ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing:
branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 1571 by gezelter, Fri May 27 16:45:44 2011 UTC vs.
trunk/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 1893 by gezelter, Wed Jun 19 17:19:07 2013 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42   #include "parallel/ForceMatrixDecomposition.hpp"
43   #include "math/SquareMatrix3.hpp"
# Line 47 | Line 48 | namespace OpenMD {
48   using namespace std;
49   namespace OpenMD {
50  
51 +  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52 +
53 +    // In a parallel computation, row and colum scans must visit all
54 +    // surrounding cells (not just the 14 upper triangular blocks that
55 +    // are used when the processor can see all pairs)
56 + #ifdef IS_MPI
57 +    cellOffsets_.clear();
58 +    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59 +    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60 +    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                          
61 +    cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62 +    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63 +    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64 +    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65 +    cellOffsets_.push_back( Vector3i( 0, 1,-1) );      
66 +    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 +    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68 +    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69 +    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 +    cellOffsets_.push_back( Vector3i(-1, 0, 0) );      
71 +    cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72 +    cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73 +    cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74 +    cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75 +    cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76 +    cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77 +    cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78 +    cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 +    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 +    cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81 +    cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82 +    cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83 +    cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84 +    cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 + #endif    
86 +  }
87 +
88 +
89    /**
90     * distributeInitialData is essentially a copy of the older fortran
91     * SimulationSetup
92     */
54  
93    void ForceMatrixDecomposition::distributeInitialData() {
94      snap_ = sman_->getCurrentSnapshot();
95      storageLayout_ = sman_->getStorageLayout();
96      ff_ = info_->getForceField();
97      nLocal_ = snap_->getNumberOfAtoms();
98 <    nGroups_ = snap_->getNumberOfCutoffGroups();
99 <
98 >  
99 >    nGroups_ = info_->getNLocalCutoffGroups();
100      // gather the information for atomtype IDs (atids):
101 <    identsLocal = info_->getIdentArray();
101 >    idents = info_->getIdentArray();
102      AtomLocalToGlobal = info_->getGlobalAtomIndices();
103      cgLocalToGlobal = info_->getGlobalGroupIndices();
104      vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
67    vector<RealType> massFactorsLocal = info_->getMassFactors();
68    PairList excludes = info_->getExcludedInteractions();
69    PairList oneTwo = info_->getOneTwoInteractions();
70    PairList oneThree = info_->getOneThreeInteractions();
71    PairList oneFour = info_->getOneFourInteractions();
72    vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0);
105  
106 +    massFactors = info_->getMassFactors();
107 +
108 +    PairList* excludes = info_->getExcludedInteractions();
109 +    PairList* oneTwo = info_->getOneTwoInteractions();
110 +    PairList* oneThree = info_->getOneThreeInteractions();
111 +    PairList* oneFour = info_->getOneFourInteractions();
112 +    
113 +    if (needVelocities_)
114 +      snap_->cgData.setStorageLayout(DataStorage::dslPosition |
115 +                                     DataStorage::dslVelocity);
116 +    else
117 +      snap_->cgData.setStorageLayout(DataStorage::dslPosition);
118 +    
119   #ifdef IS_MPI
120  
121 <    AtomCommIntRow = new Communicator<Row,int>(nLocal_);
122 <    AtomCommRealRow = new Communicator<Row,RealType>(nLocal_);
78 <    AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_);
79 <    AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_);
121 >    MPI::Intracomm row = rowComm.getComm();
122 >    MPI::Intracomm col = colComm.getComm();
123  
124 <    AtomCommIntColumn = new Communicator<Column,int>(nLocal_);
125 <    AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_);
126 <    AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_);
127 <    AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_);
124 >    AtomPlanIntRow = new Plan<int>(row, nLocal_);
125 >    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
126 >    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
127 >    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
128 >    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
129  
130 <    cgCommIntRow = new Communicator<Row,int>(nGroups_);
131 <    cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_);
132 <    cgCommIntColumn = new Communicator<Column,int>(nGroups_);
133 <    cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_);
130 >    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
131 >    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
132 >    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
133 >    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
134 >    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
135  
136 <    nAtomsInRow_ = AtomCommIntRow->getSize();
137 <    nAtomsInCol_ = AtomCommIntColumn->getSize();
138 <    nGroupsInRow_ = cgCommIntRow->getSize();
139 <    nGroupsInCol_ = cgCommIntColumn->getSize();
136 >    cgPlanIntRow = new Plan<int>(row, nGroups_);
137 >    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
138 >    cgPlanIntColumn = new Plan<int>(col, nGroups_);
139 >    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
140  
141 +    nAtomsInRow_ = AtomPlanIntRow->getSize();
142 +    nAtomsInCol_ = AtomPlanIntColumn->getSize();
143 +    nGroupsInRow_ = cgPlanIntRow->getSize();
144 +    nGroupsInCol_ = cgPlanIntColumn->getSize();
145 +
146      // Modify the data storage objects with the correct layouts and sizes:
147      atomRowData.resize(nAtomsInRow_);
148      atomRowData.setStorageLayout(storageLayout_);
# Line 101 | Line 151 | namespace OpenMD {
151      cgRowData.resize(nGroupsInRow_);
152      cgRowData.setStorageLayout(DataStorage::dslPosition);
153      cgColData.resize(nGroupsInCol_);
154 <    cgColData.setStorageLayout(DataStorage::dslPosition);
154 >    if (needVelocities_)
155 >      // we only need column velocities if we need them.
156 >      cgColData.setStorageLayout(DataStorage::dslPosition |
157 >                                 DataStorage::dslVelocity);
158 >    else    
159 >      cgColData.setStorageLayout(DataStorage::dslPosition);
160 >      
161 >    identsRow.resize(nAtomsInRow_);
162 >    identsCol.resize(nAtomsInCol_);
163      
164 <    vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES,
165 <                                      vector<RealType> (nAtomsInRow_, 0.0));
108 <    vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES,
109 <                                      vector<RealType> (nAtomsInCol_, 0.0));
164 >    AtomPlanIntRow->gather(idents, identsRow);
165 >    AtomPlanIntColumn->gather(idents, identsCol);
166      
167 <    identsRow.reserve(nAtomsInRow_);
168 <    identsCol.reserve(nAtomsInCol_);
169 <    
114 <    AtomCommIntRow->gather(identsLocal, identsRow);
115 <    AtomCommIntColumn->gather(identsLocal, identsCol);
116 <    
117 <    AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
118 <    AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
119 <    
120 <    cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
121 <    cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
167 >    // allocate memory for the parallel objects
168 >    atypesRow.resize(nAtomsInRow_);
169 >    atypesCol.resize(nAtomsInCol_);
170  
171 <    AtomCommRealRow->gather(massFactorsLocal, massFactorsRow);
172 <    AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol);
171 >    for (int i = 0; i < nAtomsInRow_; i++)
172 >      atypesRow[i] = ff_->getAtomType(identsRow[i]);
173 >    for (int i = 0; i < nAtomsInCol_; i++)
174 >      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
175  
176 +    pot_row.resize(nAtomsInRow_);
177 +    pot_col.resize(nAtomsInCol_);
178 +
179 +    expot_row.resize(nAtomsInRow_);
180 +    expot_col.resize(nAtomsInCol_);
181 +
182 +    AtomRowToGlobal.resize(nAtomsInRow_);
183 +    AtomColToGlobal.resize(nAtomsInCol_);
184 +    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
185 +    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
186 +
187 +    cgRowToGlobal.resize(nGroupsInRow_);
188 +    cgColToGlobal.resize(nGroupsInCol_);
189 +    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
190 +    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
191 +
192 +    massFactorsRow.resize(nAtomsInRow_);
193 +    massFactorsCol.resize(nAtomsInCol_);
194 +    AtomPlanRealRow->gather(massFactors, massFactorsRow);
195 +    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
196 +
197      groupListRow_.clear();
198 <    groupListRow_.reserve(nGroupsInRow_);
198 >    groupListRow_.resize(nGroupsInRow_);
199      for (int i = 0; i < nGroupsInRow_; i++) {
200        int gid = cgRowToGlobal[i];
201        for (int j = 0; j < nAtomsInRow_; j++) {
# Line 135 | Line 206 | namespace OpenMD {
206      }
207  
208      groupListCol_.clear();
209 <    groupListCol_.reserve(nGroupsInCol_);
209 >    groupListCol_.resize(nGroupsInCol_);
210      for (int i = 0; i < nGroupsInCol_; i++) {
211        int gid = cgColToGlobal[i];
212        for (int j = 0; j < nAtomsInCol_; j++) {
# Line 145 | Line 216 | namespace OpenMD {
216        }      
217      }
218  
219 <    skipsForRowAtom.clear();
220 <    skipsForRowAtom.reserve(nAtomsInRow_);
219 >    excludesForAtom.clear();
220 >    excludesForAtom.resize(nAtomsInRow_);
221 >    toposForAtom.clear();
222 >    toposForAtom.resize(nAtomsInRow_);
223 >    topoDist.clear();
224 >    topoDist.resize(nAtomsInRow_);
225      for (int i = 0; i < nAtomsInRow_; i++) {
226        int iglob = AtomRowToGlobal[i];
227 +
228        for (int j = 0; j < nAtomsInCol_; j++) {
229 <        int jglob = AtomColToGlobal[j];        
230 <        if (excludes.hasPair(iglob, jglob))
231 <          skipsForRowAtom[i].push_back(j);      
229 >        int jglob = AtomColToGlobal[j];
230 >
231 >        if (excludes->hasPair(iglob, jglob))
232 >          excludesForAtom[i].push_back(j);      
233 >        
234 >        if (oneTwo->hasPair(iglob, jglob)) {
235 >          toposForAtom[i].push_back(j);
236 >          topoDist[i].push_back(1);
237 >        } else {
238 >          if (oneThree->hasPair(iglob, jglob)) {
239 >            toposForAtom[i].push_back(j);
240 >            topoDist[i].push_back(2);
241 >          } else {
242 >            if (oneFour->hasPair(iglob, jglob)) {
243 >              toposForAtom[i].push_back(j);
244 >              topoDist[i].push_back(3);
245 >            }
246 >          }
247 >        }
248        }      
249      }
250  
251 <    toposForRowAtom.clear();
252 <    toposForRowAtom.reserve(nAtomsInRow_);
253 <    for (int i = 0; i < nAtomsInRow_; i++) {
254 <      int iglob = AtomRowToGlobal[i];
255 <      int nTopos = 0;
256 <      for (int j = 0; j < nAtomsInCol_; j++) {
257 <        int jglob = AtomColToGlobal[j];        
258 <        if (oneTwo.hasPair(iglob, jglob)) {
259 <          toposForRowAtom[i].push_back(j);
260 <          topoDistRow[i][nTopos] = 1;
261 <          nTopos++;
251 > #else
252 >    excludesForAtom.clear();
253 >    excludesForAtom.resize(nLocal_);
254 >    toposForAtom.clear();
255 >    toposForAtom.resize(nLocal_);
256 >    topoDist.clear();
257 >    topoDist.resize(nLocal_);
258 >
259 >    for (int i = 0; i < nLocal_; i++) {
260 >      int iglob = AtomLocalToGlobal[i];
261 >
262 >      for (int j = 0; j < nLocal_; j++) {
263 >        int jglob = AtomLocalToGlobal[j];
264 >
265 >        if (excludes->hasPair(iglob, jglob))
266 >          excludesForAtom[i].push_back(j);              
267 >        
268 >        if (oneTwo->hasPair(iglob, jglob)) {
269 >          toposForAtom[i].push_back(j);
270 >          topoDist[i].push_back(1);
271 >        } else {
272 >          if (oneThree->hasPair(iglob, jglob)) {
273 >            toposForAtom[i].push_back(j);
274 >            topoDist[i].push_back(2);
275 >          } else {
276 >            if (oneFour->hasPair(iglob, jglob)) {
277 >              toposForAtom[i].push_back(j);
278 >              topoDist[i].push_back(3);
279 >            }
280 >          }
281          }
171        if (oneThree.hasPair(iglob, jglob)) {
172          toposForRowAtom[i].push_back(j);
173          topoDistRow[i][nTopos] = 2;
174          nTopos++;
175        }
176        if (oneFour.hasPair(iglob, jglob)) {
177          toposForRowAtom[i].push_back(j);
178          topoDistRow[i][nTopos] = 3;
179          nTopos++;
180        }
282        }      
283      }
183
284   #endif
285  
286 +    // allocate memory for the parallel objects
287 +    atypesLocal.resize(nLocal_);
288 +
289 +    for (int i = 0; i < nLocal_; i++)
290 +      atypesLocal[i] = ff_->getAtomType(idents[i]);
291 +
292      groupList_.clear();
293 <    groupList_.reserve(nGroups_);
293 >    groupList_.resize(nGroups_);
294      for (int i = 0; i < nGroups_; i++) {
295        int gid = cgLocalToGlobal[i];
296        for (int j = 0; j < nLocal_; j++) {
297          int aid = AtomLocalToGlobal[j];
298 <        if (globalGroupMembership[aid] == gid)
298 >        if (globalGroupMembership[aid] == gid) {
299            groupList_[i].push_back(j);
300 +        }
301        }      
302      }
303  
197    skipsForLocalAtom.clear();
198    skipsForLocalAtom.reserve(nLocal_);
304  
305 <    for (int i = 0; i < nLocal_; i++) {
306 <      int iglob = AtomLocalToGlobal[i];
307 <      for (int j = 0; j < nLocal_; j++) {
308 <        int jglob = AtomLocalToGlobal[j];        
309 <        if (excludes.hasPair(iglob, jglob))
310 <          skipsForLocalAtom[i].push_back(j);      
311 <      }      
305 >    createGtypeCutoffMap();
306 >
307 >  }
308 >  
309 >  void ForceMatrixDecomposition::createGtypeCutoffMap() {
310 >    
311 >    RealType tol = 1e-6;
312 >    largestRcut_ = 0.0;
313 >    int atid;
314 >    set<AtomType*> atypes = info_->getSimulatedAtomTypes();
315 >    
316 >    map<int, RealType> atypeCutoff;
317 >      
318 >    for (set<AtomType*>::iterator at = atypes.begin();
319 >         at != atypes.end(); ++at){
320 >      atid = (*at)->getIdent();
321 >      if (userChoseCutoff_)
322 >        atypeCutoff[atid] = userCutoff_;
323 >      else
324 >        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
325      }
326 +    
327 +    vector<RealType> gTypeCutoffs;
328 +    // first we do a single loop over the cutoff groups to find the
329 +    // largest cutoff for any atypes present in this group.
330 + #ifdef IS_MPI
331 +    vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
332 +    groupRowToGtype.resize(nGroupsInRow_);
333 +    for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
334 +      vector<int> atomListRow = getAtomsInGroupRow(cg1);
335 +      for (vector<int>::iterator ia = atomListRow.begin();
336 +           ia != atomListRow.end(); ++ia) {            
337 +        int atom1 = (*ia);
338 +        atid = identsRow[atom1];
339 +        if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
340 +          groupCutoffRow[cg1] = atypeCutoff[atid];
341 +        }
342 +      }
343  
344 <    toposForLocalAtom.clear();
345 <    toposForLocalAtom.reserve(nLocal_);
346 <    for (int i = 0; i < nLocal_; i++) {
347 <      int iglob = AtomLocalToGlobal[i];
348 <      int nTopos = 0;
349 <      for (int j = 0; j < nLocal_; j++) {
350 <        int jglob = AtomLocalToGlobal[j];        
351 <        if (oneTwo.hasPair(iglob, jglob)) {
352 <          toposForLocalAtom[i].push_back(j);
353 <          topoDistLocal[i][nTopos] = 1;
354 <          nTopos++;
344 >      bool gTypeFound = false;
345 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
346 >        if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
347 >          groupRowToGtype[cg1] = gt;
348 >          gTypeFound = true;
349 >        }
350 >      }
351 >      if (!gTypeFound) {
352 >        gTypeCutoffs.push_back( groupCutoffRow[cg1] );
353 >        groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
354 >      }
355 >      
356 >    }
357 >    vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
358 >    groupColToGtype.resize(nGroupsInCol_);
359 >    for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
360 >      vector<int> atomListCol = getAtomsInGroupColumn(cg2);
361 >      for (vector<int>::iterator jb = atomListCol.begin();
362 >           jb != atomListCol.end(); ++jb) {            
363 >        int atom2 = (*jb);
364 >        atid = identsCol[atom2];
365 >        if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
366 >          groupCutoffCol[cg2] = atypeCutoff[atid];
367          }
368 <        if (oneThree.hasPair(iglob, jglob)) {
369 <          toposForLocalAtom[i].push_back(j);
370 <          topoDistLocal[i][nTopos] = 2;
371 <          nTopos++;
372 <        }
373 <        if (oneFour.hasPair(iglob, jglob)) {
374 <          toposForLocalAtom[i].push_back(j);
375 <          topoDistLocal[i][nTopos] = 3;
376 <          nTopos++;
377 <        }
368 >      }
369 >      bool gTypeFound = false;
370 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
371 >        if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
372 >          groupColToGtype[cg2] = gt;
373 >          gTypeFound = true;
374 >        }
375 >      }
376 >      if (!gTypeFound) {
377 >        gTypeCutoffs.push_back( groupCutoffCol[cg2] );
378 >        groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
379 >      }
380 >    }
381 > #else
382 >
383 >    vector<RealType> groupCutoff(nGroups_, 0.0);
384 >    groupToGtype.resize(nGroups_);
385 >    for (int cg1 = 0; cg1 < nGroups_; cg1++) {
386 >      groupCutoff[cg1] = 0.0;
387 >      vector<int> atomList = getAtomsInGroupRow(cg1);
388 >      for (vector<int>::iterator ia = atomList.begin();
389 >           ia != atomList.end(); ++ia) {            
390 >        int atom1 = (*ia);
391 >        atid = idents[atom1];
392 >        if (atypeCutoff[atid] > groupCutoff[cg1])
393 >          groupCutoff[cg1] = atypeCutoff[atid];
394 >      }
395 >      
396 >      bool gTypeFound = false;
397 >      for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) {
398 >        if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
399 >          groupToGtype[cg1] = gt;
400 >          gTypeFound = true;
401 >        }
402 >      }
403 >      if (!gTypeFound) {      
404 >        gTypeCutoffs.push_back( groupCutoff[cg1] );
405 >        groupToGtype[cg1] = gTypeCutoffs.size() - 1;
406        }      
407 +    }
408 + #endif
409 +
410 +    // Now we find the maximum group cutoff value present in the simulation
411 +
412 +    RealType groupMax = *max_element(gTypeCutoffs.begin(),
413 +                                     gTypeCutoffs.end());
414 +
415 + #ifdef IS_MPI
416 +    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
417 +                              MPI::MAX);
418 + #endif
419 +    
420 +    RealType tradRcut = groupMax;
421 +
422 +    for (unsigned int i = 0; i < gTypeCutoffs.size();  i++) {
423 +      for (unsigned int j = 0; j < gTypeCutoffs.size();  j++) {      
424 +        RealType thisRcut;
425 +        switch(cutoffPolicy_) {
426 +        case TRADITIONAL:
427 +          thisRcut = tradRcut;
428 +          break;
429 +        case MIX:
430 +          thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
431 +          break;
432 +        case MAX:
433 +          thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
434 +          break;
435 +        default:
436 +          sprintf(painCave.errMsg,
437 +                  "ForceMatrixDecomposition::createGtypeCutoffMap "
438 +                  "hit an unknown cutoff policy!\n");
439 +          painCave.severity = OPENMD_ERROR;
440 +          painCave.isFatal = 1;
441 +          simError();
442 +          break;
443 +        }
444 +
445 +        pair<int,int> key = make_pair(i,j);
446 +        gTypeCutoffMap[key].first = thisRcut;
447 +        if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
448 +        gTypeCutoffMap[key].second = thisRcut*thisRcut;
449 +        gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
450 +        // sanity check
451 +        
452 +        if (userChoseCutoff_) {
453 +          if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
454 +            sprintf(painCave.errMsg,
455 +                    "ForceMatrixDecomposition::createGtypeCutoffMap "
456 +                    "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
457 +            painCave.severity = OPENMD_ERROR;
458 +            painCave.isFatal = 1;
459 +            simError();            
460 +          }
461 +        }
462 +      }
463      }
464    }
465 <  
465 >
466 >  groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
467 >    int i, j;  
468 > #ifdef IS_MPI
469 >    i = groupRowToGtype[cg1];
470 >    j = groupColToGtype[cg2];
471 > #else
472 >    i = groupToGtype[cg1];
473 >    j = groupToGtype[cg2];
474 > #endif    
475 >    return gTypeCutoffMap[make_pair(i,j)];
476 >  }
477 >
478 >  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
479 >    for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) {
480 >      if (toposForAtom[atom1][j] == atom2)
481 >        return topoDist[atom1][j];
482 >    }                                          
483 >    return 0;
484 >  }
485 >
486 >  void ForceMatrixDecomposition::zeroWorkArrays() {
487 >    pairwisePot = 0.0;
488 >    embeddingPot = 0.0;
489 >    excludedPot = 0.0;
490 >    excludedSelfPot = 0.0;
491 >
492 > #ifdef IS_MPI
493 >    if (storageLayout_ & DataStorage::dslForce) {
494 >      fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
495 >      fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
496 >    }
497 >
498 >    if (storageLayout_ & DataStorage::dslTorque) {
499 >      fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
500 >      fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
501 >    }
502 >    
503 >    fill(pot_row.begin(), pot_row.end(),
504 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
505 >
506 >    fill(pot_col.begin(), pot_col.end(),
507 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
508 >
509 >    fill(expot_row.begin(), expot_row.end(),
510 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
511 >
512 >    fill(expot_col.begin(), expot_col.end(),
513 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
514 >
515 >    if (storageLayout_ & DataStorage::dslParticlePot) {    
516 >      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
517 >           0.0);
518 >      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
519 >           0.0);
520 >    }
521 >
522 >    if (storageLayout_ & DataStorage::dslDensity) {      
523 >      fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
524 >      fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
525 >    }
526 >
527 >    if (storageLayout_ & DataStorage::dslFunctional) {  
528 >      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
529 >           0.0);
530 >      fill(atomColData.functional.begin(), atomColData.functional.end(),
531 >           0.0);
532 >    }
533 >
534 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
535 >      fill(atomRowData.functionalDerivative.begin(),
536 >           atomRowData.functionalDerivative.end(), 0.0);
537 >      fill(atomColData.functionalDerivative.begin(),
538 >           atomColData.functionalDerivative.end(), 0.0);
539 >    }
540 >
541 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
542 >      fill(atomRowData.skippedCharge.begin(),
543 >           atomRowData.skippedCharge.end(), 0.0);
544 >      fill(atomColData.skippedCharge.begin(),
545 >           atomColData.skippedCharge.end(), 0.0);
546 >    }
547 >
548 >    if (storageLayout_ & DataStorage::dslFlucQForce) {      
549 >      fill(atomRowData.flucQFrc.begin(),
550 >           atomRowData.flucQFrc.end(), 0.0);
551 >      fill(atomColData.flucQFrc.begin(),
552 >           atomColData.flucQFrc.end(), 0.0);
553 >    }
554 >
555 >    if (storageLayout_ & DataStorage::dslElectricField) {    
556 >      fill(atomRowData.electricField.begin(),
557 >           atomRowData.electricField.end(), V3Zero);
558 >      fill(atomColData.electricField.begin(),
559 >           atomColData.electricField.end(), V3Zero);
560 >    }
561 >
562 > #endif
563 >    // even in parallel, we need to zero out the local arrays:
564 >
565 >    if (storageLayout_ & DataStorage::dslParticlePot) {      
566 >      fill(snap_->atomData.particlePot.begin(),
567 >           snap_->atomData.particlePot.end(), 0.0);
568 >    }
569 >    
570 >    if (storageLayout_ & DataStorage::dslDensity) {      
571 >      fill(snap_->atomData.density.begin(),
572 >           snap_->atomData.density.end(), 0.0);
573 >    }
574 >
575 >    if (storageLayout_ & DataStorage::dslFunctional) {
576 >      fill(snap_->atomData.functional.begin(),
577 >           snap_->atomData.functional.end(), 0.0);
578 >    }
579 >
580 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
581 >      fill(snap_->atomData.functionalDerivative.begin(),
582 >           snap_->atomData.functionalDerivative.end(), 0.0);
583 >    }
584 >
585 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
586 >      fill(snap_->atomData.skippedCharge.begin(),
587 >           snap_->atomData.skippedCharge.end(), 0.0);
588 >    }
589 >
590 >    if (storageLayout_ & DataStorage::dslElectricField) {      
591 >      fill(snap_->atomData.electricField.begin(),
592 >           snap_->atomData.electricField.end(), V3Zero);
593 >    }
594 >  }
595 >
596 >
597    void ForceMatrixDecomposition::distributeData()  {
598      snap_ = sman_->getCurrentSnapshot();
599      storageLayout_ = sman_->getStorageLayout();
600   #ifdef IS_MPI
601      
602      // gather up the atomic positions
603 <    AtomCommVectorRow->gather(snap_->atomData.position,
603 >    AtomPlanVectorRow->gather(snap_->atomData.position,
604                                atomRowData.position);
605 <    AtomCommVectorColumn->gather(snap_->atomData.position,
605 >    AtomPlanVectorColumn->gather(snap_->atomData.position,
606                                   atomColData.position);
607      
608      // gather up the cutoff group positions
609 <    cgCommVectorRow->gather(snap_->cgData.position,
609 >
610 >    cgPlanVectorRow->gather(snap_->cgData.position,
611                              cgRowData.position);
612 <    cgCommVectorColumn->gather(snap_->cgData.position,
612 >
613 >    cgPlanVectorColumn->gather(snap_->cgData.position,
614                                 cgColData.position);
615 +
616 +
617 +
618 +    if (needVelocities_) {
619 +      // gather up the atomic velocities
620 +      AtomPlanVectorColumn->gather(snap_->atomData.velocity,
621 +                                   atomColData.velocity);
622 +      
623 +      cgPlanVectorColumn->gather(snap_->cgData.velocity,
624 +                                 cgColData.velocity);
625 +    }
626 +
627      
628      // if needed, gather the atomic rotation matrices
629      if (storageLayout_ & DataStorage::dslAmat) {
630 <      AtomCommMatrixRow->gather(snap_->atomData.aMat,
630 >      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
631                                  atomRowData.aMat);
632 <      AtomCommMatrixColumn->gather(snap_->atomData.aMat,
632 >      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
633                                     atomColData.aMat);
634      }
635 <    
636 <    // if needed, gather the atomic eletrostatic frames
637 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
638 <      AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
639 <                                atomRowData.electroFrame);
640 <      AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
641 <                                   atomColData.electroFrame);
635 >
636 >    // if needed, gather the atomic eletrostatic information
637 >    if (storageLayout_ & DataStorage::dslDipole) {
638 >      AtomPlanVectorRow->gather(snap_->atomData.dipole,
639 >                                atomRowData.dipole);
640 >      AtomPlanVectorColumn->gather(snap_->atomData.dipole,
641 >                                   atomColData.dipole);
642      }
643 +
644 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
645 +      AtomPlanMatrixRow->gather(snap_->atomData.quadrupole,
646 +                                atomRowData.quadrupole);
647 +      AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole,
648 +                                   atomColData.quadrupole);
649 +    }
650 +        
651 +    // if needed, gather the atomic fluctuating charge values
652 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {
653 +      AtomPlanRealRow->gather(snap_->atomData.flucQPos,
654 +                              atomRowData.flucQPos);
655 +      AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
656 +                                 atomColData.flucQPos);
657 +    }
658 +
659   #endif      
660    }
661    
662 +  /* collects information obtained during the pre-pair loop onto local
663 +   * data structures.
664 +   */
665    void ForceMatrixDecomposition::collectIntermediateData() {
666      snap_ = sman_->getCurrentSnapshot();
667      storageLayout_ = sman_->getStorageLayout();
# Line 274 | Line 669 | namespace OpenMD {
669      
670      if (storageLayout_ & DataStorage::dslDensity) {
671        
672 <      AtomCommRealRow->scatter(atomRowData.density,
672 >      AtomPlanRealRow->scatter(atomRowData.density,
673                                 snap_->atomData.density);
674        
675        int n = snap_->atomData.density.size();
676 <      std::vector<RealType> rho_tmp(n, 0.0);
677 <      AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
676 >      vector<RealType> rho_tmp(n, 0.0);
677 >      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
678        for (int i = 0; i < n; i++)
679          snap_->atomData.density[i] += rho_tmp[i];
680      }
681 +
682 +    // this isn't necessary if we don't have polarizable atoms, but
683 +    // we'll leave it here for now.
684 +    if (storageLayout_ & DataStorage::dslElectricField) {
685 +      
686 +      AtomPlanVectorRow->scatter(atomRowData.electricField,
687 +                                 snap_->atomData.electricField);
688 +      
689 +      int n = snap_->atomData.electricField.size();
690 +      vector<Vector3d> field_tmp(n, V3Zero);
691 +      AtomPlanVectorColumn->scatter(atomColData.electricField,
692 +                                    field_tmp);
693 +      for (int i = 0; i < n; i++)
694 +        snap_->atomData.electricField[i] += field_tmp[i];
695 +    }
696   #endif
697    }
698 <  
698 >
699 >  /*
700 >   * redistributes information obtained during the pre-pair loop out to
701 >   * row and column-indexed data structures
702 >   */
703    void ForceMatrixDecomposition::distributeIntermediateData() {
704      snap_ = sman_->getCurrentSnapshot();
705      storageLayout_ = sman_->getStorageLayout();
706   #ifdef IS_MPI
707      if (storageLayout_ & DataStorage::dslFunctional) {
708 <      AtomCommRealRow->gather(snap_->atomData.functional,
708 >      AtomPlanRealRow->gather(snap_->atomData.functional,
709                                atomRowData.functional);
710 <      AtomCommRealColumn->gather(snap_->atomData.functional,
710 >      AtomPlanRealColumn->gather(snap_->atomData.functional,
711                                   atomColData.functional);
712      }
713      
714      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
715 <      AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
715 >      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
716                                atomRowData.functionalDerivative);
717 <      AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
717 >      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
718                                   atomColData.functionalDerivative);
719      }
720   #endif
# Line 314 | Line 728 | namespace OpenMD {
728      int n = snap_->atomData.force.size();
729      vector<Vector3d> frc_tmp(n, V3Zero);
730      
731 <    AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
731 >    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
732      for (int i = 0; i < n; i++) {
733        snap_->atomData.force[i] += frc_tmp[i];
734        frc_tmp[i] = 0.0;
735      }
736      
737 <    AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
738 <    for (int i = 0; i < n; i++)
737 >    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
738 >    for (int i = 0; i < n; i++) {
739        snap_->atomData.force[i] += frc_tmp[i];
740 <    
741 <    
740 >    }
741 >        
742      if (storageLayout_ & DataStorage::dslTorque) {
743  
744 <      int nt = snap_->atomData.force.size();
744 >      int nt = snap_->atomData.torque.size();
745        vector<Vector3d> trq_tmp(nt, V3Zero);
746  
747 <      AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
748 <      for (int i = 0; i < n; i++) {
747 >      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
748 >      for (int i = 0; i < nt; i++) {
749          snap_->atomData.torque[i] += trq_tmp[i];
750          trq_tmp[i] = 0.0;
751        }
752        
753 <      AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
754 <      for (int i = 0; i < n; i++)
753 >      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
754 >      for (int i = 0; i < nt; i++)
755          snap_->atomData.torque[i] += trq_tmp[i];
756      }
757 +
758 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
759 +
760 +      int ns = snap_->atomData.skippedCharge.size();
761 +      vector<RealType> skch_tmp(ns, 0.0);
762 +
763 +      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
764 +      for (int i = 0; i < ns; i++) {
765 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
766 +        skch_tmp[i] = 0.0;
767 +      }
768 +      
769 +      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
770 +      for (int i = 0; i < ns; i++)
771 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
772 +            
773 +    }
774      
775 +    if (storageLayout_ & DataStorage::dslFlucQForce) {
776 +
777 +      int nq = snap_->atomData.flucQFrc.size();
778 +      vector<RealType> fqfrc_tmp(nq, 0.0);
779 +
780 +      AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
781 +      for (int i = 0; i < nq; i++) {
782 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
783 +        fqfrc_tmp[i] = 0.0;
784 +      }
785 +      
786 +      AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
787 +      for (int i = 0; i < nq; i++)
788 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
789 +            
790 +    }
791 +
792 +    if (storageLayout_ & DataStorage::dslElectricField) {
793 +
794 +      int nef = snap_->atomData.electricField.size();
795 +      vector<Vector3d> efield_tmp(nef, V3Zero);
796 +
797 +      AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp);
798 +      for (int i = 0; i < nef; i++) {
799 +        snap_->atomData.electricField[i] += efield_tmp[i];
800 +        efield_tmp[i] = 0.0;
801 +      }
802 +      
803 +      AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp);
804 +      for (int i = 0; i < nef; i++)
805 +        snap_->atomData.electricField[i] += efield_tmp[i];
806 +    }
807 +
808 +
809      nLocal_ = snap_->getNumberOfAtoms();
810  
811 <    vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES,
812 <                                       vector<RealType> (nLocal_, 0.0));
811 >    vector<potVec> pot_temp(nLocal_,
812 >                            Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
813 >    vector<potVec> expot_temp(nLocal_,
814 >                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
815 >
816 >    // scatter/gather pot_row into the members of my column
817 >          
818 >    AtomPlanPotRow->scatter(pot_row, pot_temp);
819 >    AtomPlanPotRow->scatter(expot_row, expot_temp);
820 >
821 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
822 >      pairwisePot += pot_temp[ii];
823 >
824 >    for (int ii = 0;  ii < expot_temp.size(); ii++ )
825 >      excludedPot += expot_temp[ii];
826 >        
827 >    if (storageLayout_ & DataStorage::dslParticlePot) {
828 >      // This is the pairwise contribution to the particle pot.  The
829 >      // embedding contribution is added in each of the low level
830 >      // non-bonded routines.  In single processor, this is done in
831 >      // unpackInteractionData, not in collectData.
832 >      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
833 >        for (int i = 0; i < nLocal_; i++) {
834 >          // factor of two is because the total potential terms are divided
835 >          // by 2 in parallel due to row/ column scatter      
836 >          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
837 >        }
838 >      }
839 >    }
840 >
841 >    fill(pot_temp.begin(), pot_temp.end(),
842 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
843 >    fill(expot_temp.begin(), expot_temp.end(),
844 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
845 >      
846 >    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
847 >    AtomPlanPotColumn->scatter(expot_col, expot_temp);    
848      
849 <    for (int i = 0; i < N_INTERACTION_FAMILIES; i++) {
850 <      AtomCommRealRow->scatter(pot_row[i], pot_temp[i]);
851 <      for (int ii = 0;  ii < pot_temp[i].size(); ii++ ) {
852 <        pot_local[i] += pot_temp[i][ii];
849 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
850 >      pairwisePot += pot_temp[ii];    
851 >
852 >    for (int ii = 0;  ii < expot_temp.size(); ii++ )
853 >      excludedPot += expot_temp[ii];    
854 >
855 >    if (storageLayout_ & DataStorage::dslParticlePot) {
856 >      // This is the pairwise contribution to the particle pot.  The
857 >      // embedding contribution is added in each of the low level
858 >      // non-bonded routines.  In single processor, this is done in
859 >      // unpackInteractionData, not in collectData.
860 >      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
861 >        for (int i = 0; i < nLocal_; i++) {
862 >          // factor of two is because the total potential terms are divided
863 >          // by 2 in parallel due to row/ column scatter      
864 >          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
865 >        }
866        }
867      }
868 +    
869 +    if (storageLayout_ & DataStorage::dslParticlePot) {
870 +      int npp = snap_->atomData.particlePot.size();
871 +      vector<RealType> ppot_temp(npp, 0.0);
872 +
873 +      // This is the direct or embedding contribution to the particle
874 +      // pot.
875 +      
876 +      AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
877 +      for (int i = 0; i < npp; i++) {
878 +        snap_->atomData.particlePot[i] += ppot_temp[i];
879 +      }
880 +
881 +      fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
882 +      
883 +      AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
884 +      for (int i = 0; i < npp; i++) {
885 +        snap_->atomData.particlePot[i] += ppot_temp[i];
886 +      }
887 +    }
888 +
889 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
890 +      RealType ploc1 = pairwisePot[ii];
891 +      RealType ploc2 = 0.0;
892 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
893 +      pairwisePot[ii] = ploc2;
894 +    }
895 +
896 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
897 +      RealType ploc1 = excludedPot[ii];
898 +      RealType ploc2 = 0.0;
899 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
900 +      excludedPot[ii] = ploc2;
901 +    }
902 +
903 +    // Here be dragons.
904 +    MPI::Intracomm col = colComm.getComm();
905 +
906 +    col.Allreduce(MPI::IN_PLACE,
907 +                  &snap_->frameData.conductiveHeatFlux[0], 3,
908 +                  MPI::REALTYPE, MPI::SUM);
909 +
910 +
911   #endif
912 +
913    }
914  
915 <  int ForceMatrixDecomposition::getNAtomsInRow() {  
915 >  /**
916 >   * Collects information obtained during the post-pair (and embedding
917 >   * functional) loops onto local data structures.
918 >   */
919 >  void ForceMatrixDecomposition::collectSelfData() {
920 >    snap_ = sman_->getCurrentSnapshot();
921 >    storageLayout_ = sman_->getStorageLayout();
922 >
923   #ifdef IS_MPI
924 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
925 +      RealType ploc1 = embeddingPot[ii];
926 +      RealType ploc2 = 0.0;
927 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
928 +      embeddingPot[ii] = ploc2;
929 +    }    
930 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
931 +      RealType ploc1 = excludedSelfPot[ii];
932 +      RealType ploc2 = 0.0;
933 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
934 +      excludedSelfPot[ii] = ploc2;
935 +    }    
936 + #endif
937 +    
938 +  }
939 +
940 +
941 +
942 +  int& ForceMatrixDecomposition::getNAtomsInRow() {  
943 + #ifdef IS_MPI
944      return nAtomsInRow_;
945   #else
946      return nLocal_;
# Line 366 | Line 950 | namespace OpenMD {
950    /**
951     * returns the list of atoms belonging to this group.  
952     */
953 <  vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
953 >  vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
954   #ifdef IS_MPI
955      return groupListRow_[cg1];
956   #else
# Line 374 | Line 958 | namespace OpenMD {
958   #endif
959    }
960  
961 <  vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
961 >  vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
962   #ifdef IS_MPI
963      return groupListCol_[cg2];
964   #else
# Line 391 | Line 975 | namespace OpenMD {
975      d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
976   #endif
977      
978 <    snap_->wrapVector(d);
978 >    if (usePeriodicBoundaryConditions_) {
979 >      snap_->wrapVector(d);
980 >    }
981      return d;    
982    }
983  
984 +  Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
985 + #ifdef IS_MPI
986 +    return cgColData.velocity[cg2];
987 + #else
988 +    return snap_->cgData.velocity[cg2];
989 + #endif
990 +  }
991  
992 +  Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
993 + #ifdef IS_MPI
994 +    return atomColData.velocity[atom2];
995 + #else
996 +    return snap_->atomData.velocity[atom2];
997 + #endif
998 +  }
999 +
1000 +
1001    Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
1002  
1003      Vector3d d;
# Line 405 | Line 1007 | namespace OpenMD {
1007   #else
1008      d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
1009   #endif
1010 <
1011 <    snap_->wrapVector(d);
1010 >    if (usePeriodicBoundaryConditions_) {
1011 >      snap_->wrapVector(d);
1012 >    }
1013      return d;    
1014    }
1015    
# Line 418 | Line 1021 | namespace OpenMD {
1021   #else
1022      d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
1023   #endif
1024 <    
1025 <    snap_->wrapVector(d);
1024 >    if (usePeriodicBoundaryConditions_) {
1025 >      snap_->wrapVector(d);
1026 >    }
1027      return d;    
1028    }
1029  
1030 <  RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
1030 >  RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) {
1031   #ifdef IS_MPI
1032      return massFactorsRow[atom1];
1033   #else
1034 <    return massFactorsLocal[atom1];
1034 >    return massFactors[atom1];
1035   #endif
1036    }
1037  
1038 <  RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
1038 >  RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
1039   #ifdef IS_MPI
1040      return massFactorsCol[atom2];
1041   #else
1042 <    return massFactorsLocal[atom2];
1042 >    return massFactors[atom2];
1043   #endif
1044  
1045    }
# Line 448 | Line 1052 | namespace OpenMD {
1052   #else
1053      d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
1054   #endif
1055 <
1056 <    snap_->wrapVector(d);
1055 >    if (usePeriodicBoundaryConditions_) {
1056 >      snap_->wrapVector(d);
1057 >    }
1058      return d;    
1059    }
1060  
1061 <  vector<int> ForceMatrixDecomposition::getSkipsForRowAtom(int atom1) {
1062 < #ifdef IS_MPI
458 <    return skipsForRowAtom[atom1];
459 < #else
460 <    return skipsForLocalAtom[atom1];
461 < #endif
1061 >  vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
1062 >    return excludesForAtom[atom1];
1063    }
1064  
1065    /**
1066 <   * there are a number of reasons to skip a pair or a particle mostly
1067 <   * we do this to exclude atoms who are involved in short range
467 <   * interactions (bonds, bends, torsions), but we also need to
468 <   * exclude some overcounted interactions that result from the
469 <   * parallel decomposition.
1066 >   * We need to exclude some overcounted interactions that result from
1067 >   * the parallel decomposition.
1068     */
1069 <  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
1069 >  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) {
1070      int unique_id_1, unique_id_2;
1071 <
1071 >        
1072   #ifdef IS_MPI
1073      // in MPI, we have to look up the unique IDs for each atom
1074      unique_id_1 = AtomRowToGlobal[atom1];
1075      unique_id_2 = AtomColToGlobal[atom2];
1076 +    // group1 = cgRowToGlobal[cg1];
1077 +    // group2 = cgColToGlobal[cg2];
1078 + #else
1079 +    unique_id_1 = AtomLocalToGlobal[atom1];
1080 +    unique_id_2 = AtomLocalToGlobal[atom2];
1081 +    int group1 = cgLocalToGlobal[cg1];
1082 +    int group2 = cgLocalToGlobal[cg2];
1083 + #endif  
1084  
479    // this situation should only arise in MPI simulations
1085      if (unique_id_1 == unique_id_2) return true;
1086 <    
1086 >
1087 > #ifdef IS_MPI
1088      // this prevents us from doing the pair on multiple processors
1089      if (unique_id_1 < unique_id_2) {
1090        if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
1091      } else {
1092 <      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1092 >      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1093      }
1094 < #else
1095 <    // in the normal loop, the atom numbers are unique
1096 <    unique_id_1 = atom1;
1097 <    unique_id_2 = atom2;
1094 > #endif    
1095 >
1096 > #ifndef IS_MPI
1097 >    if (group1 == group2) {
1098 >      if (unique_id_1 < unique_id_2) return true;
1099 >    }
1100   #endif
1101      
1102 < #ifdef IS_MPI
495 <    for (vector<int>::iterator i = skipsForRowAtom[atom1].begin();
496 <         i != skipsForRowAtom[atom1].end(); ++i) {
497 <      if ( (*i) == unique_id_2 ) return true;
498 <    }    
499 < #else
500 <    for (vector<int>::iterator i = skipsForLocalAtom[atom1].begin();
501 <         i != skipsForLocalAtom[atom1].end(); ++i) {
502 <      if ( (*i) == unique_id_2 ) return true;
503 <    }    
504 < #endif
1102 >    return false;
1103    }
1104  
1105 <  int ForceMatrixDecomposition::getTopoDistance(int atom1, int atom2) {
1106 <    
1107 < #ifdef IS_MPI
1108 <    for (int i = 0; i < toposForRowAtom[atom1].size(); i++) {
1109 <      if ( toposForRowAtom[atom1][i] == atom2 ) return topoDistRow[atom1][i];
1110 <    }
1111 < #else
1112 <    for (int i = 0; i < toposForLocalAtom[atom1].size(); i++) {
1113 <      if ( toposForLocalAtom[atom1][i] == atom2 ) return topoDistLocal[atom1][i];
1105 >  /**
1106 >   * We need to handle the interactions for atoms who are involved in
1107 >   * the same rigid body as well as some short range interactions
1108 >   * (bonds, bends, torsions) differently from other interactions.
1109 >   * We'll still visit the pairwise routines, but with a flag that
1110 >   * tells those routines to exclude the pair from direct long range
1111 >   * interactions.  Some indirect interactions (notably reaction
1112 >   * field) must still be handled for these pairs.
1113 >   */
1114 >  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
1115 >
1116 >    // excludesForAtom was constructed to use row/column indices in the MPI
1117 >    // version, and to use local IDs in the non-MPI version:
1118 >    
1119 >    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
1120 >         i != excludesForAtom[atom1].end(); ++i) {
1121 >      if ( (*i) == atom2 ) return true;
1122      }
517 #endif
1123  
1124 <    // zero is default for unconnected (i.e. normal) pair interactions
520 <    return 0;
1124 >    return false;
1125    }
1126  
1127 +
1128    void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
1129   #ifdef IS_MPI
1130      atomRowData.force[atom1] += fg;
# Line 537 | Line 1142 | namespace OpenMD {
1142    }
1143  
1144      // filling interaction blocks with pointers
1145 <  InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) {    
1146 <    InteractionData idat;
1145 >  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1146 >                                                     int atom1, int atom2) {
1147  
1148 +    idat.excluded = excludeAtomPair(atom1, atom2);
1149 +  
1150   #ifdef IS_MPI
1151 +    idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
1152 +    //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
1153 +    //                         ff_->getAtomType(identsCol[atom2]) );
1154      
545    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
546                             ff_->getAtomType(identsCol[atom2]) );
547
1155      if (storageLayout_ & DataStorage::dslAmat) {
1156        idat.A1 = &(atomRowData.aMat[atom1]);
1157        idat.A2 = &(atomColData.aMat[atom2]);
1158      }
1159      
553    if (storageLayout_ & DataStorage::dslElectroFrame) {
554      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
555      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
556    }
557
1160      if (storageLayout_ & DataStorage::dslTorque) {
1161        idat.t1 = &(atomRowData.torque[atom1]);
1162        idat.t2 = &(atomColData.torque[atom2]);
1163      }
1164  
1165 +    if (storageLayout_ & DataStorage::dslDipole) {
1166 +      idat.dipole1 = &(atomRowData.dipole[atom1]);
1167 +      idat.dipole2 = &(atomColData.dipole[atom2]);
1168 +    }
1169 +
1170 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1171 +      idat.quadrupole1 = &(atomRowData.quadrupole[atom1]);
1172 +      idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1173 +    }
1174 +
1175      if (storageLayout_ & DataStorage::dslDensity) {
1176        idat.rho1 = &(atomRowData.density[atom1]);
1177        idat.rho2 = &(atomColData.density[atom2]);
1178      }
1179  
1180 +    if (storageLayout_ & DataStorage::dslFunctional) {
1181 +      idat.frho1 = &(atomRowData.functional[atom1]);
1182 +      idat.frho2 = &(atomColData.functional[atom2]);
1183 +    }
1184 +
1185      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1186        idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1187        idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1188      }
1189  
1190 < #else
1190 >    if (storageLayout_ & DataStorage::dslParticlePot) {
1191 >      idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1192 >      idat.particlePot2 = &(atomColData.particlePot[atom2]);
1193 >    }
1194  
1195 <    idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]),
1196 <                             ff_->getAtomType(identsLocal[atom2]) );
1195 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1196 >      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1197 >      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1198 >    }
1199  
1200 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1201 +      idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1202 +      idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1203 +    }
1204 +
1205 + #else
1206 +    
1207 +    idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
1208 +
1209      if (storageLayout_ & DataStorage::dslAmat) {
1210        idat.A1 = &(snap_->atomData.aMat[atom1]);
1211        idat.A2 = &(snap_->atomData.aMat[atom2]);
1212      }
1213  
583    if (storageLayout_ & DataStorage::dslElectroFrame) {
584      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
585      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
586    }
587
1214      if (storageLayout_ & DataStorage::dslTorque) {
1215        idat.t1 = &(snap_->atomData.torque[atom1]);
1216        idat.t2 = &(snap_->atomData.torque[atom2]);
1217      }
1218  
1219 <    if (storageLayout_ & DataStorage::dslDensity) {
1219 >    if (storageLayout_ & DataStorage::dslDipole) {
1220 >      idat.dipole1 = &(snap_->atomData.dipole[atom1]);
1221 >      idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1222 >    }
1223 >
1224 >    if (storageLayout_ & DataStorage::dslQuadrupole) {
1225 >      idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]);
1226 >      idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1227 >    }
1228 >
1229 >    if (storageLayout_ & DataStorage::dslDensity) {    
1230        idat.rho1 = &(snap_->atomData.density[atom1]);
1231        idat.rho2 = &(snap_->atomData.density[atom2]);
1232      }
1233  
1234 +    if (storageLayout_ & DataStorage::dslFunctional) {
1235 +      idat.frho1 = &(snap_->atomData.functional[atom1]);
1236 +      idat.frho2 = &(snap_->atomData.functional[atom2]);
1237 +    }
1238 +
1239      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1240        idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1241        idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1242      }
1243 +
1244 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1245 +      idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1246 +      idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1247 +    }
1248 +
1249 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
1250 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1251 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1252 +    }
1253 +
1254 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1255 +      idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1256 +      idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1257 +    }
1258 +
1259   #endif
603    return idat;
1260    }
1261  
1262 <  InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){
1263 <
608 <    InteractionData idat;
1262 >  
1263 >  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
1264   #ifdef IS_MPI
1265 <    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
1266 <                             ff_->getAtomType(identsCol[atom2]) );
1265 >    pot_row[atom1] += RealType(0.5) *  *(idat.pot);
1266 >    pot_col[atom2] += RealType(0.5) *  *(idat.pot);
1267 >    expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot);
1268 >    expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot);
1269  
1270 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
1271 <      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
1272 <      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
1270 >    atomRowData.force[atom1] += *(idat.f1);
1271 >    atomColData.force[atom2] -= *(idat.f1);
1272 >
1273 >    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1274 >      atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1275 >      atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1276      }
1277 <    if (storageLayout_ & DataStorage::dslTorque) {
1278 <      idat.t1 = &(atomRowData.torque[atom1]);
1279 <      idat.t2 = &(atomColData.torque[atom2]);
1277 >
1278 >    if (storageLayout_ & DataStorage::dslElectricField) {              
1279 >      atomRowData.electricField[atom1] += *(idat.eField1);
1280 >      atomColData.electricField[atom2] += *(idat.eField2);
1281      }
1282 <    if (storageLayout_ & DataStorage::dslForce) {
622 <      idat.t1 = &(atomRowData.force[atom1]);
623 <      idat.t2 = &(atomColData.force[atom2]);
624 <    }
1282 >
1283   #else
1284 <    idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]),
1285 <                             ff_->getAtomType(identsLocal[atom2]) );
1284 >    pairwisePot += *(idat.pot);
1285 >    excludedPot += *(idat.excludedPot);
1286  
1287 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
1288 <      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
1289 <      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
1287 >    snap_->atomData.force[atom1] += *(idat.f1);
1288 >    snap_->atomData.force[atom2] -= *(idat.f1);
1289 >
1290 >    if (idat.doParticlePot) {
1291 >      // This is the pairwise contribution to the particle pot.  The
1292 >      // embedding contribution is added in each of the low level
1293 >      // non-bonded routines.  In parallel, this calculation is done
1294 >      // in collectData, not in unpackInteractionData.
1295 >      snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1296 >      snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1297      }
1298 <    if (storageLayout_ & DataStorage::dslTorque) {
1299 <      idat.t1 = &(snap_->atomData.torque[atom1]);
1300 <      idat.t2 = &(snap_->atomData.torque[atom2]);
1298 >    
1299 >    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1300 >      snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1301 >      snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1302      }
1303 <    if (storageLayout_ & DataStorage::dslForce) {
1304 <      idat.t1 = &(snap_->atomData.force[atom1]);
1305 <      idat.t2 = &(snap_->atomData.force[atom2]);
1303 >
1304 >    if (storageLayout_ & DataStorage::dslElectricField) {              
1305 >      snap_->atomData.electricField[atom1] += *(idat.eField1);
1306 >      snap_->atomData.electricField[atom2] += *(idat.eField2);
1307      }
1308 < #endif    
1308 >
1309 > #endif
1310 >    
1311    }
1312  
1313    /*
# Line 650 | Line 1319 | namespace OpenMD {
1319    vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1320        
1321      vector<pair<int, int> > neighborList;
1322 < #ifdef IS_MPI
1323 <    cellListRow_.clear();
655 <    cellListCol_.clear();
656 < #else
657 <    cellList_.clear();
658 < #endif
1322 >    groupCutoffs cuts;
1323 >    bool doAllPairs = false;
1324  
1325 <    // dangerous to not do error checking.
661 <    RealType rCut_;
662 <
663 <    RealType rList_ = (rCut_ + skinThickness_);
664 <    RealType rl2 = rList_ * rList_;
1325 >    RealType rList_ = (largestRcut_ + skinThickness_);
1326      Snapshot* snap_ = sman_->getCurrentSnapshot();
1327 <    Mat3x3d Hmat = snap_->getHmat();
1328 <    Vector3d Hx = Hmat.getColumn(0);
668 <    Vector3d Hy = Hmat.getColumn(1);
669 <    Vector3d Hz = Hmat.getColumn(2);
1327 >    Mat3x3d box;
1328 >    Mat3x3d invBox;
1329  
671    nCells_.x() = (int) ( Hx.length() )/ rList_;
672    nCells_.y() = (int) ( Hy.length() )/ rList_;
673    nCells_.z() = (int) ( Hz.length() )/ rList_;
674
675    Mat3x3d invHmat = snap_->getInvHmat();
1330      Vector3d rs, scaled, dr;
1331      Vector3i whichCell;
1332      int cellIndex;
1333  
1334   #ifdef IS_MPI
1335 <    for (int i = 0; i < nGroupsInRow_; i++) {
1336 <      rs = cgRowData.position[i];
1337 <      // scaled positions relative to the box vectors
1338 <      scaled = invHmat * rs;
1339 <      // wrap the vector back into the unit box by subtracting integer box
1340 <      // numbers
1341 <      for (int j = 0; j < 3; j++)
1342 <        scaled[j] -= roundMe(scaled[j]);
1343 <    
1344 <      // find xyz-indices of cell that cutoffGroup is in.
1345 <      whichCell.x() = nCells_.x() * scaled.x();
1346 <      whichCell.y() = nCells_.y() * scaled.y();
693 <      whichCell.z() = nCells_.z() * scaled.z();
694 <
695 <      // find single index of this cell:
696 <      cellIndex = Vlinear(whichCell, nCells_);
697 <      // add this cutoff group to the list of groups in this cell;
698 <      cellListRow_[cellIndex].push_back(i);
1335 >    cellListRow_.clear();
1336 >    cellListCol_.clear();
1337 > #else
1338 >    cellList_.clear();
1339 > #endif
1340 >    
1341 >    if (!usePeriodicBoundaryConditions_) {
1342 >      box = snap_->getBoundingBox();
1343 >      invBox = snap_->getInvBoundingBox();
1344 >    } else {
1345 >      box = snap_->getHmat();
1346 >      invBox = snap_->getInvHmat();
1347      }
1348 <
1349 <    for (int i = 0; i < nGroupsInCol_; i++) {
1350 <      rs = cgColData.position[i];
1351 <      // scaled positions relative to the box vectors
1352 <      scaled = invHmat * rs;
1353 <      // wrap the vector back into the unit box by subtracting integer box
1354 <      // numbers
1355 <      for (int j = 0; j < 3; j++)
1356 <        scaled[j] -= roundMe(scaled[j]);
1357 <
1358 <      // find xyz-indices of cell that cutoffGroup is in.
1359 <      whichCell.x() = nCells_.x() * scaled.x();
1360 <      whichCell.y() = nCells_.y() * scaled.y();
1361 <      whichCell.z() = nCells_.z() * scaled.z();
1362 <
1363 <      // find single index of this cell:
1364 <      cellIndex = Vlinear(whichCell, nCells_);
1365 <      // add this cutoff group to the list of groups in this cell;
1366 <      cellListCol_[cellIndex].push_back(i);
1367 <    }
1348 >    
1349 >    Vector3d boxX = box.getColumn(0);
1350 >    Vector3d boxY = box.getColumn(1);
1351 >    Vector3d boxZ = box.getColumn(2);
1352 >    
1353 >    nCells_.x() = (int) ( boxX.length() )/ rList_;
1354 >    nCells_.y() = (int) ( boxY.length() )/ rList_;
1355 >    nCells_.z() = (int) ( boxZ.length() )/ rList_;
1356 >    
1357 >    // handle small boxes where the cell offsets can end up repeating cells
1358 >    
1359 >    if (nCells_.x() < 3) doAllPairs = true;
1360 >    if (nCells_.y() < 3) doAllPairs = true;
1361 >    if (nCells_.z() < 3) doAllPairs = true;
1362 >    
1363 >    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1364 >    
1365 > #ifdef IS_MPI
1366 >    cellListRow_.resize(nCtot);
1367 >    cellListCol_.resize(nCtot);
1368   #else
1369 <    for (int i = 0; i < nGroups_; i++) {
1370 <      rs = snap_->cgData.position[i];
1371 <      // scaled positions relative to the box vectors
1372 <      scaled = invHmat * rs;
1373 <      // wrap the vector back into the unit box by subtracting integer box
1374 <      // numbers
1375 <      for (int j = 0; j < 3; j++)
1376 <        scaled[j] -= roundMe(scaled[j]);
1369 >    cellList_.resize(nCtot);
1370 > #endif
1371 >    
1372 >    if (!doAllPairs) {
1373 > #ifdef IS_MPI
1374 >      
1375 >      for (int i = 0; i < nGroupsInRow_; i++) {
1376 >        rs = cgRowData.position[i];
1377 >        
1378 >        // scaled positions relative to the box vectors
1379 >        scaled = invBox * rs;
1380 >        
1381 >        // wrap the vector back into the unit box by subtracting integer box
1382 >        // numbers
1383 >        for (int j = 0; j < 3; j++) {
1384 >          scaled[j] -= roundMe(scaled[j]);
1385 >          scaled[j] += 0.5;
1386 >          // Handle the special case when an object is exactly on the
1387 >          // boundary (a scaled coordinate of 1.0 is the same as
1388 >          // scaled coordinate of 0.0)
1389 >          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1390 >        }
1391 >        
1392 >        // find xyz-indices of cell that cutoffGroup is in.
1393 >        whichCell.x() = nCells_.x() * scaled.x();
1394 >        whichCell.y() = nCells_.y() * scaled.y();
1395 >        whichCell.z() = nCells_.z() * scaled.z();
1396 >        
1397 >        // find single index of this cell:
1398 >        cellIndex = Vlinear(whichCell, nCells_);
1399 >        
1400 >        // add this cutoff group to the list of groups in this cell;
1401 >        cellListRow_[cellIndex].push_back(i);
1402 >      }
1403 >      for (int i = 0; i < nGroupsInCol_; i++) {
1404 >        rs = cgColData.position[i];
1405 >        
1406 >        // scaled positions relative to the box vectors
1407 >        scaled = invBox * rs;
1408 >        
1409 >        // wrap the vector back into the unit box by subtracting integer box
1410 >        // numbers
1411 >        for (int j = 0; j < 3; j++) {
1412 >          scaled[j] -= roundMe(scaled[j]);
1413 >          scaled[j] += 0.5;
1414 >          // Handle the special case when an object is exactly on the
1415 >          // boundary (a scaled coordinate of 1.0 is the same as
1416 >          // scaled coordinate of 0.0)
1417 >          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1418 >        }
1419 >        
1420 >        // find xyz-indices of cell that cutoffGroup is in.
1421 >        whichCell.x() = nCells_.x() * scaled.x();
1422 >        whichCell.y() = nCells_.y() * scaled.y();
1423 >        whichCell.z() = nCells_.z() * scaled.z();
1424 >        
1425 >        // find single index of this cell:
1426 >        cellIndex = Vlinear(whichCell, nCells_);
1427 >        
1428 >        // add this cutoff group to the list of groups in this cell;
1429 >        cellListCol_[cellIndex].push_back(i);
1430 >      }
1431 >      
1432 > #else
1433 >      for (int i = 0; i < nGroups_; i++) {
1434 >        rs = snap_->cgData.position[i];
1435 >        
1436 >        // scaled positions relative to the box vectors
1437 >        scaled = invBox * rs;
1438 >        
1439 >        // wrap the vector back into the unit box by subtracting integer box
1440 >        // numbers
1441 >        for (int j = 0; j < 3; j++) {
1442 >          scaled[j] -= roundMe(scaled[j]);
1443 >          scaled[j] += 0.5;
1444 >          // Handle the special case when an object is exactly on the
1445 >          // boundary (a scaled coordinate of 1.0 is the same as
1446 >          // scaled coordinate of 0.0)
1447 >          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1448 >        }
1449 >        
1450 >        // find xyz-indices of cell that cutoffGroup is in.
1451 >        whichCell.x() = nCells_.x() * scaled.x();
1452 >        whichCell.y() = nCells_.y() * scaled.y();
1453 >        whichCell.z() = nCells_.z() * scaled.z();
1454 >        
1455 >        // find single index of this cell:
1456 >        cellIndex = Vlinear(whichCell, nCells_);
1457 >        
1458 >        // add this cutoff group to the list of groups in this cell;
1459 >        cellList_[cellIndex].push_back(i);
1460 >      }
1461  
730      // find xyz-indices of cell that cutoffGroup is in.
731      whichCell.x() = nCells_.x() * scaled.x();
732      whichCell.y() = nCells_.y() * scaled.y();
733      whichCell.z() = nCells_.z() * scaled.z();
734
735      // find single index of this cell:
736      cellIndex = Vlinear(whichCell, nCells_);
737      // add this cutoff group to the list of groups in this cell;
738      cellList_[cellIndex].push_back(i);
739    }
1462   #endif
1463  
1464 <
1465 <
1466 <    for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1467 <      for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1468 <        for (int m1x = 0; m1x < nCells_.x(); m1x++) {
747 <          Vector3i m1v(m1x, m1y, m1z);
748 <          int m1 = Vlinear(m1v, nCells_);
749 <
750 <          for (vector<Vector3i>::iterator os = cellOffsets_.begin();
751 <               os != cellOffsets_.end(); ++os) {
1464 >      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1465 >        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1466 >          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1467 >            Vector3i m1v(m1x, m1y, m1z);
1468 >            int m1 = Vlinear(m1v, nCells_);
1469              
1470 <            Vector3i m2v = m1v + (*os);
1471 <            
1472 <            if (m2v.x() >= nCells_.x()) {
1473 <              m2v.x() = 0;          
1474 <            } else if (m2v.x() < 0) {
758 <              m2v.x() = nCells_.x() - 1;
759 <            }
760 <            
761 <            if (m2v.y() >= nCells_.y()) {
762 <              m2v.y() = 0;          
763 <            } else if (m2v.y() < 0) {
764 <              m2v.y() = nCells_.y() - 1;
765 <            }
766 <            
767 <            if (m2v.z() >= nCells_.z()) {
768 <              m2v.z() = 0;          
769 <            } else if (m2v.z() < 0) {
770 <              m2v.z() = nCells_.z() - 1;
771 <            }
772 <            
773 <            int m2 = Vlinear (m2v, nCells_);
1470 >            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1471 >                 os != cellOffsets_.end(); ++os) {
1472 >              
1473 >              Vector3i m2v = m1v + (*os);
1474 >            
1475  
1476 < #ifdef IS_MPI
1477 <            for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1478 <                 j1 != cellListRow_[m1].end(); ++j1) {
1479 <              for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1480 <                   j2 != cellListCol_[m2].end(); ++j2) {
1481 <                              
1482 <                // Always do this if we're in different cells or if
1483 <                // we're in the same cell and the global index of the
1484 <                // j2 cutoff group is less than the j1 cutoff group
1476 >              if (m2v.x() >= nCells_.x()) {
1477 >                m2v.x() = 0;          
1478 >              } else if (m2v.x() < 0) {
1479 >                m2v.x() = nCells_.x() - 1;
1480 >              }
1481 >              
1482 >              if (m2v.y() >= nCells_.y()) {
1483 >                m2v.y() = 0;          
1484 >              } else if (m2v.y() < 0) {
1485 >                m2v.y() = nCells_.y() - 1;
1486 >              }
1487 >              
1488 >              if (m2v.z() >= nCells_.z()) {
1489 >                m2v.z() = 0;          
1490 >              } else if (m2v.z() < 0) {
1491 >                m2v.z() = nCells_.z() - 1;
1492 >              }
1493  
1494 <                if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1494 >              int m2 = Vlinear (m2v, nCells_);
1495 >              
1496 > #ifdef IS_MPI
1497 >              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1498 >                   j1 != cellListRow_[m1].end(); ++j1) {
1499 >                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1500 >                     j2 != cellListCol_[m2].end(); ++j2) {
1501 >                  
1502 >                  // In parallel, we need to visit *all* pairs of row
1503 >                  // & column indicies and will divide labor in the
1504 >                  // force evaluation later.
1505                    dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1506 <                  snap_->wrapVector(dr);
1507 <                  if (dr.lengthSquare() < rl2) {
789 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1506 >                  if (usePeriodicBoundaryConditions_) {
1507 >                    snap_->wrapVector(dr);
1508                    }
1509 +                  cuts = getGroupCutoffs( (*j1), (*j2) );
1510 +                  if (dr.lengthSquare() < cuts.third) {
1511 +                    neighborList.push_back(make_pair((*j1), (*j2)));
1512 +                  }                  
1513                  }
1514                }
793            }
1515   #else
1516 <            for (vector<int>::iterator j1 = cellList_[m1].begin();
1517 <                 j1 != cellList_[m1].end(); ++j1) {
1518 <              for (vector<int>::iterator j2 = cellList_[m2].begin();
1519 <                   j2 != cellList_[m2].end(); ++j2) {
1520 <                              
1521 <                // Always do this if we're in different cells or if
1522 <                // we're in the same cell and the global index of the
1523 <                // j2 cutoff group is less than the j1 cutoff group
1516 >              for (vector<int>::iterator j1 = cellList_[m1].begin();
1517 >                   j1 != cellList_[m1].end(); ++j1) {
1518 >                for (vector<int>::iterator j2 = cellList_[m2].begin();
1519 >                     j2 != cellList_[m2].end(); ++j2) {
1520 >    
1521 >                  // Always do this if we're in different cells or if
1522 >                  // we're in the same cell and the global index of
1523 >                  // the j2 cutoff group is greater than or equal to
1524 >                  // the j1 cutoff group.  Note that Rappaport's code
1525 >                  // has a "less than" conditional here, but that
1526 >                  // deals with atom-by-atom computation.  OpenMD
1527 >                  // allows atoms within a single cutoff group to
1528 >                  // interact with each other.
1529  
1530 <                if (m2 != m1 || (*j2) < (*j1)) {
1531 <                  dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1532 <                  snap_->wrapVector(dr);
1533 <                  if (dr.lengthSquare() < rl2) {
1534 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1530 >                  if (m2 != m1 || (*j2) >= (*j1) ) {
1531 >
1532 >                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1533 >                    if (usePeriodicBoundaryConditions_) {
1534 >                      snap_->wrapVector(dr);
1535 >                    }
1536 >                    cuts = getGroupCutoffs( (*j1), (*j2) );
1537 >                    if (dr.lengthSquare() < cuts.third) {
1538 >                      neighborList.push_back(make_pair((*j1), (*j2)));
1539 >                    }
1540                    }
1541                  }
1542                }
812            }
1543   #endif
1544 +            }
1545            }
1546          }
1547        }
1548 +    } else {
1549 +      // branch to do all cutoff group pairs
1550 + #ifdef IS_MPI
1551 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1552 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {    
1553 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1554 +          if (usePeriodicBoundaryConditions_) {
1555 +            snap_->wrapVector(dr);
1556 +          }
1557 +          cuts = getGroupCutoffs( j1, j2 );
1558 +          if (dr.lengthSquare() < cuts.third) {
1559 +            neighborList.push_back(make_pair(j1, j2));
1560 +          }
1561 +        }
1562 +      }      
1563 + #else
1564 +      // include all groups here.
1565 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1566 +        // include self group interactions j2 == j1
1567 +        for (int j2 = j1; j2 < nGroups_; j2++) {
1568 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1569 +          if (usePeriodicBoundaryConditions_) {
1570 +            snap_->wrapVector(dr);
1571 +          }
1572 +          cuts = getGroupCutoffs( j1, j2 );
1573 +          if (dr.lengthSquare() < cuts.third) {
1574 +            neighborList.push_back(make_pair(j1, j2));
1575 +          }
1576 +        }    
1577 +      }
1578 + #endif
1579      }
1580 <
1580 >      
1581      // save the local cutoff group positions for the check that is
1582      // done on each loop:
1583      saved_CG_positions_.clear();
1584      for (int i = 0; i < nGroups_; i++)
1585        saved_CG_positions_.push_back(snap_->cgData.position[i]);
1586 <
1586 >    
1587      return neighborList;
1588    }
1589   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines