95 |
|
storageLayout_ = sman_->getStorageLayout(); |
96 |
|
ff_ = info_->getForceField(); |
97 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
98 |
< |
|
98 |
> |
|
99 |
|
nGroups_ = info_->getNLocalCutoffGroups(); |
100 |
|
// gather the information for atomtype IDs (atids): |
101 |
|
idents = info_->getIdentArray(); |
109 |
|
PairList* oneTwo = info_->getOneTwoInteractions(); |
110 |
|
PairList* oneThree = info_->getOneThreeInteractions(); |
111 |
|
PairList* oneFour = info_->getOneFourInteractions(); |
112 |
< |
|
112 |
> |
|
113 |
> |
if (needVelocities_) |
114 |
> |
snap_->cgData.setStorageLayout(DataStorage::dslPosition | |
115 |
> |
DataStorage::dslVelocity); |
116 |
> |
else |
117 |
> |
snap_->cgData.setStorageLayout(DataStorage::dslPosition); |
118 |
> |
|
119 |
|
#ifdef IS_MPI |
120 |
|
|
121 |
|
MPI::Intracomm row = rowComm.getComm(); |
151 |
|
cgRowData.resize(nGroupsInRow_); |
152 |
|
cgRowData.setStorageLayout(DataStorage::dslPosition); |
153 |
|
cgColData.resize(nGroupsInCol_); |
154 |
< |
cgColData.setStorageLayout(DataStorage::dslPosition); |
155 |
< |
|
154 |
> |
if (needVelocities_) |
155 |
> |
// we only need column velocities if we need them. |
156 |
> |
cgColData.setStorageLayout(DataStorage::dslPosition | |
157 |
> |
DataStorage::dslVelocity); |
158 |
> |
else |
159 |
> |
cgColData.setStorageLayout(DataStorage::dslPosition); |
160 |
> |
|
161 |
|
identsRow.resize(nAtomsInRow_); |
162 |
|
identsCol.resize(nAtomsInCol_); |
163 |
|
|
461 |
|
} |
462 |
|
} |
463 |
|
|
453 |
– |
|
464 |
|
groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
465 |
|
int i, j; |
466 |
|
#ifdef IS_MPI |
533 |
|
atomRowData.skippedCharge.end(), 0.0); |
534 |
|
fill(atomColData.skippedCharge.begin(), |
535 |
|
atomColData.skippedCharge.end(), 0.0); |
536 |
+ |
} |
537 |
+ |
|
538 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
539 |
+ |
fill(atomRowData.flucQFrc.begin(), |
540 |
+ |
atomRowData.flucQFrc.end(), 0.0); |
541 |
+ |
fill(atomColData.flucQFrc.begin(), |
542 |
+ |
atomColData.flucQFrc.end(), 0.0); |
543 |
+ |
} |
544 |
+ |
|
545 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
546 |
+ |
fill(atomRowData.electricField.begin(), |
547 |
+ |
atomRowData.electricField.end(), V3Zero); |
548 |
+ |
fill(atomColData.electricField.begin(), |
549 |
+ |
atomColData.electricField.end(), V3Zero); |
550 |
|
} |
551 |
|
|
552 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
553 |
+ |
fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), |
554 |
+ |
0.0); |
555 |
+ |
fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), |
556 |
+ |
0.0); |
557 |
+ |
} |
558 |
+ |
|
559 |
|
#endif |
560 |
|
// even in parallel, we need to zero out the local arrays: |
561 |
|
|
568 |
|
fill(snap_->atomData.density.begin(), |
569 |
|
snap_->atomData.density.end(), 0.0); |
570 |
|
} |
571 |
+ |
|
572 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
573 |
|
fill(snap_->atomData.functional.begin(), |
574 |
|
snap_->atomData.functional.end(), 0.0); |
575 |
|
} |
576 |
+ |
|
577 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
578 |
|
fill(snap_->atomData.functionalDerivative.begin(), |
579 |
|
snap_->atomData.functionalDerivative.end(), 0.0); |
580 |
|
} |
581 |
+ |
|
582 |
|
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
583 |
|
fill(snap_->atomData.skippedCharge.begin(), |
584 |
|
snap_->atomData.skippedCharge.end(), 0.0); |
585 |
|
} |
586 |
< |
|
586 |
> |
|
587 |
> |
if (storageLayout_ & DataStorage::dslElectricField) { |
588 |
> |
fill(snap_->atomData.electricField.begin(), |
589 |
> |
snap_->atomData.electricField.end(), V3Zero); |
590 |
> |
} |
591 |
|
} |
592 |
|
|
593 |
|
|
610 |
|
cgPlanVectorColumn->gather(snap_->cgData.position, |
611 |
|
cgColData.position); |
612 |
|
|
613 |
+ |
|
614 |
+ |
|
615 |
+ |
if (needVelocities_) { |
616 |
+ |
// gather up the atomic velocities |
617 |
+ |
AtomPlanVectorColumn->gather(snap_->atomData.velocity, |
618 |
+ |
atomColData.velocity); |
619 |
+ |
|
620 |
+ |
cgPlanVectorColumn->gather(snap_->cgData.velocity, |
621 |
+ |
cgColData.velocity); |
622 |
+ |
} |
623 |
+ |
|
624 |
|
|
625 |
|
// if needed, gather the atomic rotation matrices |
626 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
636 |
|
atomRowData.electroFrame); |
637 |
|
AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
638 |
|
atomColData.electroFrame); |
639 |
+ |
} |
640 |
+ |
|
641 |
+ |
// if needed, gather the atomic fluctuating charge values |
642 |
+ |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
643 |
+ |
AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
644 |
+ |
atomRowData.flucQPos); |
645 |
+ |
AtomPlanRealColumn->gather(snap_->atomData.flucQPos, |
646 |
+ |
atomColData.flucQPos); |
647 |
|
} |
648 |
|
|
649 |
|
#endif |
668 |
|
for (int i = 0; i < n; i++) |
669 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
670 |
|
} |
671 |
+ |
|
672 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
673 |
+ |
|
674 |
+ |
AtomPlanVectorRow->scatter(atomRowData.electricField, |
675 |
+ |
snap_->atomData.electricField); |
676 |
+ |
|
677 |
+ |
int n = snap_->atomData.electricField.size(); |
678 |
+ |
vector<Vector3d> field_tmp(n, V3Zero); |
679 |
+ |
AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); |
680 |
+ |
for (int i = 0; i < n; i++) |
681 |
+ |
snap_->atomData.electricField[i] += field_tmp[i]; |
682 |
+ |
} |
683 |
|
#endif |
684 |
|
} |
685 |
|
|
759 |
|
|
760 |
|
} |
761 |
|
|
762 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
763 |
+ |
|
764 |
+ |
int nq = snap_->atomData.flucQFrc.size(); |
765 |
+ |
vector<RealType> fqfrc_tmp(nq, 0.0); |
766 |
+ |
|
767 |
+ |
AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); |
768 |
+ |
for (int i = 0; i < nq; i++) { |
769 |
+ |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
770 |
+ |
fqfrc_tmp[i] = 0.0; |
771 |
+ |
} |
772 |
+ |
|
773 |
+ |
AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); |
774 |
+ |
for (int i = 0; i < nq; i++) |
775 |
+ |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
776 |
+ |
|
777 |
+ |
} |
778 |
+ |
|
779 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
780 |
|
|
781 |
|
vector<potVec> pot_temp(nLocal_, |
787 |
|
|
788 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
789 |
|
pairwisePot += pot_temp[ii]; |
790 |
< |
|
790 |
> |
|
791 |
> |
if (storageLayout_ & DataStorage::dslParticlePot) { |
792 |
> |
// This is the pairwise contribution to the particle pot. The |
793 |
> |
// embedding contribution is added in each of the low level |
794 |
> |
// non-bonded routines. In single processor, this is done in |
795 |
> |
// unpackInteractionData, not in collectData. |
796 |
> |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
797 |
> |
for (int i = 0; i < nLocal_; i++) { |
798 |
> |
// factor of two is because the total potential terms are divided |
799 |
> |
// by 2 in parallel due to row/ column scatter |
800 |
> |
snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
801 |
> |
} |
802 |
> |
} |
803 |
> |
} |
804 |
> |
|
805 |
|
fill(pot_temp.begin(), pot_temp.end(), |
806 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
807 |
|
|
809 |
|
|
810 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
811 |
|
pairwisePot += pot_temp[ii]; |
812 |
+ |
|
813 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
814 |
+ |
// This is the pairwise contribution to the particle pot. The |
815 |
+ |
// embedding contribution is added in each of the low level |
816 |
+ |
// non-bonded routines. In single processor, this is done in |
817 |
+ |
// unpackInteractionData, not in collectData. |
818 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
819 |
+ |
for (int i = 0; i < nLocal_; i++) { |
820 |
+ |
// factor of two is because the total potential terms are divided |
821 |
+ |
// by 2 in parallel due to row/ column scatter |
822 |
+ |
snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
823 |
+ |
} |
824 |
+ |
} |
825 |
+ |
} |
826 |
|
|
827 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
828 |
+ |
int npp = snap_->atomData.particlePot.size(); |
829 |
+ |
vector<RealType> ppot_temp(npp, 0.0); |
830 |
+ |
|
831 |
+ |
// This is the direct or embedding contribution to the particle |
832 |
+ |
// pot. |
833 |
+ |
|
834 |
+ |
AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); |
835 |
+ |
for (int i = 0; i < npp; i++) { |
836 |
+ |
snap_->atomData.particlePot[i] += ppot_temp[i]; |
837 |
+ |
} |
838 |
+ |
|
839 |
+ |
fill(ppot_temp.begin(), ppot_temp.end(), 0.0); |
840 |
+ |
|
841 |
+ |
AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); |
842 |
+ |
for (int i = 0; i < npp; i++) { |
843 |
+ |
snap_->atomData.particlePot[i] += ppot_temp[i]; |
844 |
+ |
} |
845 |
+ |
} |
846 |
+ |
|
847 |
|
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
848 |
|
RealType ploc1 = pairwisePot[ii]; |
849 |
|
RealType ploc2 = 0.0; |
851 |
|
pairwisePot[ii] = ploc2; |
852 |
|
} |
853 |
|
|
854 |
+ |
// Here be dragons. |
855 |
+ |
MPI::Intracomm col = colComm.getComm(); |
856 |
+ |
|
857 |
+ |
col.Allreduce(MPI::IN_PLACE, |
858 |
+ |
&snap_->frameData.conductiveHeatFlux[0], 3, |
859 |
+ |
MPI::REALTYPE, MPI::SUM); |
860 |
+ |
|
861 |
+ |
|
862 |
+ |
#endif |
863 |
+ |
|
864 |
+ |
} |
865 |
+ |
|
866 |
+ |
/** |
867 |
+ |
* Collects information obtained during the post-pair (and embedding |
868 |
+ |
* functional) loops onto local data structures. |
869 |
+ |
*/ |
870 |
+ |
void ForceMatrixDecomposition::collectSelfData() { |
871 |
+ |
snap_ = sman_->getCurrentSnapshot(); |
872 |
+ |
storageLayout_ = sman_->getStorageLayout(); |
873 |
+ |
|
874 |
+ |
#ifdef IS_MPI |
875 |
|
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
876 |
|
RealType ploc1 = embeddingPot[ii]; |
877 |
|
RealType ploc2 = 0.0; |
878 |
|
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
879 |
|
embeddingPot[ii] = ploc2; |
880 |
< |
} |
726 |
< |
|
880 |
> |
} |
881 |
|
#endif |
882 |
< |
|
882 |
> |
|
883 |
|
} |
884 |
|
|
885 |
+ |
|
886 |
+ |
|
887 |
|
int ForceMatrixDecomposition::getNAtomsInRow() { |
888 |
|
#ifdef IS_MPI |
889 |
|
return nAtomsInRow_; |
922 |
|
|
923 |
|
snap_->wrapVector(d); |
924 |
|
return d; |
925 |
+ |
} |
926 |
+ |
|
927 |
+ |
Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
928 |
+ |
#ifdef IS_MPI |
929 |
+ |
return cgColData.velocity[cg2]; |
930 |
+ |
#else |
931 |
+ |
return snap_->cgData.velocity[cg2]; |
932 |
+ |
#endif |
933 |
+ |
} |
934 |
+ |
|
935 |
+ |
Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
936 |
+ |
#ifdef IS_MPI |
937 |
+ |
return atomColData.velocity[atom2]; |
938 |
+ |
#else |
939 |
+ |
return snap_->atomData.velocity[atom2]; |
940 |
+ |
#endif |
941 |
|
} |
942 |
|
|
943 |
|
|
1006 |
|
* We need to exclude some overcounted interactions that result from |
1007 |
|
* the parallel decomposition. |
1008 |
|
*/ |
1009 |
< |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
1010 |
< |
int unique_id_1, unique_id_2; |
1009 |
> |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { |
1010 |
> |
int unique_id_1, unique_id_2, group1, group2; |
1011 |
|
|
1012 |
|
#ifdef IS_MPI |
1013 |
|
// in MPI, we have to look up the unique IDs for each atom |
1014 |
|
unique_id_1 = AtomRowToGlobal[atom1]; |
1015 |
|
unique_id_2 = AtomColToGlobal[atom2]; |
1016 |
+ |
group1 = cgRowToGlobal[cg1]; |
1017 |
+ |
group2 = cgColToGlobal[cg2]; |
1018 |
|
#else |
1019 |
|
unique_id_1 = AtomLocalToGlobal[atom1]; |
1020 |
|
unique_id_2 = AtomLocalToGlobal[atom2]; |
1021 |
+ |
group1 = cgLocalToGlobal[cg1]; |
1022 |
+ |
group2 = cgLocalToGlobal[cg2]; |
1023 |
|
#endif |
1024 |
|
|
1025 |
|
if (unique_id_1 == unique_id_2) return true; |
1031 |
|
} else { |
1032 |
|
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1033 |
|
} |
1034 |
+ |
#endif |
1035 |
+ |
|
1036 |
+ |
#ifndef IS_MPI |
1037 |
+ |
if (group1 == group2) { |
1038 |
+ |
if (unique_id_1 < unique_id_2) return true; |
1039 |
+ |
} |
1040 |
|
#endif |
1041 |
|
|
1042 |
|
return false; |
1132 |
|
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
1133 |
|
} |
1134 |
|
|
1135 |
< |
#else |
1135 |
> |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1136 |
> |
idat.flucQ1 = &(atomRowData.flucQPos[atom1]); |
1137 |
> |
idat.flucQ2 = &(atomColData.flucQPos[atom2]); |
1138 |
> |
} |
1139 |
|
|
1140 |
+ |
#else |
1141 |
+ |
|
1142 |
|
idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
956 |
– |
//idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
957 |
– |
// ff_->getAtomType(idents[atom2]) ); |
1143 |
|
|
1144 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
1145 |
|
idat.A1 = &(snap_->atomData.aMat[atom1]); |
1180 |
|
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
1181 |
|
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
1182 |
|
} |
1183 |
+ |
|
1184 |
+ |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1185 |
+ |
idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); |
1186 |
+ |
idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); |
1187 |
+ |
} |
1188 |
+ |
|
1189 |
|
#endif |
1190 |
|
} |
1191 |
|
|
1192 |
|
|
1193 |
|
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
1194 |
|
#ifdef IS_MPI |
1195 |
< |
pot_row[atom1] += 0.5 * *(idat.pot); |
1196 |
< |
pot_col[atom2] += 0.5 * *(idat.pot); |
1195 |
> |
pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1196 |
> |
pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1197 |
|
|
1198 |
|
atomRowData.force[atom1] += *(idat.f1); |
1199 |
|
atomColData.force[atom2] -= *(idat.f1); |
1200 |
+ |
|
1201 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
1202 |
+ |
atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1203 |
+ |
atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1204 |
+ |
} |
1205 |
+ |
|
1206 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
1207 |
+ |
atomRowData.electricField[atom1] += *(idat.eField1); |
1208 |
+ |
atomColData.electricField[atom2] += *(idat.eField2); |
1209 |
+ |
} |
1210 |
+ |
|
1211 |
|
#else |
1212 |
|
pairwisePot += *(idat.pot); |
1213 |
|
|
1214 |
|
snap_->atomData.force[atom1] += *(idat.f1); |
1215 |
|
snap_->atomData.force[atom2] -= *(idat.f1); |
1216 |
+ |
|
1217 |
+ |
if (idat.doParticlePot) { |
1218 |
+ |
// This is the pairwise contribution to the particle pot. The |
1219 |
+ |
// embedding contribution is added in each of the low level |
1220 |
+ |
// non-bonded routines. In parallel, this calculation is done |
1221 |
+ |
// in collectData, not in unpackInteractionData. |
1222 |
+ |
snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
1223 |
+ |
snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); |
1224 |
+ |
} |
1225 |
+ |
|
1226 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
1227 |
+ |
snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1228 |
+ |
snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1229 |
+ |
} |
1230 |
+ |
|
1231 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
1232 |
+ |
snap_->atomData.electricField[atom1] += *(idat.eField1); |
1233 |
+ |
snap_->atomData.electricField[atom2] += *(idat.eField2); |
1234 |
+ |
} |
1235 |
+ |
|
1236 |
|
#endif |
1237 |
|
|
1238 |
|
} |