1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
#include "parallel/ForceMatrixDecomposition.hpp" |
42 |
#include "math/SquareMatrix3.hpp" |
43 |
#include "nonbonded/NonBondedInteraction.hpp" |
44 |
#include "brains/SnapshotManager.hpp" |
45 |
#include "brains/PairList.hpp" |
46 |
|
47 |
using namespace std; |
48 |
namespace OpenMD { |
49 |
|
50 |
/** |
51 |
* distributeInitialData is essentially a copy of the older fortran |
52 |
* SimulationSetup |
53 |
*/ |
54 |
|
55 |
void ForceMatrixDecomposition::distributeInitialData() { |
56 |
snap_ = sman_->getCurrentSnapshot(); |
57 |
storageLayout_ = sman_->getStorageLayout(); |
58 |
ff_ = info_->getForceField(); |
59 |
nLocal_ = snap_->getNumberOfAtoms(); |
60 |
nGroups_ = snap_->getNumberOfCutoffGroups(); |
61 |
|
62 |
// gather the information for atomtype IDs (atids): |
63 |
identsLocal = info_->getIdentArray(); |
64 |
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
65 |
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
66 |
vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
67 |
vector<RealType> massFactorsLocal = info_->getMassFactors(); |
68 |
PairList excludes = info_->getExcludedInteractions(); |
69 |
PairList oneTwo = info_->getOneTwoInteractions(); |
70 |
PairList oneThree = info_->getOneThreeInteractions(); |
71 |
PairList oneFour = info_->getOneFourInteractions(); |
72 |
vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0); |
73 |
|
74 |
#ifdef IS_MPI |
75 |
|
76 |
AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
77 |
AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
78 |
AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
79 |
AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
80 |
|
81 |
AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
82 |
AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
83 |
AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
84 |
AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
85 |
|
86 |
cgCommIntRow = new Communicator<Row,int>(nGroups_); |
87 |
cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
88 |
cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
89 |
cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
90 |
|
91 |
nAtomsInRow_ = AtomCommIntRow->getSize(); |
92 |
nAtomsInCol_ = AtomCommIntColumn->getSize(); |
93 |
nGroupsInRow_ = cgCommIntRow->getSize(); |
94 |
nGroupsInCol_ = cgCommIntColumn->getSize(); |
95 |
|
96 |
// Modify the data storage objects with the correct layouts and sizes: |
97 |
atomRowData.resize(nAtomsInRow_); |
98 |
atomRowData.setStorageLayout(storageLayout_); |
99 |
atomColData.resize(nAtomsInCol_); |
100 |
atomColData.setStorageLayout(storageLayout_); |
101 |
cgRowData.resize(nGroupsInRow_); |
102 |
cgRowData.setStorageLayout(DataStorage::dslPosition); |
103 |
cgColData.resize(nGroupsInCol_); |
104 |
cgColData.setStorageLayout(DataStorage::dslPosition); |
105 |
|
106 |
vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES, |
107 |
vector<RealType> (nAtomsInRow_, 0.0)); |
108 |
vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES, |
109 |
vector<RealType> (nAtomsInCol_, 0.0)); |
110 |
|
111 |
identsRow.reserve(nAtomsInRow_); |
112 |
identsCol.reserve(nAtomsInCol_); |
113 |
|
114 |
AtomCommIntRow->gather(identsLocal, identsRow); |
115 |
AtomCommIntColumn->gather(identsLocal, identsCol); |
116 |
|
117 |
AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
118 |
AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
119 |
|
120 |
cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
121 |
cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
122 |
|
123 |
AtomCommRealRow->gather(massFactorsLocal, massFactorsRow); |
124 |
AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol); |
125 |
|
126 |
groupListRow_.clear(); |
127 |
groupListRow_.reserve(nGroupsInRow_); |
128 |
for (int i = 0; i < nGroupsInRow_; i++) { |
129 |
int gid = cgRowToGlobal[i]; |
130 |
for (int j = 0; j < nAtomsInRow_; j++) { |
131 |
int aid = AtomRowToGlobal[j]; |
132 |
if (globalGroupMembership[aid] == gid) |
133 |
groupListRow_[i].push_back(j); |
134 |
} |
135 |
} |
136 |
|
137 |
groupListCol_.clear(); |
138 |
groupListCol_.reserve(nGroupsInCol_); |
139 |
for (int i = 0; i < nGroupsInCol_; i++) { |
140 |
int gid = cgColToGlobal[i]; |
141 |
for (int j = 0; j < nAtomsInCol_; j++) { |
142 |
int aid = AtomColToGlobal[j]; |
143 |
if (globalGroupMembership[aid] == gid) |
144 |
groupListCol_[i].push_back(j); |
145 |
} |
146 |
} |
147 |
|
148 |
skipsForRowAtom.clear(); |
149 |
skipsForRowAtom.reserve(nAtomsInRow_); |
150 |
for (int i = 0; i < nAtomsInRow_; i++) { |
151 |
int iglob = AtomRowToGlobal[i]; |
152 |
for (int j = 0; j < nAtomsInCol_; j++) { |
153 |
int jglob = AtomColToGlobal[j]; |
154 |
if (excludes.hasPair(iglob, jglob)) |
155 |
skipsForRowAtom[i].push_back(j); |
156 |
} |
157 |
} |
158 |
|
159 |
toposForRowAtom.clear(); |
160 |
toposForRowAtom.reserve(nAtomsInRow_); |
161 |
for (int i = 0; i < nAtomsInRow_; i++) { |
162 |
int iglob = AtomRowToGlobal[i]; |
163 |
int nTopos = 0; |
164 |
for (int j = 0; j < nAtomsInCol_; j++) { |
165 |
int jglob = AtomColToGlobal[j]; |
166 |
if (oneTwo.hasPair(iglob, jglob)) { |
167 |
toposForRowAtom[i].push_back(j); |
168 |
topoDistRow[i][nTopos] = 1; |
169 |
nTopos++; |
170 |
} |
171 |
if (oneThree.hasPair(iglob, jglob)) { |
172 |
toposForRowAtom[i].push_back(j); |
173 |
topoDistRow[i][nTopos] = 2; |
174 |
nTopos++; |
175 |
} |
176 |
if (oneFour.hasPair(iglob, jglob)) { |
177 |
toposForRowAtom[i].push_back(j); |
178 |
topoDistRow[i][nTopos] = 3; |
179 |
nTopos++; |
180 |
} |
181 |
} |
182 |
} |
183 |
|
184 |
#endif |
185 |
|
186 |
groupList_.clear(); |
187 |
groupList_.reserve(nGroups_); |
188 |
for (int i = 0; i < nGroups_; i++) { |
189 |
int gid = cgLocalToGlobal[i]; |
190 |
for (int j = 0; j < nLocal_; j++) { |
191 |
int aid = AtomLocalToGlobal[j]; |
192 |
if (globalGroupMembership[aid] == gid) |
193 |
groupList_[i].push_back(j); |
194 |
} |
195 |
} |
196 |
|
197 |
skipsForLocalAtom.clear(); |
198 |
skipsForLocalAtom.reserve(nLocal_); |
199 |
|
200 |
for (int i = 0; i < nLocal_; i++) { |
201 |
int iglob = AtomLocalToGlobal[i]; |
202 |
for (int j = 0; j < nLocal_; j++) { |
203 |
int jglob = AtomLocalToGlobal[j]; |
204 |
if (excludes.hasPair(iglob, jglob)) |
205 |
skipsForLocalAtom[i].push_back(j); |
206 |
} |
207 |
} |
208 |
|
209 |
toposForLocalAtom.clear(); |
210 |
toposForLocalAtom.reserve(nLocal_); |
211 |
for (int i = 0; i < nLocal_; i++) { |
212 |
int iglob = AtomLocalToGlobal[i]; |
213 |
int nTopos = 0; |
214 |
for (int j = 0; j < nLocal_; j++) { |
215 |
int jglob = AtomLocalToGlobal[j]; |
216 |
if (oneTwo.hasPair(iglob, jglob)) { |
217 |
toposForLocalAtom[i].push_back(j); |
218 |
topoDistLocal[i][nTopos] = 1; |
219 |
nTopos++; |
220 |
} |
221 |
if (oneThree.hasPair(iglob, jglob)) { |
222 |
toposForLocalAtom[i].push_back(j); |
223 |
topoDistLocal[i][nTopos] = 2; |
224 |
nTopos++; |
225 |
} |
226 |
if (oneFour.hasPair(iglob, jglob)) { |
227 |
toposForLocalAtom[i].push_back(j); |
228 |
topoDistLocal[i][nTopos] = 3; |
229 |
nTopos++; |
230 |
} |
231 |
} |
232 |
} |
233 |
} |
234 |
|
235 |
void ForceMatrixDecomposition::distributeData() { |
236 |
snap_ = sman_->getCurrentSnapshot(); |
237 |
storageLayout_ = sman_->getStorageLayout(); |
238 |
#ifdef IS_MPI |
239 |
|
240 |
// gather up the atomic positions |
241 |
AtomCommVectorRow->gather(snap_->atomData.position, |
242 |
atomRowData.position); |
243 |
AtomCommVectorColumn->gather(snap_->atomData.position, |
244 |
atomColData.position); |
245 |
|
246 |
// gather up the cutoff group positions |
247 |
cgCommVectorRow->gather(snap_->cgData.position, |
248 |
cgRowData.position); |
249 |
cgCommVectorColumn->gather(snap_->cgData.position, |
250 |
cgColData.position); |
251 |
|
252 |
// if needed, gather the atomic rotation matrices |
253 |
if (storageLayout_ & DataStorage::dslAmat) { |
254 |
AtomCommMatrixRow->gather(snap_->atomData.aMat, |
255 |
atomRowData.aMat); |
256 |
AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
257 |
atomColData.aMat); |
258 |
} |
259 |
|
260 |
// if needed, gather the atomic eletrostatic frames |
261 |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
262 |
AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
263 |
atomRowData.electroFrame); |
264 |
AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
265 |
atomColData.electroFrame); |
266 |
} |
267 |
#endif |
268 |
} |
269 |
|
270 |
void ForceMatrixDecomposition::collectIntermediateData() { |
271 |
snap_ = sman_->getCurrentSnapshot(); |
272 |
storageLayout_ = sman_->getStorageLayout(); |
273 |
#ifdef IS_MPI |
274 |
|
275 |
if (storageLayout_ & DataStorage::dslDensity) { |
276 |
|
277 |
AtomCommRealRow->scatter(atomRowData.density, |
278 |
snap_->atomData.density); |
279 |
|
280 |
int n = snap_->atomData.density.size(); |
281 |
std::vector<RealType> rho_tmp(n, 0.0); |
282 |
AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
283 |
for (int i = 0; i < n; i++) |
284 |
snap_->atomData.density[i] += rho_tmp[i]; |
285 |
} |
286 |
#endif |
287 |
} |
288 |
|
289 |
void ForceMatrixDecomposition::distributeIntermediateData() { |
290 |
snap_ = sman_->getCurrentSnapshot(); |
291 |
storageLayout_ = sman_->getStorageLayout(); |
292 |
#ifdef IS_MPI |
293 |
if (storageLayout_ & DataStorage::dslFunctional) { |
294 |
AtomCommRealRow->gather(snap_->atomData.functional, |
295 |
atomRowData.functional); |
296 |
AtomCommRealColumn->gather(snap_->atomData.functional, |
297 |
atomColData.functional); |
298 |
} |
299 |
|
300 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
301 |
AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
302 |
atomRowData.functionalDerivative); |
303 |
AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
304 |
atomColData.functionalDerivative); |
305 |
} |
306 |
#endif |
307 |
} |
308 |
|
309 |
|
310 |
void ForceMatrixDecomposition::collectData() { |
311 |
snap_ = sman_->getCurrentSnapshot(); |
312 |
storageLayout_ = sman_->getStorageLayout(); |
313 |
#ifdef IS_MPI |
314 |
int n = snap_->atomData.force.size(); |
315 |
vector<Vector3d> frc_tmp(n, V3Zero); |
316 |
|
317 |
AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
318 |
for (int i = 0; i < n; i++) { |
319 |
snap_->atomData.force[i] += frc_tmp[i]; |
320 |
frc_tmp[i] = 0.0; |
321 |
} |
322 |
|
323 |
AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
324 |
for (int i = 0; i < n; i++) |
325 |
snap_->atomData.force[i] += frc_tmp[i]; |
326 |
|
327 |
|
328 |
if (storageLayout_ & DataStorage::dslTorque) { |
329 |
|
330 |
int nt = snap_->atomData.force.size(); |
331 |
vector<Vector3d> trq_tmp(nt, V3Zero); |
332 |
|
333 |
AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
334 |
for (int i = 0; i < n; i++) { |
335 |
snap_->atomData.torque[i] += trq_tmp[i]; |
336 |
trq_tmp[i] = 0.0; |
337 |
} |
338 |
|
339 |
AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
340 |
for (int i = 0; i < n; i++) |
341 |
snap_->atomData.torque[i] += trq_tmp[i]; |
342 |
} |
343 |
|
344 |
nLocal_ = snap_->getNumberOfAtoms(); |
345 |
|
346 |
vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES, |
347 |
vector<RealType> (nLocal_, 0.0)); |
348 |
|
349 |
for (int i = 0; i < N_INTERACTION_FAMILIES; i++) { |
350 |
AtomCommRealRow->scatter(pot_row[i], pot_temp[i]); |
351 |
for (int ii = 0; ii < pot_temp[i].size(); ii++ ) { |
352 |
pot_local[i] += pot_temp[i][ii]; |
353 |
} |
354 |
} |
355 |
#endif |
356 |
} |
357 |
|
358 |
int ForceMatrixDecomposition::getNAtomsInRow() { |
359 |
#ifdef IS_MPI |
360 |
return nAtomsInRow_; |
361 |
#else |
362 |
return nLocal_; |
363 |
#endif |
364 |
} |
365 |
|
366 |
/** |
367 |
* returns the list of atoms belonging to this group. |
368 |
*/ |
369 |
vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
370 |
#ifdef IS_MPI |
371 |
return groupListRow_[cg1]; |
372 |
#else |
373 |
return groupList_[cg1]; |
374 |
#endif |
375 |
} |
376 |
|
377 |
vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
378 |
#ifdef IS_MPI |
379 |
return groupListCol_[cg2]; |
380 |
#else |
381 |
return groupList_[cg2]; |
382 |
#endif |
383 |
} |
384 |
|
385 |
Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ |
386 |
Vector3d d; |
387 |
|
388 |
#ifdef IS_MPI |
389 |
d = cgColData.position[cg2] - cgRowData.position[cg1]; |
390 |
#else |
391 |
d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; |
392 |
#endif |
393 |
|
394 |
snap_->wrapVector(d); |
395 |
return d; |
396 |
} |
397 |
|
398 |
|
399 |
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ |
400 |
|
401 |
Vector3d d; |
402 |
|
403 |
#ifdef IS_MPI |
404 |
d = cgRowData.position[cg1] - atomRowData.position[atom1]; |
405 |
#else |
406 |
d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; |
407 |
#endif |
408 |
|
409 |
snap_->wrapVector(d); |
410 |
return d; |
411 |
} |
412 |
|
413 |
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){ |
414 |
Vector3d d; |
415 |
|
416 |
#ifdef IS_MPI |
417 |
d = cgColData.position[cg2] - atomColData.position[atom2]; |
418 |
#else |
419 |
d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; |
420 |
#endif |
421 |
|
422 |
snap_->wrapVector(d); |
423 |
return d; |
424 |
} |
425 |
|
426 |
RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
427 |
#ifdef IS_MPI |
428 |
return massFactorsRow[atom1]; |
429 |
#else |
430 |
return massFactorsLocal[atom1]; |
431 |
#endif |
432 |
} |
433 |
|
434 |
RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
435 |
#ifdef IS_MPI |
436 |
return massFactorsCol[atom2]; |
437 |
#else |
438 |
return massFactorsLocal[atom2]; |
439 |
#endif |
440 |
|
441 |
} |
442 |
|
443 |
Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ |
444 |
Vector3d d; |
445 |
|
446 |
#ifdef IS_MPI |
447 |
d = atomColData.position[atom2] - atomRowData.position[atom1]; |
448 |
#else |
449 |
d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; |
450 |
#endif |
451 |
|
452 |
snap_->wrapVector(d); |
453 |
return d; |
454 |
} |
455 |
|
456 |
vector<int> ForceMatrixDecomposition::getSkipsForRowAtom(int atom1) { |
457 |
#ifdef IS_MPI |
458 |
return skipsForRowAtom[atom1]; |
459 |
#else |
460 |
return skipsForLocalAtom[atom1]; |
461 |
#endif |
462 |
} |
463 |
|
464 |
/** |
465 |
* there are a number of reasons to skip a pair or a particle mostly |
466 |
* we do this to exclude atoms who are involved in short range |
467 |
* interactions (bonds, bends, torsions), but we also need to |
468 |
* exclude some overcounted interactions that result from the |
469 |
* parallel decomposition. |
470 |
*/ |
471 |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
472 |
int unique_id_1, unique_id_2; |
473 |
|
474 |
#ifdef IS_MPI |
475 |
// in MPI, we have to look up the unique IDs for each atom |
476 |
unique_id_1 = AtomRowToGlobal[atom1]; |
477 |
unique_id_2 = AtomColToGlobal[atom2]; |
478 |
|
479 |
// this situation should only arise in MPI simulations |
480 |
if (unique_id_1 == unique_id_2) return true; |
481 |
|
482 |
// this prevents us from doing the pair on multiple processors |
483 |
if (unique_id_1 < unique_id_2) { |
484 |
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
485 |
} else { |
486 |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
487 |
} |
488 |
#else |
489 |
// in the normal loop, the atom numbers are unique |
490 |
unique_id_1 = atom1; |
491 |
unique_id_2 = atom2; |
492 |
#endif |
493 |
|
494 |
#ifdef IS_MPI |
495 |
for (vector<int>::iterator i = skipsForRowAtom[atom1].begin(); |
496 |
i != skipsForRowAtom[atom1].end(); ++i) { |
497 |
if ( (*i) == unique_id_2 ) return true; |
498 |
} |
499 |
#else |
500 |
for (vector<int>::iterator i = skipsForLocalAtom[atom1].begin(); |
501 |
i != skipsForLocalAtom[atom1].end(); ++i) { |
502 |
if ( (*i) == unique_id_2 ) return true; |
503 |
} |
504 |
#endif |
505 |
} |
506 |
|
507 |
int ForceMatrixDecomposition::getTopoDistance(int atom1, int atom2) { |
508 |
|
509 |
#ifdef IS_MPI |
510 |
for (int i = 0; i < toposForRowAtom[atom1].size(); i++) { |
511 |
if ( toposForRowAtom[atom1][i] == atom2 ) return topoDistRow[atom1][i]; |
512 |
} |
513 |
#else |
514 |
for (int i = 0; i < toposForLocalAtom[atom1].size(); i++) { |
515 |
if ( toposForLocalAtom[atom1][i] == atom2 ) return topoDistLocal[atom1][i]; |
516 |
} |
517 |
#endif |
518 |
|
519 |
// zero is default for unconnected (i.e. normal) pair interactions |
520 |
return 0; |
521 |
} |
522 |
|
523 |
void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ |
524 |
#ifdef IS_MPI |
525 |
atomRowData.force[atom1] += fg; |
526 |
#else |
527 |
snap_->atomData.force[atom1] += fg; |
528 |
#endif |
529 |
} |
530 |
|
531 |
void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){ |
532 |
#ifdef IS_MPI |
533 |
atomColData.force[atom2] += fg; |
534 |
#else |
535 |
snap_->atomData.force[atom2] += fg; |
536 |
#endif |
537 |
} |
538 |
|
539 |
// filling interaction blocks with pointers |
540 |
InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { |
541 |
InteractionData idat; |
542 |
|
543 |
#ifdef IS_MPI |
544 |
|
545 |
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
546 |
ff_->getAtomType(identsCol[atom2]) ); |
547 |
|
548 |
if (storageLayout_ & DataStorage::dslAmat) { |
549 |
idat.A1 = &(atomRowData.aMat[atom1]); |
550 |
idat.A2 = &(atomColData.aMat[atom2]); |
551 |
} |
552 |
|
553 |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
554 |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
555 |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
556 |
} |
557 |
|
558 |
if (storageLayout_ & DataStorage::dslTorque) { |
559 |
idat.t1 = &(atomRowData.torque[atom1]); |
560 |
idat.t2 = &(atomColData.torque[atom2]); |
561 |
} |
562 |
|
563 |
if (storageLayout_ & DataStorage::dslDensity) { |
564 |
idat.rho1 = &(atomRowData.density[atom1]); |
565 |
idat.rho2 = &(atomColData.density[atom2]); |
566 |
} |
567 |
|
568 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
569 |
idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); |
570 |
idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); |
571 |
} |
572 |
|
573 |
#else |
574 |
|
575 |
idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), |
576 |
ff_->getAtomType(identsLocal[atom2]) ); |
577 |
|
578 |
if (storageLayout_ & DataStorage::dslAmat) { |
579 |
idat.A1 = &(snap_->atomData.aMat[atom1]); |
580 |
idat.A2 = &(snap_->atomData.aMat[atom2]); |
581 |
} |
582 |
|
583 |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
584 |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
585 |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
586 |
} |
587 |
|
588 |
if (storageLayout_ & DataStorage::dslTorque) { |
589 |
idat.t1 = &(snap_->atomData.torque[atom1]); |
590 |
idat.t2 = &(snap_->atomData.torque[atom2]); |
591 |
} |
592 |
|
593 |
if (storageLayout_ & DataStorage::dslDensity) { |
594 |
idat.rho1 = &(snap_->atomData.density[atom1]); |
595 |
idat.rho2 = &(snap_->atomData.density[atom2]); |
596 |
} |
597 |
|
598 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
599 |
idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); |
600 |
idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); |
601 |
} |
602 |
#endif |
603 |
return idat; |
604 |
} |
605 |
|
606 |
InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ |
607 |
|
608 |
InteractionData idat; |
609 |
#ifdef IS_MPI |
610 |
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
611 |
ff_->getAtomType(identsCol[atom2]) ); |
612 |
|
613 |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
614 |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
615 |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
616 |
} |
617 |
if (storageLayout_ & DataStorage::dslTorque) { |
618 |
idat.t1 = &(atomRowData.torque[atom1]); |
619 |
idat.t2 = &(atomColData.torque[atom2]); |
620 |
} |
621 |
if (storageLayout_ & DataStorage::dslForce) { |
622 |
idat.t1 = &(atomRowData.force[atom1]); |
623 |
idat.t2 = &(atomColData.force[atom2]); |
624 |
} |
625 |
#else |
626 |
idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), |
627 |
ff_->getAtomType(identsLocal[atom2]) ); |
628 |
|
629 |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
630 |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
631 |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
632 |
} |
633 |
if (storageLayout_ & DataStorage::dslTorque) { |
634 |
idat.t1 = &(snap_->atomData.torque[atom1]); |
635 |
idat.t2 = &(snap_->atomData.torque[atom2]); |
636 |
} |
637 |
if (storageLayout_ & DataStorage::dslForce) { |
638 |
idat.t1 = &(snap_->atomData.force[atom1]); |
639 |
idat.t2 = &(snap_->atomData.force[atom2]); |
640 |
} |
641 |
#endif |
642 |
} |
643 |
|
644 |
/* |
645 |
* buildNeighborList |
646 |
* |
647 |
* first element of pair is row-indexed CutoffGroup |
648 |
* second element of pair is column-indexed CutoffGroup |
649 |
*/ |
650 |
vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
651 |
|
652 |
vector<pair<int, int> > neighborList; |
653 |
#ifdef IS_MPI |
654 |
cellListRow_.clear(); |
655 |
cellListCol_.clear(); |
656 |
#else |
657 |
cellList_.clear(); |
658 |
#endif |
659 |
|
660 |
// dangerous to not do error checking. |
661 |
RealType rCut_; |
662 |
|
663 |
RealType rList_ = (rCut_ + skinThickness_); |
664 |
RealType rl2 = rList_ * rList_; |
665 |
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
666 |
Mat3x3d Hmat = snap_->getHmat(); |
667 |
Vector3d Hx = Hmat.getColumn(0); |
668 |
Vector3d Hy = Hmat.getColumn(1); |
669 |
Vector3d Hz = Hmat.getColumn(2); |
670 |
|
671 |
nCells_.x() = (int) ( Hx.length() )/ rList_; |
672 |
nCells_.y() = (int) ( Hy.length() )/ rList_; |
673 |
nCells_.z() = (int) ( Hz.length() )/ rList_; |
674 |
|
675 |
Mat3x3d invHmat = snap_->getInvHmat(); |
676 |
Vector3d rs, scaled, dr; |
677 |
Vector3i whichCell; |
678 |
int cellIndex; |
679 |
|
680 |
#ifdef IS_MPI |
681 |
for (int i = 0; i < nGroupsInRow_; i++) { |
682 |
rs = cgRowData.position[i]; |
683 |
// scaled positions relative to the box vectors |
684 |
scaled = invHmat * rs; |
685 |
// wrap the vector back into the unit box by subtracting integer box |
686 |
// numbers |
687 |
for (int j = 0; j < 3; j++) |
688 |
scaled[j] -= roundMe(scaled[j]); |
689 |
|
690 |
// find xyz-indices of cell that cutoffGroup is in. |
691 |
whichCell.x() = nCells_.x() * scaled.x(); |
692 |
whichCell.y() = nCells_.y() * scaled.y(); |
693 |
whichCell.z() = nCells_.z() * scaled.z(); |
694 |
|
695 |
// find single index of this cell: |
696 |
cellIndex = Vlinear(whichCell, nCells_); |
697 |
// add this cutoff group to the list of groups in this cell; |
698 |
cellListRow_[cellIndex].push_back(i); |
699 |
} |
700 |
|
701 |
for (int i = 0; i < nGroupsInCol_; i++) { |
702 |
rs = cgColData.position[i]; |
703 |
// scaled positions relative to the box vectors |
704 |
scaled = invHmat * rs; |
705 |
// wrap the vector back into the unit box by subtracting integer box |
706 |
// numbers |
707 |
for (int j = 0; j < 3; j++) |
708 |
scaled[j] -= roundMe(scaled[j]); |
709 |
|
710 |
// find xyz-indices of cell that cutoffGroup is in. |
711 |
whichCell.x() = nCells_.x() * scaled.x(); |
712 |
whichCell.y() = nCells_.y() * scaled.y(); |
713 |
whichCell.z() = nCells_.z() * scaled.z(); |
714 |
|
715 |
// find single index of this cell: |
716 |
cellIndex = Vlinear(whichCell, nCells_); |
717 |
// add this cutoff group to the list of groups in this cell; |
718 |
cellListCol_[cellIndex].push_back(i); |
719 |
} |
720 |
#else |
721 |
for (int i = 0; i < nGroups_; i++) { |
722 |
rs = snap_->cgData.position[i]; |
723 |
// scaled positions relative to the box vectors |
724 |
scaled = invHmat * rs; |
725 |
// wrap the vector back into the unit box by subtracting integer box |
726 |
// numbers |
727 |
for (int j = 0; j < 3; j++) |
728 |
scaled[j] -= roundMe(scaled[j]); |
729 |
|
730 |
// find xyz-indices of cell that cutoffGroup is in. |
731 |
whichCell.x() = nCells_.x() * scaled.x(); |
732 |
whichCell.y() = nCells_.y() * scaled.y(); |
733 |
whichCell.z() = nCells_.z() * scaled.z(); |
734 |
|
735 |
// find single index of this cell: |
736 |
cellIndex = Vlinear(whichCell, nCells_); |
737 |
// add this cutoff group to the list of groups in this cell; |
738 |
cellList_[cellIndex].push_back(i); |
739 |
} |
740 |
#endif |
741 |
|
742 |
|
743 |
|
744 |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
745 |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
746 |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
747 |
Vector3i m1v(m1x, m1y, m1z); |
748 |
int m1 = Vlinear(m1v, nCells_); |
749 |
|
750 |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
751 |
os != cellOffsets_.end(); ++os) { |
752 |
|
753 |
Vector3i m2v = m1v + (*os); |
754 |
|
755 |
if (m2v.x() >= nCells_.x()) { |
756 |
m2v.x() = 0; |
757 |
} else if (m2v.x() < 0) { |
758 |
m2v.x() = nCells_.x() - 1; |
759 |
} |
760 |
|
761 |
if (m2v.y() >= nCells_.y()) { |
762 |
m2v.y() = 0; |
763 |
} else if (m2v.y() < 0) { |
764 |
m2v.y() = nCells_.y() - 1; |
765 |
} |
766 |
|
767 |
if (m2v.z() >= nCells_.z()) { |
768 |
m2v.z() = 0; |
769 |
} else if (m2v.z() < 0) { |
770 |
m2v.z() = nCells_.z() - 1; |
771 |
} |
772 |
|
773 |
int m2 = Vlinear (m2v, nCells_); |
774 |
|
775 |
#ifdef IS_MPI |
776 |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
777 |
j1 != cellListRow_[m1].end(); ++j1) { |
778 |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
779 |
j2 != cellListCol_[m2].end(); ++j2) { |
780 |
|
781 |
// Always do this if we're in different cells or if |
782 |
// we're in the same cell and the global index of the |
783 |
// j2 cutoff group is less than the j1 cutoff group |
784 |
|
785 |
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
786 |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
787 |
snap_->wrapVector(dr); |
788 |
if (dr.lengthSquare() < rl2) { |
789 |
neighborList.push_back(make_pair((*j1), (*j2))); |
790 |
} |
791 |
} |
792 |
} |
793 |
} |
794 |
#else |
795 |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
796 |
j1 != cellList_[m1].end(); ++j1) { |
797 |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
798 |
j2 != cellList_[m2].end(); ++j2) { |
799 |
|
800 |
// Always do this if we're in different cells or if |
801 |
// we're in the same cell and the global index of the |
802 |
// j2 cutoff group is less than the j1 cutoff group |
803 |
|
804 |
if (m2 != m1 || (*j2) < (*j1)) { |
805 |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
806 |
snap_->wrapVector(dr); |
807 |
if (dr.lengthSquare() < rl2) { |
808 |
neighborList.push_back(make_pair((*j1), (*j2))); |
809 |
} |
810 |
} |
811 |
} |
812 |
} |
813 |
#endif |
814 |
} |
815 |
} |
816 |
} |
817 |
} |
818 |
|
819 |
// save the local cutoff group positions for the check that is |
820 |
// done on each loop: |
821 |
saved_CG_positions_.clear(); |
822 |
for (int i = 0; i < nGroups_; i++) |
823 |
saved_CG_positions_.push_back(snap_->cgData.position[i]); |
824 |
|
825 |
return neighborList; |
826 |
} |
827 |
} //end namespace OpenMD |