36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
#include "parallel/ForceMatrixDecomposition.hpp" |
43 |
|
#include "math/SquareMatrix3.hpp" |
48 |
|
using namespace std; |
49 |
|
namespace OpenMD { |
50 |
|
|
51 |
+ |
ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
52 |
+ |
|
53 |
+ |
// In a parallel computation, row and colum scans must visit all |
54 |
+ |
// surrounding cells (not just the 14 upper triangular blocks that |
55 |
+ |
// are used when the processor can see all pairs) |
56 |
+ |
#ifdef IS_MPI |
57 |
+ |
cellOffsets_.clear(); |
58 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
59 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
60 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
61 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
62 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
63 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
64 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
65 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
66 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
68 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
69 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
70 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
71 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
72 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
73 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
74 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
75 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
76 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
77 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
78 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
79 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
80 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
81 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
82 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
83 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
84 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
85 |
+ |
#endif |
86 |
+ |
} |
87 |
+ |
|
88 |
+ |
|
89 |
|
/** |
90 |
|
* distributeInitialData is essentially a copy of the older fortran |
91 |
|
* SimulationSetup |
92 |
|
*/ |
54 |
– |
|
93 |
|
void ForceMatrixDecomposition::distributeInitialData() { |
94 |
|
snap_ = sman_->getCurrentSnapshot(); |
95 |
|
storageLayout_ = sman_->getStorageLayout(); |
96 |
|
ff_ = info_->getForceField(); |
97 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
98 |
< |
|
98 |
> |
|
99 |
|
nGroups_ = info_->getNLocalCutoffGroups(); |
100 |
|
// gather the information for atomtype IDs (atids): |
101 |
< |
identsLocal = info_->getIdentArray(); |
101 |
> |
idents = info_->getIdentArray(); |
102 |
|
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
103 |
|
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
104 |
|
vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
67 |
– |
vector<RealType> massFactorsLocal = info_->getMassFactors(); |
68 |
– |
PairList excludes = info_->getExcludedInteractions(); |
69 |
– |
PairList oneTwo = info_->getOneTwoInteractions(); |
70 |
– |
PairList oneThree = info_->getOneThreeInteractions(); |
71 |
– |
PairList oneFour = info_->getOneFourInteractions(); |
105 |
|
|
106 |
+ |
massFactors = info_->getMassFactors(); |
107 |
+ |
|
108 |
+ |
PairList* excludes = info_->getExcludedInteractions(); |
109 |
+ |
PairList* oneTwo = info_->getOneTwoInteractions(); |
110 |
+ |
PairList* oneThree = info_->getOneThreeInteractions(); |
111 |
+ |
PairList* oneFour = info_->getOneFourInteractions(); |
112 |
+ |
|
113 |
|
#ifdef IS_MPI |
114 |
|
|
115 |
< |
AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
116 |
< |
AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
77 |
< |
AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
78 |
< |
AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
79 |
< |
AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
115 |
> |
MPI::Intracomm row = rowComm.getComm(); |
116 |
> |
MPI::Intracomm col = colComm.getComm(); |
117 |
|
|
118 |
< |
AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
119 |
< |
AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
120 |
< |
AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
121 |
< |
AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
122 |
< |
AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
118 |
> |
AtomPlanIntRow = new Plan<int>(row, nLocal_); |
119 |
> |
AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
120 |
> |
AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
121 |
> |
AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
122 |
> |
AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
123 |
|
|
124 |
< |
cgCommIntRow = new Communicator<Row,int>(nGroups_); |
125 |
< |
cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
126 |
< |
cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
127 |
< |
cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
124 |
> |
AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
125 |
> |
AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
126 |
> |
AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
127 |
> |
AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
128 |
> |
AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
129 |
|
|
130 |
< |
nAtomsInRow_ = AtomCommIntRow->getSize(); |
131 |
< |
nAtomsInCol_ = AtomCommIntColumn->getSize(); |
132 |
< |
nGroupsInRow_ = cgCommIntRow->getSize(); |
133 |
< |
nGroupsInCol_ = cgCommIntColumn->getSize(); |
130 |
> |
cgPlanIntRow = new Plan<int>(row, nGroups_); |
131 |
> |
cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
132 |
> |
cgPlanIntColumn = new Plan<int>(col, nGroups_); |
133 |
> |
cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
134 |
|
|
135 |
+ |
nAtomsInRow_ = AtomPlanIntRow->getSize(); |
136 |
+ |
nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
137 |
+ |
nGroupsInRow_ = cgPlanIntRow->getSize(); |
138 |
+ |
nGroupsInCol_ = cgPlanIntColumn->getSize(); |
139 |
+ |
|
140 |
|
// Modify the data storage objects with the correct layouts and sizes: |
141 |
|
atomRowData.resize(nAtomsInRow_); |
142 |
|
atomRowData.setStorageLayout(storageLayout_); |
150 |
|
identsRow.resize(nAtomsInRow_); |
151 |
|
identsCol.resize(nAtomsInCol_); |
152 |
|
|
153 |
< |
AtomCommIntRow->gather(identsLocal, identsRow); |
154 |
< |
AtomCommIntColumn->gather(identsLocal, identsCol); |
153 |
> |
AtomPlanIntRow->gather(idents, identsRow); |
154 |
> |
AtomPlanIntColumn->gather(idents, identsCol); |
155 |
|
|
156 |
< |
AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
157 |
< |
AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
158 |
< |
|
116 |
< |
cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
117 |
< |
cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
156 |
> |
// allocate memory for the parallel objects |
157 |
> |
atypesRow.resize(nAtomsInRow_); |
158 |
> |
atypesCol.resize(nAtomsInCol_); |
159 |
|
|
160 |
< |
AtomCommRealRow->gather(massFactorsLocal, massFactorsRow); |
161 |
< |
AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol); |
160 |
> |
for (int i = 0; i < nAtomsInRow_; i++) |
161 |
> |
atypesRow[i] = ff_->getAtomType(identsRow[i]); |
162 |
> |
for (int i = 0; i < nAtomsInCol_; i++) |
163 |
> |
atypesCol[i] = ff_->getAtomType(identsCol[i]); |
164 |
|
|
165 |
+ |
pot_row.resize(nAtomsInRow_); |
166 |
+ |
pot_col.resize(nAtomsInCol_); |
167 |
+ |
|
168 |
+ |
AtomRowToGlobal.resize(nAtomsInRow_); |
169 |
+ |
AtomColToGlobal.resize(nAtomsInCol_); |
170 |
+ |
AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
171 |
+ |
AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
172 |
+ |
|
173 |
+ |
cgRowToGlobal.resize(nGroupsInRow_); |
174 |
+ |
cgColToGlobal.resize(nGroupsInCol_); |
175 |
+ |
cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
176 |
+ |
cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
177 |
+ |
|
178 |
+ |
massFactorsRow.resize(nAtomsInRow_); |
179 |
+ |
massFactorsCol.resize(nAtomsInCol_); |
180 |
+ |
AtomPlanRealRow->gather(massFactors, massFactorsRow); |
181 |
+ |
AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
182 |
+ |
|
183 |
|
groupListRow_.clear(); |
184 |
|
groupListRow_.resize(nGroupsInRow_); |
185 |
|
for (int i = 0; i < nGroupsInRow_; i++) { |
202 |
|
} |
203 |
|
} |
204 |
|
|
205 |
< |
skipsForRowAtom.clear(); |
206 |
< |
skipsForRowAtom.resize(nAtomsInRow_); |
205 |
> |
excludesForAtom.clear(); |
206 |
> |
excludesForAtom.resize(nAtomsInRow_); |
207 |
> |
toposForAtom.clear(); |
208 |
> |
toposForAtom.resize(nAtomsInRow_); |
209 |
> |
topoDist.clear(); |
210 |
> |
topoDist.resize(nAtomsInRow_); |
211 |
|
for (int i = 0; i < nAtomsInRow_; i++) { |
212 |
|
int iglob = AtomRowToGlobal[i]; |
213 |
+ |
|
214 |
|
for (int j = 0; j < nAtomsInCol_; j++) { |
215 |
< |
int jglob = AtomColToGlobal[j]; |
216 |
< |
if (excludes.hasPair(iglob, jglob)) |
217 |
< |
skipsForRowAtom[i].push_back(j); |
215 |
> |
int jglob = AtomColToGlobal[j]; |
216 |
> |
|
217 |
> |
if (excludes->hasPair(iglob, jglob)) |
218 |
> |
excludesForAtom[i].push_back(j); |
219 |
> |
|
220 |
> |
if (oneTwo->hasPair(iglob, jglob)) { |
221 |
> |
toposForAtom[i].push_back(j); |
222 |
> |
topoDist[i].push_back(1); |
223 |
> |
} else { |
224 |
> |
if (oneThree->hasPair(iglob, jglob)) { |
225 |
> |
toposForAtom[i].push_back(j); |
226 |
> |
topoDist[i].push_back(2); |
227 |
> |
} else { |
228 |
> |
if (oneFour->hasPair(iglob, jglob)) { |
229 |
> |
toposForAtom[i].push_back(j); |
230 |
> |
topoDist[i].push_back(3); |
231 |
> |
} |
232 |
> |
} |
233 |
> |
} |
234 |
|
} |
235 |
|
} |
236 |
|
|
237 |
< |
toposForRowAtom.clear(); |
238 |
< |
toposForRowAtom.resize(nAtomsInRow_); |
239 |
< |
for (int i = 0; i < nAtomsInRow_; i++) { |
240 |
< |
int iglob = AtomRowToGlobal[i]; |
241 |
< |
int nTopos = 0; |
242 |
< |
for (int j = 0; j < nAtomsInCol_; j++) { |
243 |
< |
int jglob = AtomColToGlobal[j]; |
244 |
< |
if (oneTwo.hasPair(iglob, jglob)) { |
245 |
< |
toposForRowAtom[i].push_back(j); |
246 |
< |
topoDistRow[i][nTopos] = 1; |
247 |
< |
nTopos++; |
237 |
> |
#else |
238 |
> |
excludesForAtom.clear(); |
239 |
> |
excludesForAtom.resize(nLocal_); |
240 |
> |
toposForAtom.clear(); |
241 |
> |
toposForAtom.resize(nLocal_); |
242 |
> |
topoDist.clear(); |
243 |
> |
topoDist.resize(nLocal_); |
244 |
> |
|
245 |
> |
for (int i = 0; i < nLocal_; i++) { |
246 |
> |
int iglob = AtomLocalToGlobal[i]; |
247 |
> |
|
248 |
> |
for (int j = 0; j < nLocal_; j++) { |
249 |
> |
int jglob = AtomLocalToGlobal[j]; |
250 |
> |
|
251 |
> |
if (excludes->hasPair(iglob, jglob)) |
252 |
> |
excludesForAtom[i].push_back(j); |
253 |
> |
|
254 |
> |
if (oneTwo->hasPair(iglob, jglob)) { |
255 |
> |
toposForAtom[i].push_back(j); |
256 |
> |
topoDist[i].push_back(1); |
257 |
> |
} else { |
258 |
> |
if (oneThree->hasPair(iglob, jglob)) { |
259 |
> |
toposForAtom[i].push_back(j); |
260 |
> |
topoDist[i].push_back(2); |
261 |
> |
} else { |
262 |
> |
if (oneFour->hasPair(iglob, jglob)) { |
263 |
> |
toposForAtom[i].push_back(j); |
264 |
> |
topoDist[i].push_back(3); |
265 |
> |
} |
266 |
> |
} |
267 |
|
} |
167 |
– |
if (oneThree.hasPair(iglob, jglob)) { |
168 |
– |
toposForRowAtom[i].push_back(j); |
169 |
– |
topoDistRow[i][nTopos] = 2; |
170 |
– |
nTopos++; |
171 |
– |
} |
172 |
– |
if (oneFour.hasPair(iglob, jglob)) { |
173 |
– |
toposForRowAtom[i].push_back(j); |
174 |
– |
topoDistRow[i][nTopos] = 3; |
175 |
– |
nTopos++; |
176 |
– |
} |
268 |
|
} |
269 |
|
} |
179 |
– |
|
270 |
|
#endif |
271 |
+ |
|
272 |
+ |
// allocate memory for the parallel objects |
273 |
+ |
atypesLocal.resize(nLocal_); |
274 |
+ |
|
275 |
+ |
for (int i = 0; i < nLocal_; i++) |
276 |
+ |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
277 |
+ |
|
278 |
|
groupList_.clear(); |
279 |
|
groupList_.resize(nGroups_); |
280 |
|
for (int i = 0; i < nGroups_; i++) { |
283 |
|
int aid = AtomLocalToGlobal[j]; |
284 |
|
if (globalGroupMembership[aid] == gid) { |
285 |
|
groupList_[i].push_back(j); |
189 |
– |
|
286 |
|
} |
287 |
|
} |
288 |
|
} |
289 |
|
|
194 |
– |
skipsForLocalAtom.clear(); |
195 |
– |
skipsForLocalAtom.resize(nLocal_); |
290 |
|
|
291 |
< |
for (int i = 0; i < nLocal_; i++) { |
198 |
< |
int iglob = AtomLocalToGlobal[i]; |
199 |
< |
for (int j = 0; j < nLocal_; j++) { |
200 |
< |
int jglob = AtomLocalToGlobal[j]; |
201 |
< |
if (excludes.hasPair(iglob, jglob)) |
202 |
< |
skipsForLocalAtom[i].push_back(j); |
203 |
< |
} |
204 |
< |
} |
205 |
< |
toposForLocalAtom.clear(); |
206 |
< |
toposForLocalAtom.resize(nLocal_); |
207 |
< |
for (int i = 0; i < nLocal_; i++) { |
208 |
< |
int iglob = AtomLocalToGlobal[i]; |
209 |
< |
int nTopos = 0; |
210 |
< |
for (int j = 0; j < nLocal_; j++) { |
211 |
< |
int jglob = AtomLocalToGlobal[j]; |
212 |
< |
if (oneTwo.hasPair(iglob, jglob)) { |
213 |
< |
toposForLocalAtom[i].push_back(j); |
214 |
< |
topoDistLocal[i][nTopos] = 1; |
215 |
< |
nTopos++; |
216 |
< |
} |
217 |
< |
if (oneThree.hasPair(iglob, jglob)) { |
218 |
< |
toposForLocalAtom[i].push_back(j); |
219 |
< |
topoDistLocal[i][nTopos] = 2; |
220 |
< |
nTopos++; |
221 |
< |
} |
222 |
< |
if (oneFour.hasPair(iglob, jglob)) { |
223 |
< |
toposForLocalAtom[i].push_back(j); |
224 |
< |
topoDistLocal[i][nTopos] = 3; |
225 |
< |
nTopos++; |
226 |
< |
} |
227 |
< |
} |
228 |
< |
} |
291 |
> |
createGtypeCutoffMap(); |
292 |
|
|
293 |
|
} |
294 |
|
|
295 |
|
void ForceMatrixDecomposition::createGtypeCutoffMap() { |
296 |
< |
|
296 |
> |
|
297 |
|
RealType tol = 1e-6; |
298 |
+ |
largestRcut_ = 0.0; |
299 |
|
RealType rc; |
300 |
|
int atid; |
301 |
|
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
302 |
< |
vector<RealType> atypeCutoff; |
303 |
< |
atypeCutoff.resize( atypes.size() ); |
304 |
< |
|
305 |
< |
for (set<AtomType*>::iterator at = atypes.begin(); at != atypes.end(); ++at){ |
306 |
< |
rc = interactionMan_->getSuggestedCutoffRadius(*at); |
302 |
> |
|
303 |
> |
map<int, RealType> atypeCutoff; |
304 |
> |
|
305 |
> |
for (set<AtomType*>::iterator at = atypes.begin(); |
306 |
> |
at != atypes.end(); ++at){ |
307 |
|
atid = (*at)->getIdent(); |
308 |
< |
atypeCutoff[atid] = rc; |
308 |
> |
if (userChoseCutoff_) |
309 |
> |
atypeCutoff[atid] = userCutoff_; |
310 |
> |
else |
311 |
> |
atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
312 |
|
} |
313 |
< |
|
313 |
> |
|
314 |
|
vector<RealType> gTypeCutoffs; |
248 |
– |
|
315 |
|
// first we do a single loop over the cutoff groups to find the |
316 |
|
// largest cutoff for any atypes present in this group. |
317 |
|
#ifdef IS_MPI |
318 |
|
vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); |
319 |
+ |
groupRowToGtype.resize(nGroupsInRow_); |
320 |
|
for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { |
321 |
|
vector<int> atomListRow = getAtomsInGroupRow(cg1); |
322 |
|
for (vector<int>::iterator ia = atomListRow.begin(); |
342 |
|
|
343 |
|
} |
344 |
|
vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); |
345 |
+ |
groupColToGtype.resize(nGroupsInCol_); |
346 |
|
for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { |
347 |
|
vector<int> atomListCol = getAtomsInGroupColumn(cg2); |
348 |
|
for (vector<int>::iterator jb = atomListCol.begin(); |
366 |
|
} |
367 |
|
} |
368 |
|
#else |
369 |
+ |
|
370 |
|
vector<RealType> groupCutoff(nGroups_, 0.0); |
371 |
+ |
groupToGtype.resize(nGroups_); |
372 |
|
for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
373 |
|
groupCutoff[cg1] = 0.0; |
374 |
|
vector<int> atomList = getAtomsInGroupRow(cg1); |
375 |
|
for (vector<int>::iterator ia = atomList.begin(); |
376 |
|
ia != atomList.end(); ++ia) { |
377 |
|
int atom1 = (*ia); |
378 |
< |
atid = identsLocal[atom1]; |
379 |
< |
if (atypeCutoff[atid] > groupCutoff[cg1]) { |
378 |
> |
atid = idents[atom1]; |
379 |
> |
if (atypeCutoff[atid] > groupCutoff[cg1]) |
380 |
|
groupCutoff[cg1] = atypeCutoff[atid]; |
311 |
– |
} |
381 |
|
} |
382 |
< |
|
382 |
> |
|
383 |
|
bool gTypeFound = false; |
384 |
|
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
385 |
|
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
387 |
|
gTypeFound = true; |
388 |
|
} |
389 |
|
} |
390 |
< |
if (!gTypeFound) { |
390 |
> |
if (!gTypeFound) { |
391 |
|
gTypeCutoffs.push_back( groupCutoff[cg1] ); |
392 |
|
groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
393 |
|
} |
396 |
|
|
397 |
|
// Now we find the maximum group cutoff value present in the simulation |
398 |
|
|
399 |
< |
vector<RealType>::iterator groupMaxLoc = max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); |
400 |
< |
RealType groupMax = *groupMaxLoc; |
399 |
> |
RealType groupMax = *max_element(gTypeCutoffs.begin(), |
400 |
> |
gTypeCutoffs.end()); |
401 |
|
|
402 |
|
#ifdef IS_MPI |
403 |
< |
MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); |
403 |
> |
MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, |
404 |
> |
MPI::MAX); |
405 |
|
#endif |
406 |
|
|
407 |
|
RealType tradRcut = groupMax; |
408 |
|
|
409 |
|
for (int i = 0; i < gTypeCutoffs.size(); i++) { |
410 |
< |
for (int j = 0; j < gTypeCutoffs.size(); j++) { |
341 |
< |
|
410 |
> |
for (int j = 0; j < gTypeCutoffs.size(); j++) { |
411 |
|
RealType thisRcut; |
412 |
|
switch(cutoffPolicy_) { |
413 |
|
case TRADITIONAL: |
414 |
|
thisRcut = tradRcut; |
415 |
+ |
break; |
416 |
|
case MIX: |
417 |
|
thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); |
418 |
+ |
break; |
419 |
|
case MAX: |
420 |
|
thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); |
421 |
+ |
break; |
422 |
|
default: |
423 |
|
sprintf(painCave.errMsg, |
424 |
|
"ForceMatrixDecomposition::createGtypeCutoffMap " |
425 |
|
"hit an unknown cutoff policy!\n"); |
426 |
|
painCave.severity = OPENMD_ERROR; |
427 |
|
painCave.isFatal = 1; |
428 |
< |
simError(); |
428 |
> |
simError(); |
429 |
> |
break; |
430 |
|
} |
431 |
|
|
432 |
|
pair<int,int> key = make_pair(i,j); |
433 |
|
gTypeCutoffMap[key].first = thisRcut; |
361 |
– |
|
434 |
|
if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
363 |
– |
|
435 |
|
gTypeCutoffMap[key].second = thisRcut*thisRcut; |
365 |
– |
|
436 |
|
gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
367 |
– |
|
437 |
|
// sanity check |
438 |
|
|
439 |
|
if (userChoseCutoff_) { |
440 |
|
if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
441 |
|
sprintf(painCave.errMsg, |
442 |
|
"ForceMatrixDecomposition::createGtypeCutoffMap " |
443 |
< |
"user-specified rCut does not match computed group Cutoff\n"); |
443 |
> |
"user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
444 |
|
painCave.severity = OPENMD_ERROR; |
445 |
|
painCave.isFatal = 1; |
446 |
|
simError(); |
452 |
|
|
453 |
|
|
454 |
|
groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
455 |
< |
int i, j; |
387 |
< |
|
455 |
> |
int i, j; |
456 |
|
#ifdef IS_MPI |
457 |
|
i = groupRowToGtype[cg1]; |
458 |
|
j = groupColToGtype[cg2]; |
459 |
|
#else |
460 |
|
i = groupToGtype[cg1]; |
461 |
|
j = groupToGtype[cg2]; |
462 |
< |
#endif |
395 |
< |
|
462 |
> |
#endif |
463 |
|
return gTypeCutoffMap[make_pair(i,j)]; |
464 |
|
} |
465 |
|
|
466 |
+ |
int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
467 |
+ |
for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
468 |
+ |
if (toposForAtom[atom1][j] == atom2) |
469 |
+ |
return topoDist[atom1][j]; |
470 |
+ |
} |
471 |
+ |
return 0; |
472 |
+ |
} |
473 |
|
|
474 |
|
void ForceMatrixDecomposition::zeroWorkArrays() { |
475 |
+ |
pairwisePot = 0.0; |
476 |
+ |
embeddingPot = 0.0; |
477 |
|
|
402 |
– |
for (int j = 0; j < N_INTERACTION_FAMILIES; j++) { |
403 |
– |
longRangePot_[j] = 0.0; |
404 |
– |
} |
405 |
– |
|
478 |
|
#ifdef IS_MPI |
479 |
|
if (storageLayout_ & DataStorage::dslForce) { |
480 |
|
fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); |
490 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
491 |
|
|
492 |
|
fill(pot_col.begin(), pot_col.end(), |
493 |
< |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
422 |
< |
|
423 |
< |
pot_local = Vector<RealType, N_INTERACTION_FAMILIES>(0.0); |
493 |
> |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
494 |
|
|
495 |
|
if (storageLayout_ & DataStorage::dslParticlePot) { |
496 |
< |
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); |
497 |
< |
fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); |
496 |
> |
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
497 |
> |
0.0); |
498 |
> |
fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), |
499 |
> |
0.0); |
500 |
|
} |
501 |
|
|
502 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
505 |
|
} |
506 |
|
|
507 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
508 |
< |
fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); |
509 |
< |
fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); |
508 |
> |
fill(atomRowData.functional.begin(), atomRowData.functional.end(), |
509 |
> |
0.0); |
510 |
> |
fill(atomColData.functional.begin(), atomColData.functional.end(), |
511 |
> |
0.0); |
512 |
|
} |
513 |
|
|
514 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
518 |
|
atomColData.functionalDerivative.end(), 0.0); |
519 |
|
} |
520 |
|
|
521 |
< |
#else |
522 |
< |
|
521 |
> |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
522 |
> |
fill(atomRowData.skippedCharge.begin(), |
523 |
> |
atomRowData.skippedCharge.end(), 0.0); |
524 |
> |
fill(atomColData.skippedCharge.begin(), |
525 |
> |
atomColData.skippedCharge.end(), 0.0); |
526 |
> |
} |
527 |
> |
|
528 |
> |
#endif |
529 |
> |
// even in parallel, we need to zero out the local arrays: |
530 |
> |
|
531 |
|
if (storageLayout_ & DataStorage::dslParticlePot) { |
532 |
|
fill(snap_->atomData.particlePot.begin(), |
533 |
|
snap_->atomData.particlePot.end(), 0.0); |
537 |
|
fill(snap_->atomData.density.begin(), |
538 |
|
snap_->atomData.density.end(), 0.0); |
539 |
|
} |
540 |
+ |
|
541 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
542 |
|
fill(snap_->atomData.functional.begin(), |
543 |
|
snap_->atomData.functional.end(), 0.0); |
544 |
|
} |
545 |
+ |
|
546 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
547 |
|
fill(snap_->atomData.functionalDerivative.begin(), |
548 |
|
snap_->atomData.functionalDerivative.end(), 0.0); |
549 |
|
} |
550 |
< |
#endif |
551 |
< |
|
550 |
> |
|
551 |
> |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
552 |
> |
fill(snap_->atomData.skippedCharge.begin(), |
553 |
> |
snap_->atomData.skippedCharge.end(), 0.0); |
554 |
> |
} |
555 |
|
} |
556 |
|
|
557 |
|
|
561 |
|
#ifdef IS_MPI |
562 |
|
|
563 |
|
// gather up the atomic positions |
564 |
< |
AtomCommVectorRow->gather(snap_->atomData.position, |
564 |
> |
AtomPlanVectorRow->gather(snap_->atomData.position, |
565 |
|
atomRowData.position); |
566 |
< |
AtomCommVectorColumn->gather(snap_->atomData.position, |
566 |
> |
AtomPlanVectorColumn->gather(snap_->atomData.position, |
567 |
|
atomColData.position); |
568 |
|
|
569 |
|
// gather up the cutoff group positions |
570 |
< |
cgCommVectorRow->gather(snap_->cgData.position, |
570 |
> |
|
571 |
> |
cgPlanVectorRow->gather(snap_->cgData.position, |
572 |
|
cgRowData.position); |
573 |
< |
cgCommVectorColumn->gather(snap_->cgData.position, |
573 |
> |
|
574 |
> |
cgPlanVectorColumn->gather(snap_->cgData.position, |
575 |
|
cgColData.position); |
576 |
+ |
|
577 |
|
|
578 |
|
// if needed, gather the atomic rotation matrices |
579 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
580 |
< |
AtomCommMatrixRow->gather(snap_->atomData.aMat, |
580 |
> |
AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
581 |
|
atomRowData.aMat); |
582 |
< |
AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
582 |
> |
AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
583 |
|
atomColData.aMat); |
584 |
|
} |
585 |
|
|
586 |
|
// if needed, gather the atomic eletrostatic frames |
587 |
|
if (storageLayout_ & DataStorage::dslElectroFrame) { |
588 |
< |
AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
588 |
> |
AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
589 |
|
atomRowData.electroFrame); |
590 |
< |
AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
590 |
> |
AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
591 |
|
atomColData.electroFrame); |
592 |
|
} |
593 |
+ |
|
594 |
|
#endif |
595 |
|
} |
596 |
|
|
604 |
|
|
605 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
606 |
|
|
607 |
< |
AtomCommRealRow->scatter(atomRowData.density, |
607 |
> |
AtomPlanRealRow->scatter(atomRowData.density, |
608 |
|
snap_->atomData.density); |
609 |
|
|
610 |
|
int n = snap_->atomData.density.size(); |
611 |
|
vector<RealType> rho_tmp(n, 0.0); |
612 |
< |
AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
612 |
> |
AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
613 |
|
for (int i = 0; i < n; i++) |
614 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
615 |
|
} |
625 |
|
storageLayout_ = sman_->getStorageLayout(); |
626 |
|
#ifdef IS_MPI |
627 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
628 |
< |
AtomCommRealRow->gather(snap_->atomData.functional, |
628 |
> |
AtomPlanRealRow->gather(snap_->atomData.functional, |
629 |
|
atomRowData.functional); |
630 |
< |
AtomCommRealColumn->gather(snap_->atomData.functional, |
630 |
> |
AtomPlanRealColumn->gather(snap_->atomData.functional, |
631 |
|
atomColData.functional); |
632 |
|
} |
633 |
|
|
634 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
635 |
< |
AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
635 |
> |
AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
636 |
|
atomRowData.functionalDerivative); |
637 |
< |
AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
637 |
> |
AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
638 |
|
atomColData.functionalDerivative); |
639 |
|
} |
640 |
|
#endif |
648 |
|
int n = snap_->atomData.force.size(); |
649 |
|
vector<Vector3d> frc_tmp(n, V3Zero); |
650 |
|
|
651 |
< |
AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
651 |
> |
AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
652 |
|
for (int i = 0; i < n; i++) { |
653 |
|
snap_->atomData.force[i] += frc_tmp[i]; |
654 |
|
frc_tmp[i] = 0.0; |
655 |
|
} |
656 |
|
|
657 |
< |
AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
658 |
< |
for (int i = 0; i < n; i++) |
657 |
> |
AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
658 |
> |
for (int i = 0; i < n; i++) { |
659 |
|
snap_->atomData.force[i] += frc_tmp[i]; |
660 |
< |
|
661 |
< |
|
660 |
> |
} |
661 |
> |
|
662 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
663 |
|
|
664 |
< |
int nt = snap_->atomData.force.size(); |
664 |
> |
int nt = snap_->atomData.torque.size(); |
665 |
|
vector<Vector3d> trq_tmp(nt, V3Zero); |
666 |
|
|
667 |
< |
AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
668 |
< |
for (int i = 0; i < n; i++) { |
667 |
> |
AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
668 |
> |
for (int i = 0; i < nt; i++) { |
669 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
670 |
|
trq_tmp[i] = 0.0; |
671 |
|
} |
672 |
|
|
673 |
< |
AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
674 |
< |
for (int i = 0; i < n; i++) |
673 |
> |
AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
674 |
> |
for (int i = 0; i < nt; i++) |
675 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
676 |
|
} |
677 |
+ |
|
678 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
679 |
+ |
|
680 |
+ |
int ns = snap_->atomData.skippedCharge.size(); |
681 |
+ |
vector<RealType> skch_tmp(ns, 0.0); |
682 |
+ |
|
683 |
+ |
AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
684 |
+ |
for (int i = 0; i < ns; i++) { |
685 |
+ |
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
686 |
+ |
skch_tmp[i] = 0.0; |
687 |
+ |
} |
688 |
+ |
|
689 |
+ |
AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
690 |
+ |
for (int i = 0; i < ns; i++) |
691 |
+ |
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
692 |
+ |
|
693 |
+ |
} |
694 |
|
|
695 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
696 |
|
|
699 |
|
|
700 |
|
// scatter/gather pot_row into the members of my column |
701 |
|
|
702 |
< |
AtomCommPotRow->scatter(pot_row, pot_temp); |
702 |
> |
AtomPlanPotRow->scatter(pot_row, pot_temp); |
703 |
|
|
704 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
705 |
< |
pot_local += pot_temp[ii]; |
705 |
> |
pairwisePot += pot_temp[ii]; |
706 |
|
|
707 |
|
fill(pot_temp.begin(), pot_temp.end(), |
708 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
709 |
|
|
710 |
< |
AtomCommPotColumn->scatter(pot_col, pot_temp); |
710 |
> |
AtomPlanPotColumn->scatter(pot_col, pot_temp); |
711 |
|
|
712 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
713 |
< |
pot_local += pot_temp[ii]; |
713 |
> |
pairwisePot += pot_temp[ii]; |
714 |
|
|
715 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
716 |
+ |
RealType ploc1 = pairwisePot[ii]; |
717 |
+ |
RealType ploc2 = 0.0; |
718 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
719 |
+ |
pairwisePot[ii] = ploc2; |
720 |
+ |
} |
721 |
+ |
|
722 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
723 |
+ |
RealType ploc1 = embeddingPot[ii]; |
724 |
+ |
RealType ploc2 = 0.0; |
725 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
726 |
+ |
embeddingPot[ii] = ploc2; |
727 |
+ |
} |
728 |
+ |
|
729 |
|
#endif |
730 |
+ |
|
731 |
|
} |
732 |
|
|
733 |
|
int ForceMatrixDecomposition::getNAtomsInRow() { |
802 |
|
#ifdef IS_MPI |
803 |
|
return massFactorsRow[atom1]; |
804 |
|
#else |
805 |
< |
return massFactorsLocal[atom1]; |
805 |
> |
return massFactors[atom1]; |
806 |
|
#endif |
807 |
|
} |
808 |
|
|
810 |
|
#ifdef IS_MPI |
811 |
|
return massFactorsCol[atom2]; |
812 |
|
#else |
813 |
< |
return massFactorsLocal[atom2]; |
813 |
> |
return massFactors[atom2]; |
814 |
|
#endif |
815 |
|
|
816 |
|
} |
828 |
|
return d; |
829 |
|
} |
830 |
|
|
831 |
< |
vector<int> ForceMatrixDecomposition::getSkipsForRowAtom(int atom1) { |
832 |
< |
#ifdef IS_MPI |
710 |
< |
return skipsForRowAtom[atom1]; |
711 |
< |
#else |
712 |
< |
return skipsForLocalAtom[atom1]; |
713 |
< |
#endif |
831 |
> |
vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
832 |
> |
return excludesForAtom[atom1]; |
833 |
|
} |
834 |
|
|
835 |
|
/** |
836 |
< |
* There are a number of reasons to skip a pair or a |
718 |
< |
* particle. Mostly we do this to exclude atoms who are involved in |
719 |
< |
* short range interactions (bonds, bends, torsions), but we also |
720 |
< |
* need to exclude some overcounted interactions that result from |
836 |
> |
* We need to exclude some overcounted interactions that result from |
837 |
|
* the parallel decomposition. |
838 |
|
*/ |
839 |
|
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
840 |
|
int unique_id_1, unique_id_2; |
841 |
< |
|
841 |
> |
|
842 |
|
#ifdef IS_MPI |
843 |
|
// in MPI, we have to look up the unique IDs for each atom |
844 |
|
unique_id_1 = AtomRowToGlobal[atom1]; |
845 |
|
unique_id_2 = AtomColToGlobal[atom2]; |
846 |
+ |
#else |
847 |
+ |
unique_id_1 = AtomLocalToGlobal[atom1]; |
848 |
+ |
unique_id_2 = AtomLocalToGlobal[atom2]; |
849 |
+ |
#endif |
850 |
|
|
731 |
– |
// this situation should only arise in MPI simulations |
851 |
|
if (unique_id_1 == unique_id_2) return true; |
852 |
< |
|
852 |
> |
|
853 |
> |
#ifdef IS_MPI |
854 |
|
// this prevents us from doing the pair on multiple processors |
855 |
|
if (unique_id_1 < unique_id_2) { |
856 |
|
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
857 |
|
} else { |
858 |
< |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
858 |
> |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
859 |
|
} |
740 |
– |
#else |
741 |
– |
// in the normal loop, the atom numbers are unique |
742 |
– |
unique_id_1 = atom1; |
743 |
– |
unique_id_2 = atom2; |
860 |
|
#endif |
861 |
|
|
862 |
< |
#ifdef IS_MPI |
747 |
< |
for (vector<int>::iterator i = skipsForRowAtom[atom1].begin(); |
748 |
< |
i != skipsForRowAtom[atom1].end(); ++i) { |
749 |
< |
if ( (*i) == unique_id_2 ) return true; |
750 |
< |
} |
751 |
< |
#else |
752 |
< |
for (vector<int>::iterator i = skipsForLocalAtom[atom1].begin(); |
753 |
< |
i != skipsForLocalAtom[atom1].end(); ++i) { |
754 |
< |
if ( (*i) == unique_id_2 ) return true; |
755 |
< |
} |
756 |
< |
#endif |
862 |
> |
return false; |
863 |
|
} |
864 |
|
|
865 |
< |
int ForceMatrixDecomposition::getTopoDistance(int atom1, int atom2) { |
865 |
> |
/** |
866 |
> |
* We need to handle the interactions for atoms who are involved in |
867 |
> |
* the same rigid body as well as some short range interactions |
868 |
> |
* (bonds, bends, torsions) differently from other interactions. |
869 |
> |
* We'll still visit the pairwise routines, but with a flag that |
870 |
> |
* tells those routines to exclude the pair from direct long range |
871 |
> |
* interactions. Some indirect interactions (notably reaction |
872 |
> |
* field) must still be handled for these pairs. |
873 |
> |
*/ |
874 |
> |
bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
875 |
> |
|
876 |
> |
// excludesForAtom was constructed to use row/column indices in the MPI |
877 |
> |
// version, and to use local IDs in the non-MPI version: |
878 |
|
|
879 |
< |
#ifdef IS_MPI |
880 |
< |
for (int i = 0; i < toposForRowAtom[atom1].size(); i++) { |
881 |
< |
if ( toposForRowAtom[atom1][i] == atom2 ) return topoDistRow[atom1][i]; |
879 |
> |
for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
880 |
> |
i != excludesForAtom[atom1].end(); ++i) { |
881 |
> |
if ( (*i) == atom2 ) return true; |
882 |
|
} |
765 |
– |
#else |
766 |
– |
for (int i = 0; i < toposForLocalAtom[atom1].size(); i++) { |
767 |
– |
if ( toposForLocalAtom[atom1][i] == atom2 ) return topoDistLocal[atom1][i]; |
768 |
– |
} |
769 |
– |
#endif |
883 |
|
|
884 |
< |
// zero is default for unconnected (i.e. normal) pair interactions |
772 |
< |
return 0; |
884 |
> |
return false; |
885 |
|
} |
886 |
|
|
887 |
+ |
|
888 |
|
void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ |
889 |
|
#ifdef IS_MPI |
890 |
|
atomRowData.force[atom1] += fg; |
902 |
|
} |
903 |
|
|
904 |
|
// filling interaction blocks with pointers |
905 |
< |
InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { |
906 |
< |
InteractionData idat; |
905 |
> |
void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
906 |
> |
int atom1, int atom2) { |
907 |
|
|
908 |
+ |
idat.excluded = excludeAtomPair(atom1, atom2); |
909 |
+ |
|
910 |
|
#ifdef IS_MPI |
911 |
+ |
idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
912 |
+ |
//idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
913 |
+ |
// ff_->getAtomType(identsCol[atom2]) ); |
914 |
|
|
797 |
– |
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
798 |
– |
ff_->getAtomType(identsCol[atom2]) ); |
799 |
– |
|
800 |
– |
|
915 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
916 |
|
idat.A1 = &(atomRowData.aMat[atom1]); |
917 |
|
idat.A2 = &(atomColData.aMat[atom2]); |
947 |
|
idat.particlePot2 = &(atomColData.particlePot[atom2]); |
948 |
|
} |
949 |
|
|
950 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
951 |
+ |
idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
952 |
+ |
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
953 |
+ |
} |
954 |
+ |
|
955 |
|
#else |
956 |
+ |
|
957 |
|
|
958 |
< |
idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), |
959 |
< |
ff_->getAtomType(identsLocal[atom2]) ); |
958 |
> |
// cerr << "atoms = " << atom1 << " " << atom2 << "\n"; |
959 |
> |
// cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n"; |
960 |
> |
// cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n"; |
961 |
|
|
962 |
+ |
idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
963 |
+ |
//idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
964 |
+ |
// ff_->getAtomType(idents[atom2]) ); |
965 |
+ |
|
966 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
967 |
|
idat.A1 = &(snap_->atomData.aMat[atom1]); |
968 |
|
idat.A2 = &(snap_->atomData.aMat[atom2]); |
978 |
|
idat.t2 = &(snap_->atomData.torque[atom2]); |
979 |
|
} |
980 |
|
|
981 |
< |
if (storageLayout_ & DataStorage::dslDensity) { |
981 |
> |
if (storageLayout_ & DataStorage::dslDensity) { |
982 |
|
idat.rho1 = &(snap_->atomData.density[atom1]); |
983 |
|
idat.rho2 = &(snap_->atomData.density[atom2]); |
984 |
|
} |
998 |
|
idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
999 |
|
} |
1000 |
|
|
1001 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1002 |
+ |
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
1003 |
+ |
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
1004 |
+ |
} |
1005 |
|
#endif |
877 |
– |
return idat; |
1006 |
|
} |
1007 |
|
|
1008 |
|
|
1009 |
< |
void ForceMatrixDecomposition::unpackInteractionData(InteractionData idat, int atom1, int atom2) { |
1009 |
> |
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
1010 |
|
#ifdef IS_MPI |
1011 |
< |
pot_row[atom1] += 0.5 * *(idat.pot); |
1012 |
< |
pot_col[atom2] += 0.5 * *(idat.pot); |
1011 |
> |
pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1012 |
> |
pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1013 |
|
|
1014 |
|
atomRowData.force[atom1] += *(idat.f1); |
1015 |
|
atomColData.force[atom2] -= *(idat.f1); |
1016 |
|
#else |
1017 |
< |
longRangePot_ += *(idat.pot); |
1018 |
< |
|
1017 |
> |
pairwisePot += *(idat.pot); |
1018 |
> |
|
1019 |
|
snap_->atomData.force[atom1] += *(idat.f1); |
1020 |
|
snap_->atomData.force[atom2] -= *(idat.f1); |
1021 |
|
#endif |
1022 |
< |
|
1022 |
> |
|
1023 |
|
} |
1024 |
|
|
897 |
– |
|
898 |
– |
InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ |
899 |
– |
|
900 |
– |
InteractionData idat; |
901 |
– |
#ifdef IS_MPI |
902 |
– |
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
903 |
– |
ff_->getAtomType(identsCol[atom2]) ); |
904 |
– |
|
905 |
– |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
906 |
– |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
907 |
– |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
908 |
– |
} |
909 |
– |
if (storageLayout_ & DataStorage::dslTorque) { |
910 |
– |
idat.t1 = &(atomRowData.torque[atom1]); |
911 |
– |
idat.t2 = &(atomColData.torque[atom2]); |
912 |
– |
} |
913 |
– |
#else |
914 |
– |
idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), |
915 |
– |
ff_->getAtomType(identsLocal[atom2]) ); |
916 |
– |
|
917 |
– |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
918 |
– |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
919 |
– |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
920 |
– |
} |
921 |
– |
if (storageLayout_ & DataStorage::dslTorque) { |
922 |
– |
idat.t1 = &(snap_->atomData.torque[atom1]); |
923 |
– |
idat.t2 = &(snap_->atomData.torque[atom2]); |
924 |
– |
} |
925 |
– |
#endif |
926 |
– |
} |
927 |
– |
|
1025 |
|
/* |
1026 |
|
* buildNeighborList |
1027 |
|
* |
1032 |
|
|
1033 |
|
vector<pair<int, int> > neighborList; |
1034 |
|
groupCutoffs cuts; |
1035 |
+ |
bool doAllPairs = false; |
1036 |
+ |
|
1037 |
|
#ifdef IS_MPI |
1038 |
|
cellListRow_.clear(); |
1039 |
|
cellListCol_.clear(); |
1053 |
|
nCells_.y() = (int) ( Hy.length() )/ rList_; |
1054 |
|
nCells_.z() = (int) ( Hz.length() )/ rList_; |
1055 |
|
|
1056 |
+ |
// handle small boxes where the cell offsets can end up repeating cells |
1057 |
+ |
|
1058 |
+ |
if (nCells_.x() < 3) doAllPairs = true; |
1059 |
+ |
if (nCells_.y() < 3) doAllPairs = true; |
1060 |
+ |
if (nCells_.z() < 3) doAllPairs = true; |
1061 |
+ |
|
1062 |
|
Mat3x3d invHmat = snap_->getInvHmat(); |
1063 |
|
Vector3d rs, scaled, dr; |
1064 |
|
Vector3i whichCell; |
1065 |
|
int cellIndex; |
1066 |
+ |
int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
1067 |
|
|
1068 |
|
#ifdef IS_MPI |
1069 |
< |
for (int i = 0; i < nGroupsInRow_; i++) { |
1070 |
< |
rs = cgRowData.position[i]; |
1071 |
< |
// scaled positions relative to the box vectors |
1072 |
< |
scaled = invHmat * rs; |
1073 |
< |
// wrap the vector back into the unit box by subtracting integer box |
968 |
< |
// numbers |
969 |
< |
for (int j = 0; j < 3; j++) |
970 |
< |
scaled[j] -= roundMe(scaled[j]); |
971 |
< |
|
972 |
< |
// find xyz-indices of cell that cutoffGroup is in. |
973 |
< |
whichCell.x() = nCells_.x() * scaled.x(); |
974 |
< |
whichCell.y() = nCells_.y() * scaled.y(); |
975 |
< |
whichCell.z() = nCells_.z() * scaled.z(); |
1069 |
> |
cellListRow_.resize(nCtot); |
1070 |
> |
cellListCol_.resize(nCtot); |
1071 |
> |
#else |
1072 |
> |
cellList_.resize(nCtot); |
1073 |
> |
#endif |
1074 |
|
|
1075 |
< |
// find single index of this cell: |
1076 |
< |
cellIndex = Vlinear(whichCell, nCells_); |
979 |
< |
// add this cutoff group to the list of groups in this cell; |
980 |
< |
cellListRow_[cellIndex].push_back(i); |
981 |
< |
} |
1075 |
> |
if (!doAllPairs) { |
1076 |
> |
#ifdef IS_MPI |
1077 |
|
|
1078 |
< |
for (int i = 0; i < nGroupsInCol_; i++) { |
1079 |
< |
rs = cgColData.position[i]; |
1080 |
< |
// scaled positions relative to the box vectors |
1081 |
< |
scaled = invHmat * rs; |
1082 |
< |
// wrap the vector back into the unit box by subtracting integer box |
1083 |
< |
// numbers |
1084 |
< |
for (int j = 0; j < 3; j++) |
1085 |
< |
scaled[j] -= roundMe(scaled[j]); |
1086 |
< |
|
1087 |
< |
// find xyz-indices of cell that cutoffGroup is in. |
1088 |
< |
whichCell.x() = nCells_.x() * scaled.x(); |
1089 |
< |
whichCell.y() = nCells_.y() * scaled.y(); |
1090 |
< |
whichCell.z() = nCells_.z() * scaled.z(); |
1091 |
< |
|
1092 |
< |
// find single index of this cell: |
1093 |
< |
cellIndex = Vlinear(whichCell, nCells_); |
1094 |
< |
// add this cutoff group to the list of groups in this cell; |
1095 |
< |
cellListCol_[cellIndex].push_back(i); |
1096 |
< |
} |
1078 |
> |
for (int i = 0; i < nGroupsInRow_; i++) { |
1079 |
> |
rs = cgRowData.position[i]; |
1080 |
> |
|
1081 |
> |
// scaled positions relative to the box vectors |
1082 |
> |
scaled = invHmat * rs; |
1083 |
> |
|
1084 |
> |
// wrap the vector back into the unit box by subtracting integer box |
1085 |
> |
// numbers |
1086 |
> |
for (int j = 0; j < 3; j++) { |
1087 |
> |
scaled[j] -= roundMe(scaled[j]); |
1088 |
> |
scaled[j] += 0.5; |
1089 |
> |
} |
1090 |
> |
|
1091 |
> |
// find xyz-indices of cell that cutoffGroup is in. |
1092 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
1093 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
1094 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
1095 |
> |
|
1096 |
> |
// find single index of this cell: |
1097 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1098 |
> |
|
1099 |
> |
// add this cutoff group to the list of groups in this cell; |
1100 |
> |
cellListRow_[cellIndex].push_back(i); |
1101 |
> |
} |
1102 |
> |
for (int i = 0; i < nGroupsInCol_; i++) { |
1103 |
> |
rs = cgColData.position[i]; |
1104 |
> |
|
1105 |
> |
// scaled positions relative to the box vectors |
1106 |
> |
scaled = invHmat * rs; |
1107 |
> |
|
1108 |
> |
// wrap the vector back into the unit box by subtracting integer box |
1109 |
> |
// numbers |
1110 |
> |
for (int j = 0; j < 3; j++) { |
1111 |
> |
scaled[j] -= roundMe(scaled[j]); |
1112 |
> |
scaled[j] += 0.5; |
1113 |
> |
} |
1114 |
> |
|
1115 |
> |
// find xyz-indices of cell that cutoffGroup is in. |
1116 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
1117 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
1118 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
1119 |
> |
|
1120 |
> |
// find single index of this cell: |
1121 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1122 |
> |
|
1123 |
> |
// add this cutoff group to the list of groups in this cell; |
1124 |
> |
cellListCol_[cellIndex].push_back(i); |
1125 |
> |
} |
1126 |
> |
|
1127 |
|
#else |
1128 |
< |
for (int i = 0; i < nGroups_; i++) { |
1129 |
< |
rs = snap_->cgData.position[i]; |
1130 |
< |
// scaled positions relative to the box vectors |
1131 |
< |
scaled = invHmat * rs; |
1132 |
< |
// wrap the vector back into the unit box by subtracting integer box |
1133 |
< |
// numbers |
1134 |
< |
for (int j = 0; j < 3; j++) |
1135 |
< |
scaled[j] -= roundMe(scaled[j]); |
1128 |
> |
for (int i = 0; i < nGroups_; i++) { |
1129 |
> |
rs = snap_->cgData.position[i]; |
1130 |
> |
|
1131 |
> |
// scaled positions relative to the box vectors |
1132 |
> |
scaled = invHmat * rs; |
1133 |
> |
|
1134 |
> |
// wrap the vector back into the unit box by subtracting integer box |
1135 |
> |
// numbers |
1136 |
> |
for (int j = 0; j < 3; j++) { |
1137 |
> |
scaled[j] -= roundMe(scaled[j]); |
1138 |
> |
scaled[j] += 0.5; |
1139 |
> |
} |
1140 |
> |
|
1141 |
> |
// find xyz-indices of cell that cutoffGroup is in. |
1142 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
1143 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
1144 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
1145 |
> |
|
1146 |
> |
// find single index of this cell: |
1147 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1148 |
> |
|
1149 |
> |
// add this cutoff group to the list of groups in this cell; |
1150 |
> |
cellList_[cellIndex].push_back(i); |
1151 |
> |
} |
1152 |
|
|
1012 |
– |
// find xyz-indices of cell that cutoffGroup is in. |
1013 |
– |
whichCell.x() = nCells_.x() * scaled.x(); |
1014 |
– |
whichCell.y() = nCells_.y() * scaled.y(); |
1015 |
– |
whichCell.z() = nCells_.z() * scaled.z(); |
1016 |
– |
|
1017 |
– |
// find single index of this cell: |
1018 |
– |
cellIndex = Vlinear(whichCell, nCells_); |
1019 |
– |
// add this cutoff group to the list of groups in this cell; |
1020 |
– |
cellList_[cellIndex].push_back(i); |
1021 |
– |
} |
1153 |
|
#endif |
1154 |
|
|
1155 |
< |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1156 |
< |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1157 |
< |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1158 |
< |
Vector3i m1v(m1x, m1y, m1z); |
1159 |
< |
int m1 = Vlinear(m1v, nCells_); |
1029 |
< |
|
1030 |
< |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1031 |
< |
os != cellOffsets_.end(); ++os) { |
1155 |
> |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1156 |
> |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1157 |
> |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1158 |
> |
Vector3i m1v(m1x, m1y, m1z); |
1159 |
> |
int m1 = Vlinear(m1v, nCells_); |
1160 |
|
|
1161 |
< |
Vector3i m2v = m1v + (*os); |
1162 |
< |
|
1163 |
< |
if (m2v.x() >= nCells_.x()) { |
1164 |
< |
m2v.x() = 0; |
1165 |
< |
} else if (m2v.x() < 0) { |
1038 |
< |
m2v.x() = nCells_.x() - 1; |
1039 |
< |
} |
1040 |
< |
|
1041 |
< |
if (m2v.y() >= nCells_.y()) { |
1042 |
< |
m2v.y() = 0; |
1043 |
< |
} else if (m2v.y() < 0) { |
1044 |
< |
m2v.y() = nCells_.y() - 1; |
1045 |
< |
} |
1046 |
< |
|
1047 |
< |
if (m2v.z() >= nCells_.z()) { |
1048 |
< |
m2v.z() = 0; |
1049 |
< |
} else if (m2v.z() < 0) { |
1050 |
< |
m2v.z() = nCells_.z() - 1; |
1051 |
< |
} |
1052 |
< |
|
1053 |
< |
int m2 = Vlinear (m2v, nCells_); |
1161 |
> |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1162 |
> |
os != cellOffsets_.end(); ++os) { |
1163 |
> |
|
1164 |
> |
Vector3i m2v = m1v + (*os); |
1165 |
> |
|
1166 |
|
|
1167 |
< |
#ifdef IS_MPI |
1168 |
< |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1169 |
< |
j1 != cellListRow_[m1].end(); ++j1) { |
1170 |
< |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1171 |
< |
j2 != cellListCol_[m2].end(); ++j2) { |
1172 |
< |
|
1173 |
< |
// Always do this if we're in different cells or if |
1174 |
< |
// we're in the same cell and the global index of the |
1175 |
< |
// j2 cutoff group is less than the j1 cutoff group |
1167 |
> |
if (m2v.x() >= nCells_.x()) { |
1168 |
> |
m2v.x() = 0; |
1169 |
> |
} else if (m2v.x() < 0) { |
1170 |
> |
m2v.x() = nCells_.x() - 1; |
1171 |
> |
} |
1172 |
> |
|
1173 |
> |
if (m2v.y() >= nCells_.y()) { |
1174 |
> |
m2v.y() = 0; |
1175 |
> |
} else if (m2v.y() < 0) { |
1176 |
> |
m2v.y() = nCells_.y() - 1; |
1177 |
> |
} |
1178 |
> |
|
1179 |
> |
if (m2v.z() >= nCells_.z()) { |
1180 |
> |
m2v.z() = 0; |
1181 |
> |
} else if (m2v.z() < 0) { |
1182 |
> |
m2v.z() = nCells_.z() - 1; |
1183 |
> |
} |
1184 |
|
|
1185 |
< |
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1185 |
> |
int m2 = Vlinear (m2v, nCells_); |
1186 |
> |
|
1187 |
> |
#ifdef IS_MPI |
1188 |
> |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1189 |
> |
j1 != cellListRow_[m1].end(); ++j1) { |
1190 |
> |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1191 |
> |
j2 != cellListCol_[m2].end(); ++j2) { |
1192 |
> |
|
1193 |
> |
// In parallel, we need to visit *all* pairs of row |
1194 |
> |
// & column indicies and will divide labor in the |
1195 |
> |
// force evaluation later. |
1196 |
|
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1197 |
|
snap_->wrapVector(dr); |
1198 |
|
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1199 |
|
if (dr.lengthSquare() < cuts.third) { |
1200 |
|
neighborList.push_back(make_pair((*j1), (*j2))); |
1201 |
< |
} |
1201 |
> |
} |
1202 |
|
} |
1203 |
|
} |
1074 |
– |
} |
1204 |
|
#else |
1205 |
< |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1206 |
< |
j1 != cellList_[m1].end(); ++j1) { |
1207 |
< |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1208 |
< |
j2 != cellList_[m2].end(); ++j2) { |
1209 |
< |
|
1210 |
< |
// Always do this if we're in different cells or if |
1211 |
< |
// we're in the same cell and the global index of the |
1212 |
< |
// j2 cutoff group is less than the j1 cutoff group |
1205 |
> |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1206 |
> |
j1 != cellList_[m1].end(); ++j1) { |
1207 |
> |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1208 |
> |
j2 != cellList_[m2].end(); ++j2) { |
1209 |
> |
|
1210 |
> |
// Always do this if we're in different cells or if |
1211 |
> |
// we're in the same cell and the global index of |
1212 |
> |
// the j2 cutoff group is greater than or equal to |
1213 |
> |
// the j1 cutoff group. Note that Rappaport's code |
1214 |
> |
// has a "less than" conditional here, but that |
1215 |
> |
// deals with atom-by-atom computation. OpenMD |
1216 |
> |
// allows atoms within a single cutoff group to |
1217 |
> |
// interact with each other. |
1218 |
|
|
1219 |
< |
if (m2 != m1 || (*j2) < (*j1)) { |
1220 |
< |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1221 |
< |
snap_->wrapVector(dr); |
1222 |
< |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1223 |
< |
if (dr.lengthSquare() < cuts.third) { |
1224 |
< |
neighborList.push_back(make_pair((*j1), (*j2))); |
1219 |
> |
|
1220 |
> |
|
1221 |
> |
if (m2 != m1 || (*j2) >= (*j1) ) { |
1222 |
> |
|
1223 |
> |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1224 |
> |
snap_->wrapVector(dr); |
1225 |
> |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1226 |
> |
if (dr.lengthSquare() < cuts.third) { |
1227 |
> |
neighborList.push_back(make_pair((*j1), (*j2))); |
1228 |
> |
} |
1229 |
|
} |
1230 |
|
} |
1231 |
|
} |
1094 |
– |
} |
1232 |
|
#endif |
1233 |
+ |
} |
1234 |
|
} |
1235 |
|
} |
1236 |
|
} |
1237 |
+ |
} else { |
1238 |
+ |
// branch to do all cutoff group pairs |
1239 |
+ |
#ifdef IS_MPI |
1240 |
+ |
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1241 |
+ |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1242 |
+ |
dr = cgColData.position[j2] - cgRowData.position[j1]; |
1243 |
+ |
snap_->wrapVector(dr); |
1244 |
+ |
cuts = getGroupCutoffs( j1, j2 ); |
1245 |
+ |
if (dr.lengthSquare() < cuts.third) { |
1246 |
+ |
neighborList.push_back(make_pair(j1, j2)); |
1247 |
+ |
} |
1248 |
+ |
} |
1249 |
+ |
} |
1250 |
+ |
#else |
1251 |
+ |
// include all groups here. |
1252 |
+ |
for (int j1 = 0; j1 < nGroups_; j1++) { |
1253 |
+ |
// include self group interactions j2 == j1 |
1254 |
+ |
for (int j2 = j1; j2 < nGroups_; j2++) { |
1255 |
+ |
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1256 |
+ |
snap_->wrapVector(dr); |
1257 |
+ |
cuts = getGroupCutoffs( j1, j2 ); |
1258 |
+ |
if (dr.lengthSquare() < cuts.third) { |
1259 |
+ |
neighborList.push_back(make_pair(j1, j2)); |
1260 |
+ |
} |
1261 |
+ |
} |
1262 |
+ |
} |
1263 |
+ |
#endif |
1264 |
|
} |
1265 |
< |
|
1265 |
> |
|
1266 |
|
// save the local cutoff group positions for the check that is |
1267 |
|
// done on each loop: |
1268 |
|
saved_CG_positions_.clear(); |
1269 |
|
for (int i = 0; i < nGroups_; i++) |
1270 |
|
saved_CG_positions_.push_back(snap_->cgData.position[i]); |
1271 |
< |
|
1271 |
> |
|
1272 |
|
return neighborList; |
1273 |
|
} |
1274 |
|
} //end namespace OpenMD |