36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
#include "parallel/ForceMatrixDecomposition.hpp" |
43 |
|
#include "math/SquareMatrix3.hpp" |
248 |
|
for (int j = 0; j < nLocal_; j++) { |
249 |
|
int jglob = AtomLocalToGlobal[j]; |
250 |
|
|
251 |
< |
if (excludes->hasPair(iglob, jglob)) |
251 |
> |
if (excludes->hasPair(iglob, jglob)) |
252 |
|
excludesForAtom[i].push_back(j); |
253 |
|
|
253 |
– |
|
254 |
|
if (oneTwo->hasPair(iglob, jglob)) { |
255 |
|
toposForAtom[i].push_back(j); |
256 |
|
topoDist[i].push_back(1); |
523 |
|
atomRowData.skippedCharge.end(), 0.0); |
524 |
|
fill(atomColData.skippedCharge.begin(), |
525 |
|
atomColData.skippedCharge.end(), 0.0); |
526 |
+ |
} |
527 |
+ |
|
528 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
529 |
+ |
fill(atomRowData.flucQFrc.begin(), |
530 |
+ |
atomRowData.flucQFrc.end(), 0.0); |
531 |
+ |
fill(atomColData.flucQFrc.begin(), |
532 |
+ |
atomColData.flucQFrc.end(), 0.0); |
533 |
+ |
} |
534 |
+ |
|
535 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
536 |
+ |
fill(atomRowData.electricField.begin(), |
537 |
+ |
atomRowData.electricField.end(), V3Zero); |
538 |
+ |
fill(atomColData.electricField.begin(), |
539 |
+ |
atomColData.electricField.end(), V3Zero); |
540 |
+ |
} |
541 |
+ |
|
542 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
543 |
+ |
fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), |
544 |
+ |
0.0); |
545 |
+ |
fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), |
546 |
+ |
0.0); |
547 |
|
} |
548 |
|
|
549 |
|
#endif |
558 |
|
fill(snap_->atomData.density.begin(), |
559 |
|
snap_->atomData.density.end(), 0.0); |
560 |
|
} |
561 |
+ |
|
562 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
563 |
|
fill(snap_->atomData.functional.begin(), |
564 |
|
snap_->atomData.functional.end(), 0.0); |
565 |
|
} |
566 |
+ |
|
567 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
568 |
|
fill(snap_->atomData.functionalDerivative.begin(), |
569 |
|
snap_->atomData.functionalDerivative.end(), 0.0); |
570 |
|
} |
571 |
+ |
|
572 |
|
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
573 |
|
fill(snap_->atomData.skippedCharge.begin(), |
574 |
|
snap_->atomData.skippedCharge.end(), 0.0); |
575 |
|
} |
576 |
< |
|
576 |
> |
|
577 |
> |
if (storageLayout_ & DataStorage::dslElectricField) { |
578 |
> |
fill(snap_->atomData.electricField.begin(), |
579 |
> |
snap_->atomData.electricField.end(), V3Zero); |
580 |
> |
} |
581 |
|
} |
582 |
|
|
583 |
|
|
615 |
|
atomRowData.electroFrame); |
616 |
|
AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
617 |
|
atomColData.electroFrame); |
618 |
+ |
} |
619 |
+ |
|
620 |
+ |
// if needed, gather the atomic fluctuating charge values |
621 |
+ |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
622 |
+ |
AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
623 |
+ |
atomRowData.flucQPos); |
624 |
+ |
AtomPlanRealColumn->gather(snap_->atomData.flucQPos, |
625 |
+ |
atomColData.flucQPos); |
626 |
|
} |
627 |
|
|
628 |
|
#endif |
647 |
|
for (int i = 0; i < n; i++) |
648 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
649 |
|
} |
650 |
+ |
|
651 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
652 |
+ |
|
653 |
+ |
AtomPlanVectorRow->scatter(atomRowData.electricField, |
654 |
+ |
snap_->atomData.electricField); |
655 |
+ |
|
656 |
+ |
int n = snap_->atomData.electricField.size(); |
657 |
+ |
vector<Vector3d> field_tmp(n, V3Zero); |
658 |
+ |
AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); |
659 |
+ |
for (int i = 0; i < n; i++) |
660 |
+ |
snap_->atomData.electricField[i] += field_tmp[i]; |
661 |
+ |
} |
662 |
|
#endif |
663 |
|
} |
664 |
|
|
738 |
|
|
739 |
|
} |
740 |
|
|
741 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
742 |
+ |
|
743 |
+ |
int nq = snap_->atomData.flucQFrc.size(); |
744 |
+ |
vector<RealType> fqfrc_tmp(nq, 0.0); |
745 |
+ |
|
746 |
+ |
AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); |
747 |
+ |
for (int i = 0; i < nq; i++) { |
748 |
+ |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
749 |
+ |
fqfrc_tmp[i] = 0.0; |
750 |
+ |
} |
751 |
+ |
|
752 |
+ |
AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); |
753 |
+ |
for (int i = 0; i < nq; i++) |
754 |
+ |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
755 |
+ |
|
756 |
+ |
} |
757 |
+ |
|
758 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
759 |
|
|
760 |
|
vector<potVec> pot_temp(nLocal_, |
901 |
|
*/ |
902 |
|
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
903 |
|
int unique_id_1, unique_id_2; |
904 |
< |
|
904 |
> |
|
905 |
|
#ifdef IS_MPI |
906 |
|
// in MPI, we have to look up the unique IDs for each atom |
907 |
|
unique_id_1 = AtomRowToGlobal[atom1]; |
908 |
|
unique_id_2 = AtomColToGlobal[atom2]; |
909 |
+ |
#else |
910 |
+ |
unique_id_1 = AtomLocalToGlobal[atom1]; |
911 |
+ |
unique_id_2 = AtomLocalToGlobal[atom2]; |
912 |
+ |
#endif |
913 |
|
|
845 |
– |
// this situation should only arise in MPI simulations |
914 |
|
if (unique_id_1 == unique_id_2) return true; |
915 |
< |
|
915 |
> |
|
916 |
> |
#ifdef IS_MPI |
917 |
|
// this prevents us from doing the pair on multiple processors |
918 |
|
if (unique_id_1 < unique_id_2) { |
919 |
|
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
920 |
|
} else { |
921 |
< |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
921 |
> |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
922 |
|
} |
923 |
|
#endif |
924 |
+ |
|
925 |
|
return false; |
926 |
|
} |
927 |
|
|
941 |
|
|
942 |
|
for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
943 |
|
i != excludesForAtom[atom1].end(); ++i) { |
944 |
< |
if ( (*i) == atom2 ) return true; |
944 |
> |
if ( (*i) == atom2 ) return true; |
945 |
|
} |
946 |
|
|
947 |
|
return false; |
1015 |
|
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
1016 |
|
} |
1017 |
|
|
1018 |
+ |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1019 |
+ |
idat.flucQ1 = &(atomRowData.flucQPos[atom1]); |
1020 |
+ |
idat.flucQ2 = &(atomColData.flucQPos[atom2]); |
1021 |
+ |
} |
1022 |
+ |
|
1023 |
|
#else |
1024 |
+ |
|
1025 |
|
|
1026 |
+ |
// cerr << "atoms = " << atom1 << " " << atom2 << "\n"; |
1027 |
+ |
// cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n"; |
1028 |
+ |
// cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n"; |
1029 |
+ |
|
1030 |
|
idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
1031 |
|
//idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
1032 |
|
// ff_->getAtomType(idents[atom2]) ); |
1070 |
|
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
1071 |
|
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
1072 |
|
} |
1073 |
+ |
|
1074 |
+ |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1075 |
+ |
idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); |
1076 |
+ |
idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); |
1077 |
+ |
} |
1078 |
+ |
|
1079 |
|
#endif |
1080 |
|
} |
1081 |
|
|
1082 |
|
|
1083 |
|
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
1084 |
|
#ifdef IS_MPI |
1085 |
< |
pot_row[atom1] += 0.5 * *(idat.pot); |
1086 |
< |
pot_col[atom2] += 0.5 * *(idat.pot); |
1085 |
> |
pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1086 |
> |
pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1087 |
|
|
1088 |
|
atomRowData.force[atom1] += *(idat.f1); |
1089 |
|
atomColData.force[atom2] -= *(idat.f1); |
1090 |
+ |
|
1091 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
1092 |
+ |
atomRowData.flucQFrc[atom1] += *(idat.dVdFQ1); |
1093 |
+ |
atomColData.flucQFrc[atom2] += *(idat.dVdFQ2); |
1094 |
+ |
} |
1095 |
+ |
|
1096 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
1097 |
+ |
atomRowData.electricField[atom1] += *(idat.eField1); |
1098 |
+ |
atomColData.electricField[atom2] += *(idat.eField2); |
1099 |
+ |
} |
1100 |
+ |
|
1101 |
+ |
// should particle pot be done here also? |
1102 |
|
#else |
1103 |
|
pairwisePot += *(idat.pot); |
1104 |
|
|
1105 |
|
snap_->atomData.force[atom1] += *(idat.f1); |
1106 |
|
snap_->atomData.force[atom2] -= *(idat.f1); |
1107 |
+ |
|
1108 |
+ |
if (idat.doParticlePot) { |
1109 |
+ |
snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
1110 |
+ |
snap_->atomData.particlePot[atom2] -= *(idat.vpair) * *(idat.sw); |
1111 |
+ |
} |
1112 |
+ |
|
1113 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
1114 |
+ |
snap_->atomData.flucQFrc[atom1] += *(idat.dVdFQ1); |
1115 |
+ |
snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1116 |
+ |
} |
1117 |
+ |
|
1118 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
1119 |
+ |
snap_->atomData.electricField[atom1] += *(idat.eField1); |
1120 |
+ |
snap_->atomData.electricField[atom2] += *(idat.eField2); |
1121 |
+ |
} |
1122 |
+ |
|
1123 |
|
#endif |
1124 |
|
|
1125 |
|
} |
1304 |
|
} |
1305 |
|
} |
1306 |
|
#else |
1193 |
– |
|
1307 |
|
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1308 |
|
j1 != cellList_[m1].end(); ++j1) { |
1309 |
|
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1310 |
|
j2 != cellList_[m2].end(); ++j2) { |
1311 |
< |
|
1311 |
> |
|
1312 |
|
// Always do this if we're in different cells or if |
1313 |
< |
// we're in the same cell and the global index of the |
1314 |
< |
// j2 cutoff group is less than the j1 cutoff group |
1315 |
< |
|
1316 |
< |
if (m2 != m1 || (*j2) < (*j1)) { |
1313 |
> |
// we're in the same cell and the global index of |
1314 |
> |
// the j2 cutoff group is greater than or equal to |
1315 |
> |
// the j1 cutoff group. Note that Rappaport's code |
1316 |
> |
// has a "less than" conditional here, but that |
1317 |
> |
// deals with atom-by-atom computation. OpenMD |
1318 |
> |
// allows atoms within a single cutoff group to |
1319 |
> |
// interact with each other. |
1320 |
> |
|
1321 |
> |
|
1322 |
> |
|
1323 |
> |
if (m2 != m1 || (*j2) >= (*j1) ) { |
1324 |
> |
|
1325 |
|
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1326 |
|
snap_->wrapVector(dr); |
1327 |
|
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1340 |
|
// branch to do all cutoff group pairs |
1341 |
|
#ifdef IS_MPI |
1342 |
|
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1343 |
< |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1343 |
> |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1344 |
|
dr = cgColData.position[j2] - cgRowData.position[j1]; |
1345 |
|
snap_->wrapVector(dr); |
1346 |
|
cuts = getGroupCutoffs( j1, j2 ); |
1348 |
|
neighborList.push_back(make_pair(j1, j2)); |
1349 |
|
} |
1350 |
|
} |
1351 |
< |
} |
1351 |
> |
} |
1352 |
|
#else |
1353 |
< |
for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1354 |
< |
for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1353 |
> |
// include all groups here. |
1354 |
> |
for (int j1 = 0; j1 < nGroups_; j1++) { |
1355 |
> |
// include self group interactions j2 == j1 |
1356 |
> |
for (int j2 = j1; j2 < nGroups_; j2++) { |
1357 |
|
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1358 |
|
snap_->wrapVector(dr); |
1359 |
|
cuts = getGroupCutoffs( j1, j2 ); |
1360 |
|
if (dr.lengthSquare() < cuts.third) { |
1361 |
|
neighborList.push_back(make_pair(j1, j2)); |
1362 |
|
} |
1363 |
< |
} |
1364 |
< |
} |
1363 |
> |
} |
1364 |
> |
} |
1365 |
|
#endif |
1366 |
|
} |
1367 |
|
|