atom2];
791 #else
792 d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
793 #endif
794
795 snap_->wrapVector(d);
796 return d;
797 }
798
799 RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
800 #ifdef IS_MPI
801 return massFactorsRow[atom1];
802 #else
803 return massFactors[atom1];
804 #endif
805 }
806
807 RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
808 #ifdef IS_MPI
809 return massFactorsCol[atom2];
810 #else
811 return massFactors[atom2];
812 #endif
813
814 }
815
816 Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
817 Vector3d d;
818
819 #ifdef IS_MPI
820 d = atomColData.position[atom2] - atomRowData.position[atom1];
821 #else
822 d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
823 #endif
824
825 snap_->wrapVector(d);
826 return d;
827 }
828
829 vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
830 return excludesForAtom[atom1];
831 }
832
833 /**
834 * We need to exclude some overcounted interactions that result from
835 * the parallel decomposition.
836 */
837 bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
838 int unique_id_1, unique_id_2;
839
840 #ifdef IS_MPI
841 // in MPI, we have to look up the unique IDs for each atom
842 unique_id_1 = AtomRowToGlobal[atom1];
843 unique_id_2 = AtomColToGlobal[atom2];
844
845 // this situation should only arise in MPI simulations
846 if (unique_id_1 == unique_id_2) return true;
847
848 // this prevents us from doing the pair on multiple processors
849 if (unique_id_1 < unique_id_2) {
850 if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
851 } else {
852 if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
853 }
854 #endif
855 return false;
856 }
857
858 /**
859 * We need to handle the interactions for atoms who are involved in
860 * the same rigid body as well as some short range interactions
861 * (bonds, bends, torsions) differently from other interactions.
862 * We'll still visit the pairwise routines, but with a flag that
863 * tells those routines to exclude the pair from direct long range
864 * interactions. Some indirect interactions (notably reaction
865 * field) must still be handled for these pairs.
866 */
867 bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
868
869 // excludesForAtom was constructed to use row/column indices in the MPI
870 // version, and to use local IDs in the non-MPI version:
871
872 for (vector<int>::iterator i = excludesForAtom[atom1].begin();
873 i != excludesForAtom[atom1].end(); ++i) {
874 if ( (*i) == atom2 ) return true;
875 }
876
877 return false;
878 }
879
880
881 void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
882 #ifdef IS_MPI
883 atomRowData.force[atom1] += fg;
884 #else
885 snap_->atomData.force[atom1] += fg;
886 #endif
887 }
888
889 void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
890 #ifdef IS_MPI
891 atomColData.force[atom2] += fg;
892 #else
893 snap_->atomData.force[atom2] += fg;
894 #endif
895 }
896
897 // filling interaction blocks with pointers
898 void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
899 int atom1, int atom2) {
900
901 idat.excluded = excludeAtomPair(atom1, atom2);
902
903 #ifdef IS_MPI
904 idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
905 //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
906 // ff_->getAtomType(identsCol[atom2]) );
907
908 if (storageLayout_ & DataStorage::dslAmat) {
909 idat.A1 = &(atomRowData.aMat[atom1]);
910 idat.A2 = &(atomColData.aMat[atom2]);
911 }
912
913 if (storageLayout_ & DataStorage::dslElectroFrame) {
914 idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
915 idat.eFrame2 = &(atomColData.electroFrame[atom2]);
916 }
917
918 if (storageLayout_ & DataStorage::dslTorque) {
919 idat.t1 = &(atomRowData.torque[atom1]);
920 idat.t2 = &(atomColData.torque[atom2]);
921 }
922
923 if (storageLayout_ & DataStorage::dslDensity) {
924 idat.rho1 = &(atomRowData.density[atom1]);
925 idat.rho2 = &(atomColData.density[atom2]);
926 }
927
928 if (storageLayout_ & DataStorage::dslFunctional) {
929 idat.frho1 = &(atomRowData.functional[atom1]);
930 idat.frho2 = &(atomColData.functional[atom2]);
931 }
932
933 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
934 idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
935 idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
936 }
937
938 if (storageLayout_ & DataStorage::dslParticlePot) {
939 idat.particlePot1 = &(atomRowData.particlePot[atom1]);
940 idat.particlePot2 = &(atomColData.particlePot[atom2]);
941 }
942
943 if (storageLayout_ & DataStorage::dslSkippedCharge) {
944 idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
945 idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
946 }
947
948 #else
949
950 idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
951 //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
952 // ff_->getAtomType(idents[atom2]) );
953
954 if (storageLayout_ & DataStorage::dslAmat) {
955 idat.A1 = &(snap_->atomData.aMat[atom1]);
956 idat.A2 = &(snap_->atomData.aMat[atom2]);
957 }
958
959 if (storageLayout_ & DataStorage::dslElectroFrame) {
960 idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
961 idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
962 }
963
964 if (storageLayout_ & DataStorage::dslTorque) {
965 idat.t1 = &(snap_->atomData.torque[atom1]);
966 idat.t2 = &(snap_->atomData.torque[atom2]);
967 }
968
969 if (storageLayout_ & DataStorage::dslDensity) {
970 idat.rho1 = &(snap_->atomData.density[atom1]);
971 idat.rho2 = &(snap_->atomData.density[atom2]);
972 }
973
974 if (storageLayout_ & DataStorage::dslFunctional) {
975 idat.frho1 = &(snap_->atomData.functional[atom1]);
976 idat.frho2 = &(snap_->atomData.functional[atom2]);
977 }
978
979 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
980 idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
981 idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
982 }
983
984 if (storageLayout_ & DataStorage::dslParticlePot) {
985 idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
986 idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
987 }
988
989 if (storageLayout_ & DataStorage::dslSkippedCharge) {
990 idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
991 idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
992 }
993 #endif
994 }
995
996
997 void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {
998 #ifdef IS_MPI
999 pot_row[atom1] += 0.5 * *(idat.pot);
1000 pot_col[atom2] += 0.5 * *(idat.pot);
1001
1002 atomRowData.force[atom1] += *(idat.f1);
1003 atomColData.force[atom2] -= *(idat.f1);
1004 #else
1005 pairwisePot += *(idat.pot);
1006
1007 snap_->atomData.force[atom1] += *(idat.f1);
1008 snap_->atomData.force[atom2] -= *(idat.f1);
1009 #endif
1010
1011 }
1012
1013 /*
1014 * buildNeighborList
1015 *
1016 * first element of pair is row-indexed CutoffGroup
1017 * second element of pair is column-indexed CutoffGroup
1018 */
1019 vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1020
1021 vector<pair<int, int> > neighborList;
1022 groupCutoffs cuts;
1023 bool doAllPairs = false;
1024
1025 #ifdef IS_MPI
1026 cellListRow_.clear();
1027 cellListCol_.clear();
1028 #else
1029 cellList_.clear();
1030 #endif
1031
1032 RealType rList_ = (largestRcut_ + skinThickness_);
1033 RealType rl2 = rList_ * rList_;
1034 Snapshot* snap_ = sman_->getCurrentSnapshot();
1035 Mat3x3d Hmat = snap_->getHmat();
1036 Vector3d Hx = Hmat.getColumn(0);
1037 Vector3d Hy = Hmat.getColumn(1);
1038 Vector3d Hz = Hmat.getColumn(2);
1039
1040 nCells_.x() = (int) ( Hx.length() )/ rList_;
1041 nCells_.y() = (int) ( Hy.length() )/ rList_;
1042 nCells_.z() = (int) ( Hz.length() )/ rList_;
1043
1044 // handle small boxes where the cell offsets can end up repeating cells
1045
1046 if (nCells_.x() < 3) doAllPairs = true;
1047 if (nCells_.y() < 3) doAllPairs = true;
1048 if (nCells_.z() < 3) doAllPairs = true;
1049
1050 Mat3x3d invHmat = snap_->getInvHmat();
1051 Vector3d rs, scaled, dr;
1052 Vector3i whichCell;
1053 int cellIndex;
1054 int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1055
1056 #ifdef IS_MPI
1057 cellListRow_.resize(nCtot);
1058 cellListCol_.resize(nCtot);
1059 #else
1060 cellList_.resize(nCtot);
1061 #endif
1062
1063 if (!doAllPairs) {
1064 #ifdef IS_MPI
1065
1066 for (int i = 0; i < nGroupsInRow_; i++) {
1067 rs = cgRowData.position[i];
1068
1069 // scaled positions relative to the box vectors
1070 scaled = invHmat * rs;
1071
1072 // wrap the vector back into the unit box by subtracting integer box
1073 // numbers
1074 for (int j = 0; j < 3; j++) {
1075 scaled[j] -= roundMe(scaled[j]);
1076 scaled[j] += 0.5;
1077 }
1078
1079 // find xyz-indices of cell that cutoffGroup is in.
1080 whichCell.x() = nCells_.x() * scaled.x();
1081 whichCell.y() = nCells_.y() * scaled.y();
1082 whichCell.z() = nCells_.z() * scaled.z();
1083
1084 // find single index of this cell:
1085 cellIndex = Vlinear(whichCell, nCells_);
1086
1087 // add this cutoff group to the list of groups in this cell;
1088 cellListRow_[cellIndex].push_back(i);
1089 }
1090 for (int i = 0; i < nGroupsInCol_; i++) {
1091 rs = cgColData.position[i];
1092
1093 // scaled positions relative to the box vectors
1094 scaled = invHmat * rs;
1095
1096 // wrap the vector back into the unit box by subtracting integer box
1097 // numbers
1098 for (int j = 0; j < 3; j++) {
1099 scaled[j] -= roundMe(scaled[j]);
1100 scaled[j] += 0.5;
1101 }
1102
1103 // find xyz-indices of cell that cutoffGroup is in.
1104 whichCell.x() = nCells_.x() * scaled.x();
1105 whichCell.y() = nCells_.y() * scaled.y();
1106 whichCell.z() = nCells_.z() * scaled.z();
1107
1108 // find single index of this cell:
1109 cellIndex = Vlinear(whichCell, nCells_);
1110
1111 // add this cutoff group to the list of groups in this cell;
1112 cellListCol_[cellIndex].push_back(i);
1113 }
1114
1115 #else
1116 for (int i = 0; i < nGroups_; i++) {
1117 rs = snap_->cgData.position[i];
1118
1119 // scaled positions relative to the box vectors
1120 scaled = invHmat * rs;
1121
1122 // wrap the vector back into the unit box by subtracting integer box
1123 // numbers
1124 for (int j = 0; j < 3; j++) {
1125 scaled[j] -= roundMe(scaled[j]);
1126 scaled[j] += 0.5;
1127 }
1128
1129 // find xyz-indices of cell that cutoffGroup is in.
1130 whichCell.x() = nCells_.x() * scaled.x();
1131 whichCell.y() = nCells_.y() * scaled.y();
1132 whichCell.z() = nCells_.z() * scaled.z();
1133
1134 // find single index of this cell:
1135 cellIndex = Vlinear(whichCell, nCells_);
1136
1137 // add this cutoff group to the list of groups in this cell;
1138 cellList_[cellIndex].push_back(i);
1139 }
1140
1141 #endif
1142
1143 for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1144 for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1145 for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1146 Vector3i m1v(m1x, m1y, m1z);
1147 int m1 = Vlinear(m1v, nCells_);
1148
1149 for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1150 os != cellOffsets_.end(); ++os) {
1151
1152 Vector3i m2v = m1v + (*os);
1153
1154
1155 if (m2v.x() >= nCells_.x()) {
1156 m2v.x() = 0;
1157 } else if (m2v.x() < 0) {
1158 m2v.x() = nCells_.x() - 1;
1159 }
1160
1161 if (m2v.y() >= nCells_.y()) {
1162 m2v.y() = 0;
1163 } else if (m2v.y() < 0) {
1164 m2v.y() = nCells_.y() - 1;
1165 }
1166
1167 if (m2v.z() >= nCells_.z()) {
1168 m2v.z() = 0;
1169 } else if (m2v.z() < 0) {
1170 m2v.z() = nCells_.z() - 1;
1171 }
1172
1173 int m2 = Vlinear (m2v, nCells_);
1174
1175 #ifdef IS_MPI
1176 for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1177 j1 != cellListRow_[m1].end(); ++j1) {
1178 for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1179 j2 != cellListCol_[m2].end(); ++j2) {
1180
1181 // In parallel, we need to visit *all* pairs of row
1182 // & column indicies and will divide labor in the
1183 // force evaluation later.
1184 dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1185 snap_->wrapVector(dr);
1186 cuts = getGroupCutoffs( (*j1), (*j2) );
1187 if (dr.lengthSquare() < cuts.third) {
1188 neighborList.push_back(make_pair((*j1), (*j2)));
1189 }
1190 }
1191 }
1192 #else
1193
1194 for (vector<int>::iterator j1 = cellList_[m1].begin();
1195 j1 != cellList_[m1].end(); ++j1) {
1196 for (vector<int>::iterator j2 = cellList_[m2].begin();
1197 j2 != cellList_[m2].end(); ++j2) {
1198
1199 // Always do this if we're in different cells or if
1200 // we're in the same cell and the global index of the
1201 // j2 cutoff group is less than the j1 cutoff group
1202
1203 if (m2 != m1 || (*j2) < (*j1)) {
1204 dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1205 snap_->wrapVector(dr);
1206 cuts = getGroupCutoffs( (*j1), (*j2) );
1207 if (dr.lengthSquare() < cuts.third) {
1208 neighborList.push_back(make_pair((*j1), (*j2)));
1209 }
1210 }
1211 }
1212 }
1213 #endif
1214 }
1215 }
1216 }
1217 }
1218 } else {
1219 // branch to do all cutoff group pairs
1220 #ifdef IS_MPI
1221 for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1222 for (int j2 = 0; j2 < nGroupsInCol_; j2++) {
1223 dr = cgColData.position[j2] - cgRowData.position[j1];
1224 snap_->wrapVector(dr);
1225 cuts = getGroupCutoffs( j1, j2 );
1226 if (dr.lengthSquare() < cuts.third) {
1227 neighborList.push_back(make_pair(j1, j2));
1228 }
1229 }
1230 }
1231 #else
1232 for (int j1 = 0; j1 < nGroups_ - 1; j1++) {
1233 for (int j2 = j1 + 1; j2 < nGroups_; j2++) {
1234 dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1235 snap_->wrapVector(dr);
1236 cuts = getGroupCutoffs( j1, j2 );
1237 if (dr.lengthSquare() < cuts.third) {
1238 neighborList.push_back(make_pair(j1, j2));
1239 }
1240 }
1241 }
1242 #endif
1243 }
1244
1245 // save the local cutoff group positions for the check that is
1246 // done on each loop:
1247 saved_CG_positions_.clear();
1248 for (int i = 0; i < nGroups_; i++)
1249 saved_CG_positions_.push_back(snap_->cgData.position[i]);
1250
1251 return neighborList;
1252 }
1253 } //end namespace OpenMD