ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents):
Revision 1554 by gezelter, Sat Apr 30 02:54:02 2011 UTC vs.
Revision 1579 by gezelter, Thu Jun 9 20:26:29 2011 UTC

# Line 42 | Line 42
42   #include "math/SquareMatrix3.hpp"
43   #include "nonbonded/NonBondedInteraction.hpp"
44   #include "brains/SnapshotManager.hpp"
45 + #include "brains/PairList.hpp"
46  
47   using namespace std;
48   namespace OpenMD {
# Line 54 | Line 55 | namespace OpenMD {
55    void ForceMatrixDecomposition::distributeInitialData() {
56      snap_ = sman_->getCurrentSnapshot();
57      storageLayout_ = sman_->getStorageLayout();
58 < #ifdef IS_MPI    
59 <    int nLocal = snap_->getNumberOfAtoms();
59 <    int nGroups = snap_->getNumberOfCutoffGroups();
60 <    
61 <    AtomCommIntRow = new Communicator<Row,int>(nLocal);
62 <    AtomCommRealRow = new Communicator<Row,RealType>(nLocal);
63 <    AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal);
64 <    AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal);
58 >    ff_ = info_->getForceField();
59 >    nLocal_ = snap_->getNumberOfAtoms();
60  
61 <    AtomCommIntColumn = new Communicator<Column,int>(nLocal);
62 <    AtomCommRealColumn = new Communicator<Column,RealType>(nLocal);
63 <    AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal);
64 <    AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal);
61 >    nGroups_ = info_->getNLocalCutoffGroups();
62 >    cerr << "in dId, nGroups = " << nGroups_ << "\n";
63 >    // gather the information for atomtype IDs (atids):
64 >    identsLocal = info_->getIdentArray();
65 >    AtomLocalToGlobal = info_->getGlobalAtomIndices();
66 >    cgLocalToGlobal = info_->getGlobalGroupIndices();
67 >    vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
68 >    vector<RealType> massFactorsLocal = info_->getMassFactors();
69 >    PairList excludes = info_->getExcludedInteractions();
70 >    PairList oneTwo = info_->getOneTwoInteractions();
71 >    PairList oneThree = info_->getOneThreeInteractions();
72 >    PairList oneFour = info_->getOneFourInteractions();
73  
74 <    cgCommIntRow = new Communicator<Row,int>(nGroups);
75 <    cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups);
76 <    cgCommIntColumn = new Communicator<Column,int>(nGroups);
77 <    cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups);
74 > #ifdef IS_MPI
75 >
76 >    AtomCommIntRow = new Communicator<Row,int>(nLocal_);
77 >    AtomCommRealRow = new Communicator<Row,RealType>(nLocal_);
78 >    AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_);
79 >    AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_);
80 >    AtomCommPotRow = new Communicator<Row,potVec>(nLocal_);
81  
82 <    int nAtomsInRow = AtomCommIntRow->getSize();
83 <    int nAtomsInCol = AtomCommIntColumn->getSize();
84 <    int nGroupsInRow = cgCommIntRow->getSize();
85 <    int nGroupsInCol = cgCommIntColumn->getSize();
82 >    AtomCommIntColumn = new Communicator<Column,int>(nLocal_);
83 >    AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_);
84 >    AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_);
85 >    AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_);
86 >    AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_);
87  
88 +    cgCommIntRow = new Communicator<Row,int>(nGroups_);
89 +    cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_);
90 +    cgCommIntColumn = new Communicator<Column,int>(nGroups_);
91 +    cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_);
92 +
93 +    nAtomsInRow_ = AtomCommIntRow->getSize();
94 +    nAtomsInCol_ = AtomCommIntColumn->getSize();
95 +    nGroupsInRow_ = cgCommIntRow->getSize();
96 +    nGroupsInCol_ = cgCommIntColumn->getSize();
97 +
98      // Modify the data storage objects with the correct layouts and sizes:
99 <    atomRowData.resize(nAtomsInRow);
99 >    atomRowData.resize(nAtomsInRow_);
100      atomRowData.setStorageLayout(storageLayout_);
101 <    atomColData.resize(nAtomsInCol);
101 >    atomColData.resize(nAtomsInCol_);
102      atomColData.setStorageLayout(storageLayout_);
103 <    cgRowData.resize(nGroupsInRow);
103 >    cgRowData.resize(nGroupsInRow_);
104      cgRowData.setStorageLayout(DataStorage::dslPosition);
105 <    cgColData.resize(nGroupsInCol);
105 >    cgColData.resize(nGroupsInCol_);
106      cgColData.setStorageLayout(DataStorage::dslPosition);
107 +        
108 +    identsRow.resize(nAtomsInRow_);
109 +    identsCol.resize(nAtomsInCol_);
110      
91    vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES,
92                                      vector<RealType> (nAtomsInRow, 0.0));
93    vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES,
94                                      vector<RealType> (nAtomsInCol, 0.0));
95
96
97    vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0);
98    
99    // gather the information for atomtype IDs (atids):
100    vector<int> identsLocal = info_->getIdentArray();
101    identsRow.reserve(nAtomsInRow);
102    identsCol.reserve(nAtomsInCol);
103    
111      AtomCommIntRow->gather(identsLocal, identsRow);
112      AtomCommIntColumn->gather(identsLocal, identsCol);
113      
107    AtomLocalToGlobal = info_->getGlobalAtomIndices();
114      AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
115      AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
116      
111    cgLocalToGlobal = info_->getGlobalGroupIndices();
117      cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
118      cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
119  
120 <    // still need:
121 <    // topoDist
122 <    // exclude
120 >    AtomCommRealRow->gather(massFactorsLocal, massFactorsRow);
121 >    AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol);
122 >
123 >    groupListRow_.clear();
124 >    groupListRow_.resize(nGroupsInRow_);
125 >    for (int i = 0; i < nGroupsInRow_; i++) {
126 >      int gid = cgRowToGlobal[i];
127 >      for (int j = 0; j < nAtomsInRow_; j++) {
128 >        int aid = AtomRowToGlobal[j];
129 >        if (globalGroupMembership[aid] == gid)
130 >          groupListRow_[i].push_back(j);
131 >      }      
132 >    }
133 >
134 >    groupListCol_.clear();
135 >    groupListCol_.resize(nGroupsInCol_);
136 >    for (int i = 0; i < nGroupsInCol_; i++) {
137 >      int gid = cgColToGlobal[i];
138 >      for (int j = 0; j < nAtomsInCol_; j++) {
139 >        int aid = AtomColToGlobal[j];
140 >        if (globalGroupMembership[aid] == gid)
141 >          groupListCol_[i].push_back(j);
142 >      }      
143 >    }
144 >
145 >    skipsForAtom.clear();
146 >    skipsForAtom.resize(nAtomsInRow_);
147 >    toposForAtom.clear();
148 >    toposForAtom.resize(nAtomsInRow_);
149 >    topoDist.clear();
150 >    topoDist.resize(nAtomsInRow_);
151 >    for (int i = 0; i < nAtomsInRow_; i++) {
152 >      int iglob = AtomRowToGlobal[i];
153 >
154 >      for (int j = 0; j < nAtomsInCol_; j++) {
155 >        int jglob = AtomColToGlobal[j];
156 >
157 >        if (excludes.hasPair(iglob, jglob))
158 >          skipsForAtom[i].push_back(j);      
159 >        
160 >        if (oneTwo.hasPair(iglob, jglob)) {
161 >          toposForAtom[i].push_back(j);
162 >          topoDist[i].push_back(1);
163 >        } else {
164 >          if (oneThree.hasPair(iglob, jglob)) {
165 >            toposForAtom[i].push_back(j);
166 >            topoDist[i].push_back(2);
167 >          } else {
168 >            if (oneFour.hasPair(iglob, jglob)) {
169 >              toposForAtom[i].push_back(j);
170 >              topoDist[i].push_back(3);
171 >            }
172 >          }
173 >        }
174 >      }      
175 >    }
176 >
177 > #endif
178 >
179 >    groupList_.clear();
180 >    groupList_.resize(nGroups_);
181 >    for (int i = 0; i < nGroups_; i++) {
182 >      int gid = cgLocalToGlobal[i];
183 >      for (int j = 0; j < nLocal_; j++) {
184 >        int aid = AtomLocalToGlobal[j];
185 >        if (globalGroupMembership[aid] == gid) {
186 >          groupList_[i].push_back(j);
187 >        }
188 >      }      
189 >    }
190 >
191 >    skipsForAtom.clear();
192 >    skipsForAtom.resize(nLocal_);
193 >    toposForAtom.clear();
194 >    toposForAtom.resize(nLocal_);
195 >    topoDist.clear();
196 >    topoDist.resize(nLocal_);
197 >
198 >    for (int i = 0; i < nLocal_; i++) {
199 >      int iglob = AtomLocalToGlobal[i];
200 >
201 >      for (int j = 0; j < nLocal_; j++) {
202 >        int jglob = AtomLocalToGlobal[j];
203 >
204 >        if (excludes.hasPair(iglob, jglob))
205 >          skipsForAtom[i].push_back(j);              
206 >        
207 >        if (oneTwo.hasPair(iglob, jglob)) {
208 >          toposForAtom[i].push_back(j);
209 >          topoDist[i].push_back(1);
210 >        } else {
211 >          if (oneThree.hasPair(iglob, jglob)) {
212 >            toposForAtom[i].push_back(j);
213 >            topoDist[i].push_back(2);
214 >          } else {
215 >            if (oneFour.hasPair(iglob, jglob)) {
216 >              toposForAtom[i].push_back(j);
217 >              topoDist[i].push_back(3);
218 >            }
219 >          }
220 >        }
221 >      }      
222 >    }
223 >    
224 >    createGtypeCutoffMap();
225 >  }
226 >  
227 >  void ForceMatrixDecomposition::createGtypeCutoffMap() {
228 >
229 >    RealType tol = 1e-6;
230 >    RealType rc;
231 >    int atid;
232 >    set<AtomType*> atypes = info_->getSimulatedAtomTypes();
233 >    vector<RealType> atypeCutoff;
234 >    atypeCutoff.resize( atypes.size() );
235 >
236 >    for (set<AtomType*>::iterator at = atypes.begin();
237 >         at != atypes.end(); ++at){
238 >      rc = interactionMan_->getSuggestedCutoffRadius(*at);
239 >      atid = (*at)->getIdent();
240 >      atypeCutoff[atid] = rc;
241 >    }
242 >
243 >    vector<RealType> gTypeCutoffs;
244 >
245 >    // first we do a single loop over the cutoff groups to find the
246 >    // largest cutoff for any atypes present in this group.
247 > #ifdef IS_MPI
248 >    vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
249 >    groupRowToGtype.resize(nGroupsInRow_);
250 >    for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
251 >      vector<int> atomListRow = getAtomsInGroupRow(cg1);
252 >      for (vector<int>::iterator ia = atomListRow.begin();
253 >           ia != atomListRow.end(); ++ia) {            
254 >        int atom1 = (*ia);
255 >        atid = identsRow[atom1];
256 >        if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
257 >          groupCutoffRow[cg1] = atypeCutoff[atid];
258 >        }
259 >      }
260 >
261 >      bool gTypeFound = false;
262 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
263 >        if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
264 >          groupRowToGtype[cg1] = gt;
265 >          gTypeFound = true;
266 >        }
267 >      }
268 >      if (!gTypeFound) {
269 >        gTypeCutoffs.push_back( groupCutoffRow[cg1] );
270 >        groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
271 >      }
272 >      
273 >    }
274 >    vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
275 >    groupColToGtype.resize(nGroupsInCol_);
276 >    for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
277 >      vector<int> atomListCol = getAtomsInGroupColumn(cg2);
278 >      for (vector<int>::iterator jb = atomListCol.begin();
279 >           jb != atomListCol.end(); ++jb) {            
280 >        int atom2 = (*jb);
281 >        atid = identsCol[atom2];
282 >        if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
283 >          groupCutoffCol[cg2] = atypeCutoff[atid];
284 >        }
285 >      }
286 >      bool gTypeFound = false;
287 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
288 >        if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
289 >          groupColToGtype[cg2] = gt;
290 >          gTypeFound = true;
291 >        }
292 >      }
293 >      if (!gTypeFound) {
294 >        gTypeCutoffs.push_back( groupCutoffCol[cg2] );
295 >        groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
296 >      }
297 >    }
298 > #else
299 >
300 >    vector<RealType> groupCutoff(nGroups_, 0.0);
301 >    groupToGtype.resize(nGroups_);
302 >
303 >    cerr << "nGroups = " << nGroups_ << "\n";
304 >    for (int cg1 = 0; cg1 < nGroups_; cg1++) {
305 >
306 >      groupCutoff[cg1] = 0.0;
307 >      vector<int> atomList = getAtomsInGroupRow(cg1);
308 >
309 >      for (vector<int>::iterator ia = atomList.begin();
310 >           ia != atomList.end(); ++ia) {            
311 >        int atom1 = (*ia);
312 >        atid = identsLocal[atom1];
313 >        if (atypeCutoff[atid] > groupCutoff[cg1]) {
314 >          groupCutoff[cg1] = atypeCutoff[atid];
315 >        }
316 >      }
317 >
318 >      bool gTypeFound = false;
319 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
320 >        if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
321 >          groupToGtype[cg1] = gt;
322 >          gTypeFound = true;
323 >        }
324 >      }
325 >      if (!gTypeFound) {
326 >        gTypeCutoffs.push_back( groupCutoff[cg1] );
327 >        groupToGtype[cg1] = gTypeCutoffs.size() - 1;
328 >      }      
329 >    }
330   #endif
331 +
332 +    cerr << "gTypeCutoffs.size() = " << gTypeCutoffs.size() << "\n";
333 +    // Now we find the maximum group cutoff value present in the simulation
334 +
335 +    RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end());
336 +
337 + #ifdef IS_MPI
338 +    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX);
339 + #endif
340 +    
341 +    RealType tradRcut = groupMax;
342 +
343 +    for (int i = 0; i < gTypeCutoffs.size();  i++) {
344 +      for (int j = 0; j < gTypeCutoffs.size();  j++) {      
345 +        RealType thisRcut;
346 +        switch(cutoffPolicy_) {
347 +        case TRADITIONAL:
348 +          thisRcut = tradRcut;
349 +          break;
350 +        case MIX:
351 +          thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
352 +          break;
353 +        case MAX:
354 +          thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
355 +          break;
356 +        default:
357 +          sprintf(painCave.errMsg,
358 +                  "ForceMatrixDecomposition::createGtypeCutoffMap "
359 +                  "hit an unknown cutoff policy!\n");
360 +          painCave.severity = OPENMD_ERROR;
361 +          painCave.isFatal = 1;
362 +          simError();
363 +          break;
364 +        }
365 +
366 +        pair<int,int> key = make_pair(i,j);
367 +        gTypeCutoffMap[key].first = thisRcut;
368 +
369 +        if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
370 +
371 +        gTypeCutoffMap[key].second = thisRcut*thisRcut;
372 +        
373 +        gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
374 +
375 +        // sanity check
376 +        
377 +        if (userChoseCutoff_) {
378 +          if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
379 +            sprintf(painCave.errMsg,
380 +                    "ForceMatrixDecomposition::createGtypeCutoffMap "
381 +                    "user-specified rCut does not match computed group Cutoff\n");
382 +            painCave.severity = OPENMD_ERROR;
383 +            painCave.isFatal = 1;
384 +            simError();            
385 +          }
386 +        }
387 +      }
388 +    }
389    }
390 +
391 +
392 +  groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
393 +    int i, j;  
394 + #ifdef IS_MPI
395 +    i = groupRowToGtype[cg1];
396 +    j = groupColToGtype[cg2];
397 + #else
398 +    i = groupToGtype[cg1];
399 +    j = groupToGtype[cg2];
400 + #endif    
401 +    return gTypeCutoffMap[make_pair(i,j)];
402 +  }
403 +
404 +  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
405 +    for (int j = 0; j < toposForAtom[atom1].size(); j++) {
406 +      if (toposForAtom[atom1][j] == atom2)
407 +        return topoDist[atom1][j];
408 +    }
409 +    return 0;
410 +  }
411 +
412 +  void ForceMatrixDecomposition::zeroWorkArrays() {
413 +
414 +    for (int j = 0; j < N_INTERACTION_FAMILIES; j++) {
415 +      longRangePot_[j] = 0.0;
416 +    }
417 +
418 + #ifdef IS_MPI
419 +    if (storageLayout_ & DataStorage::dslForce) {
420 +      fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
421 +      fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
422 +    }
423 +
424 +    if (storageLayout_ & DataStorage::dslTorque) {
425 +      fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
426 +      fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
427 +    }
428 +    
429 +    fill(pot_row.begin(), pot_row.end(),
430 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
431 +
432 +    fill(pot_col.begin(), pot_col.end(),
433 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
434 +    
435 +    pot_local = Vector<RealType, N_INTERACTION_FAMILIES>(0.0);
436 +
437 +    if (storageLayout_ & DataStorage::dslParticlePot) {    
438 +      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0);
439 +      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0);
440 +    }
441 +
442 +    if (storageLayout_ & DataStorage::dslDensity) {      
443 +      fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
444 +      fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
445 +    }
446 +
447 +    if (storageLayout_ & DataStorage::dslFunctional) {  
448 +      fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0);
449 +      fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0);
450 +    }
451 +
452 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
453 +      fill(atomRowData.functionalDerivative.begin(),
454 +           atomRowData.functionalDerivative.end(), 0.0);
455 +      fill(atomColData.functionalDerivative.begin(),
456 +           atomColData.functionalDerivative.end(), 0.0);
457 +    }
458 +
459 + #else
460 +    
461 +    if (storageLayout_ & DataStorage::dslParticlePot) {      
462 +      fill(snap_->atomData.particlePot.begin(),
463 +           snap_->atomData.particlePot.end(), 0.0);
464 +    }
465 +    
466 +    if (storageLayout_ & DataStorage::dslDensity) {      
467 +      fill(snap_->atomData.density.begin(),
468 +           snap_->atomData.density.end(), 0.0);
469 +    }
470 +    if (storageLayout_ & DataStorage::dslFunctional) {
471 +      fill(snap_->atomData.functional.begin(),
472 +           snap_->atomData.functional.end(), 0.0);
473 +    }
474 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
475 +      fill(snap_->atomData.functionalDerivative.begin(),
476 +           snap_->atomData.functionalDerivative.end(), 0.0);
477 +    }
478 + #endif
479      
480 +  }
481  
482  
483    void ForceMatrixDecomposition::distributeData()  {
# Line 155 | Line 515 | namespace OpenMD {
515   #endif      
516    }
517    
518 +  /* collects information obtained during the pre-pair loop onto local
519 +   * data structures.
520 +   */
521    void ForceMatrixDecomposition::collectIntermediateData() {
522      snap_ = sman_->getCurrentSnapshot();
523      storageLayout_ = sman_->getStorageLayout();
# Line 166 | Line 529 | namespace OpenMD {
529                                 snap_->atomData.density);
530        
531        int n = snap_->atomData.density.size();
532 <      std::vector<RealType> rho_tmp(n, 0.0);
532 >      vector<RealType> rho_tmp(n, 0.0);
533        AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
534        for (int i = 0; i < n; i++)
535          snap_->atomData.density[i] += rho_tmp[i];
536      }
537   #endif
538    }
539 <  
539 >
540 >  /*
541 >   * redistributes information obtained during the pre-pair loop out to
542 >   * row and column-indexed data structures
543 >   */
544    void ForceMatrixDecomposition::distributeIntermediateData() {
545      snap_ = sman_->getCurrentSnapshot();
546      storageLayout_ = sman_->getStorageLayout();
# Line 229 | Line 596 | namespace OpenMD {
596          snap_->atomData.torque[i] += trq_tmp[i];
597      }
598      
599 <    int nLocal = snap_->getNumberOfAtoms();
599 >    nLocal_ = snap_->getNumberOfAtoms();
600  
601 <    vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES,
602 <                                       vector<RealType> (nLocal, 0.0));
601 >    vector<potVec> pot_temp(nLocal_,
602 >                            Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
603 >
604 >    // scatter/gather pot_row into the members of my column
605 >          
606 >    AtomCommPotRow->scatter(pot_row, pot_temp);
607 >
608 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
609 >      pot_local += pot_temp[ii];
610      
611 <    for (int i = 0; i < N_INTERACTION_FAMILIES; i++) {
612 <      AtomCommRealRow->scatter(pot_row[i], pot_temp[i]);
613 <      for (int ii = 0;  ii < pot_temp[i].size(); ii++ ) {
614 <        pot_local[i] += pot_temp[i][ii];
615 <      }
616 <    }
611 >    fill(pot_temp.begin(), pot_temp.end(),
612 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
613 >      
614 >    AtomCommPotColumn->scatter(pot_col, pot_temp);    
615 >    
616 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
617 >      pot_local += pot_temp[ii];
618 >    
619   #endif
620    }
621  
622 +  int ForceMatrixDecomposition::getNAtomsInRow() {  
623 + #ifdef IS_MPI
624 +    return nAtomsInRow_;
625 + #else
626 +    return nLocal_;
627 + #endif
628 +  }
629 +
630 +  /**
631 +   * returns the list of atoms belonging to this group.  
632 +   */
633 +  vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
634 + #ifdef IS_MPI
635 +    return groupListRow_[cg1];
636 + #else
637 +    return groupList_[cg1];
638 + #endif
639 +  }
640 +
641 +  vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
642 + #ifdef IS_MPI
643 +    return groupListCol_[cg2];
644 + #else
645 +    return groupList_[cg2];
646 + #endif
647 +  }
648    
649    Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
650      Vector3d d;
# Line 284 | Line 686 | namespace OpenMD {
686      snap_->wrapVector(d);
687      return d;    
688    }
689 +
690 +  RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
691 + #ifdef IS_MPI
692 +    return massFactorsRow[atom1];
693 + #else
694 +    return massFactorsLocal[atom1];
695 + #endif
696 +  }
697 +
698 +  RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
699 + #ifdef IS_MPI
700 +    return massFactorsCol[atom2];
701 + #else
702 +    return massFactorsLocal[atom2];
703 + #endif
704 +
705 +  }
706      
707    Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
708      Vector3d d;
# Line 296 | Line 715 | namespace OpenMD {
715  
716      snap_->wrapVector(d);
717      return d;    
718 +  }
719 +
720 +  vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) {
721 +    return skipsForAtom[atom1];
722 +  }
723 +
724 +  /**
725 +   * There are a number of reasons to skip a pair or a
726 +   * particle. Mostly we do this to exclude atoms who are involved in
727 +   * short range interactions (bonds, bends, torsions), but we also
728 +   * need to exclude some overcounted interactions that result from
729 +   * the parallel decomposition.
730 +   */
731 +  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
732 +    int unique_id_1, unique_id_2;
733 +
734 + #ifdef IS_MPI
735 +    // in MPI, we have to look up the unique IDs for each atom
736 +    unique_id_1 = AtomRowToGlobal[atom1];
737 +    unique_id_2 = AtomColToGlobal[atom2];
738 +
739 +    // this situation should only arise in MPI simulations
740 +    if (unique_id_1 == unique_id_2) return true;
741 +    
742 +    // this prevents us from doing the pair on multiple processors
743 +    if (unique_id_1 < unique_id_2) {
744 +      if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
745 +    } else {
746 +      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
747 +    }
748 + #else
749 +    // in the normal loop, the atom numbers are unique
750 +    unique_id_1 = atom1;
751 +    unique_id_2 = atom2;
752 + #endif
753 +    
754 +    for (vector<int>::iterator i = skipsForAtom[atom1].begin();
755 +         i != skipsForAtom[atom1].end(); ++i) {
756 +      if ( (*i) == unique_id_2 ) return true;
757 +    }    
758 +
759    }
760  
761 +
762    void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
763   #ifdef IS_MPI
764      atomRowData.force[atom1] += fg;
# Line 312 | Line 773 | namespace OpenMD {
773   #else
774      snap_->atomData.force[atom2] += fg;
775   #endif
315
776    }
777  
778      // filling interaction blocks with pointers
779    InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) {    
320
780      InteractionData idat;
781 +
782   #ifdef IS_MPI
783 +    
784 +    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
785 +                             ff_->getAtomType(identsCol[atom2]) );
786 +
787 +    
788      if (storageLayout_ & DataStorage::dslAmat) {
789        idat.A1 = &(atomRowData.aMat[atom1]);
790        idat.A2 = &(atomColData.aMat[atom2]);
791      }
792 <
792 >    
793      if (storageLayout_ & DataStorage::dslElectroFrame) {
794        idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
795        idat.eFrame2 = &(atomColData.electroFrame[atom2]);
# Line 340 | Line 805 | namespace OpenMD {
805        idat.rho2 = &(atomColData.density[atom2]);
806      }
807  
808 +    if (storageLayout_ & DataStorage::dslFunctional) {
809 +      idat.frho1 = &(atomRowData.functional[atom1]);
810 +      idat.frho2 = &(atomColData.functional[atom2]);
811 +    }
812 +
813      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
814        idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
815        idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
816      }
817 +
818 +    if (storageLayout_ & DataStorage::dslParticlePot) {
819 +      idat.particlePot1 = &(atomRowData.particlePot[atom1]);
820 +      idat.particlePot2 = &(atomColData.particlePot[atom2]);
821 +    }
822 +
823 + #else
824 +
825 +    idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]),
826 +                             ff_->getAtomType(identsLocal[atom2]) );
827 +
828 +    if (storageLayout_ & DataStorage::dslAmat) {
829 +      idat.A1 = &(snap_->atomData.aMat[atom1]);
830 +      idat.A2 = &(snap_->atomData.aMat[atom2]);
831 +    }
832 +
833 +    if (storageLayout_ & DataStorage::dslElectroFrame) {
834 +      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
835 +      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
836 +    }
837 +
838 +    if (storageLayout_ & DataStorage::dslTorque) {
839 +      idat.t1 = &(snap_->atomData.torque[atom1]);
840 +      idat.t2 = &(snap_->atomData.torque[atom2]);
841 +    }
842 +
843 +    if (storageLayout_ & DataStorage::dslDensity) {
844 +      idat.rho1 = &(snap_->atomData.density[atom1]);
845 +      idat.rho2 = &(snap_->atomData.density[atom2]);
846 +    }
847 +
848 +    if (storageLayout_ & DataStorage::dslFunctional) {
849 +      idat.frho1 = &(snap_->atomData.functional[atom1]);
850 +      idat.frho2 = &(snap_->atomData.functional[atom2]);
851 +    }
852 +
853 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
854 +      idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
855 +      idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
856 +    }
857 +
858 +    if (storageLayout_ & DataStorage::dslParticlePot) {
859 +      idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
860 +      idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
861 +    }
862 +
863   #endif
864 +    return idat;
865 +  }
866 +
867 +  
868 +  void ForceMatrixDecomposition::unpackInteractionData(InteractionData idat, int atom1, int atom2) {    
869 + #ifdef IS_MPI
870 +    pot_row[atom1] += 0.5 *  *(idat.pot);
871 +    pot_col[atom2] += 0.5 *  *(idat.pot);
872 +
873 +    atomRowData.force[atom1] += *(idat.f1);
874 +    atomColData.force[atom2] -= *(idat.f1);
875 + #else
876 +    longRangePot_ += *(idat.pot);
877      
878 +    snap_->atomData.force[atom1] += *(idat.f1);
879 +    snap_->atomData.force[atom2] -= *(idat.f1);
880 + #endif
881 +
882    }
883 +
884 +
885    InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){
886 <  }
887 <  SelfData ForceMatrixDecomposition::fillSelfData(int atom1) {
886 >
887 >    InteractionData idat;
888 > #ifdef IS_MPI
889 >    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
890 >                             ff_->getAtomType(identsCol[atom2]) );
891 >
892 >    if (storageLayout_ & DataStorage::dslElectroFrame) {
893 >      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
894 >      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
895 >    }
896 >    if (storageLayout_ & DataStorage::dslTorque) {
897 >      idat.t1 = &(atomRowData.torque[atom1]);
898 >      idat.t2 = &(atomColData.torque[atom2]);
899 >    }
900 > #else
901 >    idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]),
902 >                             ff_->getAtomType(identsLocal[atom2]) );
903 >
904 >    if (storageLayout_ & DataStorage::dslElectroFrame) {
905 >      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
906 >      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
907 >    }
908 >    if (storageLayout_ & DataStorage::dslTorque) {
909 >      idat.t1 = &(snap_->atomData.torque[atom1]);
910 >      idat.t2 = &(snap_->atomData.torque[atom2]);
911 >    }
912 > #endif    
913    }
914  
915 <  
915 >  /*
916 >   * buildNeighborList
917 >   *
918 >   * first element of pair is row-indexed CutoffGroup
919 >   * second element of pair is column-indexed CutoffGroup
920 >   */
921 >  vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
922 >      
923 >    vector<pair<int, int> > neighborList;
924 >    groupCutoffs cuts;
925 > #ifdef IS_MPI
926 >    cellListRow_.clear();
927 >    cellListCol_.clear();
928 > #else
929 >    cellList_.clear();
930 > #endif
931 >
932 >    RealType rList_ = (largestRcut_ + skinThickness_);
933 >    RealType rl2 = rList_ * rList_;
934 >    Snapshot* snap_ = sman_->getCurrentSnapshot();
935 >    Mat3x3d Hmat = snap_->getHmat();
936 >    Vector3d Hx = Hmat.getColumn(0);
937 >    Vector3d Hy = Hmat.getColumn(1);
938 >    Vector3d Hz = Hmat.getColumn(2);
939 >
940 >    nCells_.x() = (int) ( Hx.length() )/ rList_;
941 >    nCells_.y() = (int) ( Hy.length() )/ rList_;
942 >    nCells_.z() = (int) ( Hz.length() )/ rList_;
943 >
944 >    Mat3x3d invHmat = snap_->getInvHmat();
945 >    Vector3d rs, scaled, dr;
946 >    Vector3i whichCell;
947 >    int cellIndex;
948 >    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
949 >
950 > #ifdef IS_MPI
951 >    cellListRow_.resize(nCtot);
952 >    cellListCol_.resize(nCtot);
953 > #else
954 >    cellList_.resize(nCtot);
955 > #endif
956 >
957 > #ifdef IS_MPI
958 >    for (int i = 0; i < nGroupsInRow_; i++) {
959 >      rs = cgRowData.position[i];
960 >      // scaled positions relative to the box vectors
961 >      scaled = invHmat * rs;
962 >      // wrap the vector back into the unit box by subtracting integer box
963 >      // numbers
964 >      for (int j = 0; j < 3; j++)
965 >        scaled[j] -= roundMe(scaled[j]);
966 >    
967 >      // find xyz-indices of cell that cutoffGroup is in.
968 >      whichCell.x() = nCells_.x() * scaled.x();
969 >      whichCell.y() = nCells_.y() * scaled.y();
970 >      whichCell.z() = nCells_.z() * scaled.z();
971 >
972 >      // find single index of this cell:
973 >      cellIndex = Vlinear(whichCell, nCells_);
974 >      // add this cutoff group to the list of groups in this cell;
975 >      cellListRow_[cellIndex].push_back(i);
976 >    }
977 >
978 >    for (int i = 0; i < nGroupsInCol_; i++) {
979 >      rs = cgColData.position[i];
980 >      // scaled positions relative to the box vectors
981 >      scaled = invHmat * rs;
982 >      // wrap the vector back into the unit box by subtracting integer box
983 >      // numbers
984 >      for (int j = 0; j < 3; j++)
985 >        scaled[j] -= roundMe(scaled[j]);
986 >
987 >      // find xyz-indices of cell that cutoffGroup is in.
988 >      whichCell.x() = nCells_.x() * scaled.x();
989 >      whichCell.y() = nCells_.y() * scaled.y();
990 >      whichCell.z() = nCells_.z() * scaled.z();
991 >
992 >      // find single index of this cell:
993 >      cellIndex = Vlinear(whichCell, nCells_);
994 >      // add this cutoff group to the list of groups in this cell;
995 >      cellListCol_[cellIndex].push_back(i);
996 >    }
997 > #else
998 >    for (int i = 0; i < nGroups_; i++) {
999 >      rs = snap_->cgData.position[i];
1000 >      // scaled positions relative to the box vectors
1001 >      scaled = invHmat * rs;
1002 >      // wrap the vector back into the unit box by subtracting integer box
1003 >      // numbers
1004 >      for (int j = 0; j < 3; j++)
1005 >        scaled[j] -= roundMe(scaled[j]);
1006 >
1007 >      // find xyz-indices of cell that cutoffGroup is in.
1008 >      whichCell.x() = nCells_.x() * scaled.x();
1009 >      whichCell.y() = nCells_.y() * scaled.y();
1010 >      whichCell.z() = nCells_.z() * scaled.z();
1011 >
1012 >      // find single index of this cell:
1013 >      cellIndex = Vlinear(whichCell, nCells_);
1014 >      // add this cutoff group to the list of groups in this cell;
1015 >      cellList_[cellIndex].push_back(i);
1016 >    }
1017 > #endif
1018 >
1019 >    for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1020 >      for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1021 >        for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1022 >          Vector3i m1v(m1x, m1y, m1z);
1023 >          int m1 = Vlinear(m1v, nCells_);
1024 >
1025 >          for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1026 >               os != cellOffsets_.end(); ++os) {
1027 >            
1028 >            Vector3i m2v = m1v + (*os);
1029 >            
1030 >            if (m2v.x() >= nCells_.x()) {
1031 >              m2v.x() = 0;          
1032 >            } else if (m2v.x() < 0) {
1033 >              m2v.x() = nCells_.x() - 1;
1034 >            }
1035 >            
1036 >            if (m2v.y() >= nCells_.y()) {
1037 >              m2v.y() = 0;          
1038 >            } else if (m2v.y() < 0) {
1039 >              m2v.y() = nCells_.y() - 1;
1040 >            }
1041 >            
1042 >            if (m2v.z() >= nCells_.z()) {
1043 >              m2v.z() = 0;          
1044 >            } else if (m2v.z() < 0) {
1045 >              m2v.z() = nCells_.z() - 1;
1046 >            }
1047 >            
1048 >            int m2 = Vlinear (m2v, nCells_);
1049 >
1050 > #ifdef IS_MPI
1051 >            for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1052 >                 j1 != cellListRow_[m1].end(); ++j1) {
1053 >              for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1054 >                   j2 != cellListCol_[m2].end(); ++j2) {
1055 >                              
1056 >                // Always do this if we're in different cells or if
1057 >                // we're in the same cell and the global index of the
1058 >                // j2 cutoff group is less than the j1 cutoff group
1059 >
1060 >                if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1061 >                  dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1062 >                  snap_->wrapVector(dr);
1063 >                  cuts = getGroupCutoffs( (*j1), (*j2) );
1064 >                  if (dr.lengthSquare() < cuts.third) {
1065 >                    neighborList.push_back(make_pair((*j1), (*j2)));
1066 >                  }
1067 >                }
1068 >              }
1069 >            }
1070 > #else
1071 >            for (vector<int>::iterator j1 = cellList_[m1].begin();
1072 >                 j1 != cellList_[m1].end(); ++j1) {
1073 >              for (vector<int>::iterator j2 = cellList_[m2].begin();
1074 >                   j2 != cellList_[m2].end(); ++j2) {
1075 >                              
1076 >                // Always do this if we're in different cells or if
1077 >                // we're in the same cell and the global index of the
1078 >                // j2 cutoff group is less than the j1 cutoff group
1079 >
1080 >                if (m2 != m1 || (*j2) < (*j1)) {
1081 >                  dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1082 >                  snap_->wrapVector(dr);
1083 >                  cuts = getGroupCutoffs( (*j1), (*j2) );
1084 >                  if (dr.lengthSquare() < cuts.third) {
1085 >                    neighborList.push_back(make_pair((*j1), (*j2)));
1086 >                  }
1087 >                }
1088 >              }
1089 >            }
1090 > #endif
1091 >          }
1092 >        }
1093 >      }
1094 >    }
1095 >
1096 >    // save the local cutoff group positions for the check that is
1097 >    // done on each loop:
1098 >    saved_CG_positions_.clear();
1099 >    for (int i = 0; i < nGroups_; i++)
1100 >      saved_CG_positions_.push_back(snap_->cgData.position[i]);
1101 >
1102 >    return neighborList;
1103 >  }
1104   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines