1 |
< |
/** |
2 |
< |
* @file ForceDecomposition.cpp |
3 |
< |
* @author Charles Vardeman <cvardema.at.nd.edu> |
4 |
< |
* @date 08/18/2010 |
5 |
< |
* @time 11:56am |
6 |
< |
* @version 1.0 |
1 |
> |
/* |
2 |
> |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
* |
8 |
– |
* @section LICENSE |
9 |
– |
* Copyright (c) 2010 The University of Notre Dame. All Rights Reserved. |
10 |
– |
* |
4 |
|
* The University of Notre Dame grants you ("Licensee") a |
5 |
|
* non-exclusive, royalty free, license to use, modify and |
6 |
|
* redistribute this software in source and binary code form, provided |
38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
|
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
|
*/ |
41 |
+ |
#include "parallel/ForceMatrixDecomposition.hpp" |
42 |
+ |
#include "math/SquareMatrix3.hpp" |
43 |
+ |
#include "nonbonded/NonBondedInteraction.hpp" |
44 |
+ |
#include "brains/SnapshotManager.hpp" |
45 |
|
|
46 |
+ |
using namespace std; |
47 |
+ |
namespace OpenMD { |
48 |
|
|
49 |
+ |
/** |
50 |
+ |
* distributeInitialData is essentially a copy of the older fortran |
51 |
+ |
* SimulationSetup |
52 |
+ |
*/ |
53 |
+ |
|
54 |
+ |
void ForceMatrixDecomposition::distributeInitialData() { |
55 |
+ |
snap_ = sman_->getCurrentSnapshot(); |
56 |
+ |
storageLayout_ = sman_->getStorageLayout(); |
57 |
+ |
nLocal_ = snap_->getNumberOfAtoms(); |
58 |
+ |
nGroups_ = snap_->getNumberOfCutoffGroups(); |
59 |
|
|
60 |
< |
/* -*- c++ -*- */ |
61 |
< |
#include "config.h" |
62 |
< |
#include <stdlib.h> |
60 |
> |
// gather the information for atomtype IDs (atids): |
61 |
> |
vector<int> identsLocal = info_->getIdentArray(); |
62 |
> |
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
63 |
> |
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
64 |
> |
vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
65 |
> |
vector<RealType> massFactorsLocal = info_->getMassFactors(); |
66 |
> |
vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0); |
67 |
> |
|
68 |
|
#ifdef IS_MPI |
69 |
< |
#include <mpi.h> |
70 |
< |
#endif |
69 |
> |
|
70 |
> |
AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
71 |
> |
AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
72 |
> |
AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
73 |
> |
AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
74 |
|
|
75 |
< |
#include <iostream> |
76 |
< |
#include <vector> |
77 |
< |
#include <algorithm> |
78 |
< |
#include <cmath> |
62 |
< |
#include "parallel/ForceDecomposition.hpp" |
75 |
> |
AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
76 |
> |
AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
77 |
> |
AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
78 |
> |
AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
79 |
|
|
80 |
+ |
cgCommIntRow = new Communicator<Row,int>(nGroups_); |
81 |
+ |
cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
82 |
+ |
cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
83 |
+ |
cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
84 |
|
|
85 |
< |
using namespace std; |
86 |
< |
using namespace OpenMD; |
85 |
> |
nAtomsInRow_ = AtomCommIntRow->getSize(); |
86 |
> |
nAtomsInCol_ = AtomCommIntColumn->getSize(); |
87 |
> |
nGroupsInRow_ = cgCommIntRow->getSize(); |
88 |
> |
nGroupsInCol_ = cgCommIntColumn->getSize(); |
89 |
|
|
90 |
< |
//__static |
91 |
< |
#ifdef IS_MPI |
92 |
< |
static vector<MPI:Comm> communictors; |
93 |
< |
#endif |
90 |
> |
// Modify the data storage objects with the correct layouts and sizes: |
91 |
> |
atomRowData.resize(nAtomsInRow_); |
92 |
> |
atomRowData.setStorageLayout(storageLayout_); |
93 |
> |
atomColData.resize(nAtomsInCol_); |
94 |
> |
atomColData.setStorageLayout(storageLayout_); |
95 |
> |
cgRowData.resize(nGroupsInRow_); |
96 |
> |
cgRowData.setStorageLayout(DataStorage::dslPosition); |
97 |
> |
cgColData.resize(nGroupsInCol_); |
98 |
> |
cgColData.setStorageLayout(DataStorage::dslPosition); |
99 |
> |
|
100 |
> |
vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES, |
101 |
> |
vector<RealType> (nAtomsInRow_, 0.0)); |
102 |
> |
vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES, |
103 |
> |
vector<RealType> (nAtomsInCol_, 0.0)); |
104 |
> |
|
105 |
> |
identsRow.reserve(nAtomsInRow_); |
106 |
> |
identsCol.reserve(nAtomsInCol_); |
107 |
> |
|
108 |
> |
AtomCommIntRow->gather(identsLocal, identsRow); |
109 |
> |
AtomCommIntColumn->gather(identsLocal, identsCol); |
110 |
> |
|
111 |
> |
AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
112 |
> |
AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
113 |
> |
|
114 |
> |
cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
115 |
> |
cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
116 |
|
|
117 |
< |
//____ MPITypeTraits |
118 |
< |
template<typename T> |
75 |
< |
struct MPITypeTraits; |
117 |
> |
AtomCommRealRow->gather(massFactorsLocal, massFactorsRow); |
118 |
> |
AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol); |
119 |
|
|
120 |
< |
#ifdef IS_MPI |
121 |
< |
template<> |
122 |
< |
struct MPITypeTraits<RealType> { |
123 |
< |
static const MPI::Datatype datatype; |
124 |
< |
}; |
125 |
< |
const MPI_Datatype MPITypeTraits<RealType>::datatype = MY_MPI_REAL; |
120 |
> |
groupListRow_.clear(); |
121 |
> |
groupListRow_.reserve(nGroupsInRow_); |
122 |
> |
for (int i = 0; i < nGroupsInRow_; i++) { |
123 |
> |
int gid = cgRowToGlobal[i]; |
124 |
> |
for (int j = 0; j < nAtomsInRow_; j++) { |
125 |
> |
int aid = AtomRowToGlobal[j]; |
126 |
> |
if (globalGroupMembership[aid] == gid) |
127 |
> |
groupListRow_[i].push_back(j); |
128 |
> |
} |
129 |
> |
} |
130 |
|
|
131 |
< |
template<> |
132 |
< |
struct MPITypeTraits<int> { |
133 |
< |
static const MPI::Datatype datatype; |
134 |
< |
}; |
135 |
< |
const MPI::Datatype MPITypeTraits<int>::datatype = MPI_INT; |
131 |
> |
groupListCol_.clear(); |
132 |
> |
groupListCol_.reserve(nGroupsInCol_); |
133 |
> |
for (int i = 0; i < nGroupsInCol_; i++) { |
134 |
> |
int gid = cgColToGlobal[i]; |
135 |
> |
for (int j = 0; j < nAtomsInCol_; j++) { |
136 |
> |
int aid = AtomColToGlobal[j]; |
137 |
> |
if (globalGroupMembership[aid] == gid) |
138 |
> |
groupListCol_[i].push_back(j); |
139 |
> |
} |
140 |
> |
} |
141 |
> |
|
142 |
|
#endif |
143 |
|
|
144 |
< |
/** |
145 |
< |
* Constructor for ForceDecomposition Parallel Decomposition Method |
146 |
< |
* Will try to construct a symmetric grid of processors. Ideally, the |
147 |
< |
* number of processors will be a square ex: 4, 9, 16, 25. |
148 |
< |
* |
149 |
< |
*/ |
144 |
> |
groupList_.clear(); |
145 |
> |
groupList_.reserve(nGroups_); |
146 |
> |
for (int i = 0; i < nGroups_; i++) { |
147 |
> |
int gid = cgLocalToGlobal[i]; |
148 |
> |
for (int j = 0; j < nLocal_; j++) { |
149 |
> |
int aid = AtomLocalToGlobal[j]; |
150 |
> |
if (globalGroupMembership[aid] == gid) |
151 |
> |
groupList_[i].push_back(j); |
152 |
> |
} |
153 |
> |
} |
154 |
|
|
155 |
< |
ForceDecomposition::ForceDecomposition() { |
155 |
> |
|
156 |
> |
// still need: |
157 |
> |
// topoDist |
158 |
> |
// exclude |
159 |
|
|
160 |
+ |
} |
161 |
+ |
|
162 |
+ |
|
163 |
+ |
|
164 |
+ |
void ForceMatrixDecomposition::distributeData() { |
165 |
+ |
snap_ = sman_->getCurrentSnapshot(); |
166 |
+ |
storageLayout_ = sman_->getStorageLayout(); |
167 |
|
#ifdef IS_MPI |
168 |
< |
int nProcs = MPI::COMM_WORLD.Get_size(); |
169 |
< |
int worldRank = MPI::COMM_WORLD.Get_rank(); |
168 |
> |
|
169 |
> |
// gather up the atomic positions |
170 |
> |
AtomCommVectorRow->gather(snap_->atomData.position, |
171 |
> |
atomRowData.position); |
172 |
> |
AtomCommVectorColumn->gather(snap_->atomData.position, |
173 |
> |
atomColData.position); |
174 |
> |
|
175 |
> |
// gather up the cutoff group positions |
176 |
> |
cgCommVectorRow->gather(snap_->cgData.position, |
177 |
> |
cgRowData.position); |
178 |
> |
cgCommVectorColumn->gather(snap_->cgData.position, |
179 |
> |
cgColData.position); |
180 |
> |
|
181 |
> |
// if needed, gather the atomic rotation matrices |
182 |
> |
if (storageLayout_ & DataStorage::dslAmat) { |
183 |
> |
AtomCommMatrixRow->gather(snap_->atomData.aMat, |
184 |
> |
atomRowData.aMat); |
185 |
> |
AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
186 |
> |
atomColData.aMat); |
187 |
> |
} |
188 |
> |
|
189 |
> |
// if needed, gather the atomic eletrostatic frames |
190 |
> |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
191 |
> |
AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
192 |
> |
atomRowData.electroFrame); |
193 |
> |
AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
194 |
> |
atomColData.electroFrame); |
195 |
> |
} |
196 |
> |
#endif |
197 |
> |
} |
198 |
> |
|
199 |
> |
void ForceMatrixDecomposition::collectIntermediateData() { |
200 |
> |
snap_ = sman_->getCurrentSnapshot(); |
201 |
> |
storageLayout_ = sman_->getStorageLayout(); |
202 |
> |
#ifdef IS_MPI |
203 |
> |
|
204 |
> |
if (storageLayout_ & DataStorage::dslDensity) { |
205 |
> |
|
206 |
> |
AtomCommRealRow->scatter(atomRowData.density, |
207 |
> |
snap_->atomData.density); |
208 |
> |
|
209 |
> |
int n = snap_->atomData.density.size(); |
210 |
> |
std::vector<RealType> rho_tmp(n, 0.0); |
211 |
> |
AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
212 |
> |
for (int i = 0; i < n; i++) |
213 |
> |
snap_->atomData.density[i] += rho_tmp[i]; |
214 |
> |
} |
215 |
|
#endif |
216 |
+ |
} |
217 |
+ |
|
218 |
+ |
void ForceMatrixDecomposition::distributeIntermediateData() { |
219 |
+ |
snap_ = sman_->getCurrentSnapshot(); |
220 |
+ |
storageLayout_ = sman_->getStorageLayout(); |
221 |
+ |
#ifdef IS_MPI |
222 |
+ |
if (storageLayout_ & DataStorage::dslFunctional) { |
223 |
+ |
AtomCommRealRow->gather(snap_->atomData.functional, |
224 |
+ |
atomRowData.functional); |
225 |
+ |
AtomCommRealColumn->gather(snap_->atomData.functional, |
226 |
+ |
atomColData.functional); |
227 |
+ |
} |
228 |
+ |
|
229 |
+ |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
230 |
+ |
AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
231 |
+ |
atomRowData.functionalDerivative); |
232 |
+ |
AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
233 |
+ |
atomColData.functionalDerivative); |
234 |
+ |
} |
235 |
+ |
#endif |
236 |
+ |
} |
237 |
+ |
|
238 |
+ |
|
239 |
+ |
void ForceMatrixDecomposition::collectData() { |
240 |
+ |
snap_ = sman_->getCurrentSnapshot(); |
241 |
+ |
storageLayout_ = sman_->getStorageLayout(); |
242 |
+ |
#ifdef IS_MPI |
243 |
+ |
int n = snap_->atomData.force.size(); |
244 |
+ |
vector<Vector3d> frc_tmp(n, V3Zero); |
245 |
+ |
|
246 |
+ |
AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
247 |
+ |
for (int i = 0; i < n; i++) { |
248 |
+ |
snap_->atomData.force[i] += frc_tmp[i]; |
249 |
+ |
frc_tmp[i] = 0.0; |
250 |
+ |
} |
251 |
+ |
|
252 |
+ |
AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
253 |
+ |
for (int i = 0; i < n; i++) |
254 |
+ |
snap_->atomData.force[i] += frc_tmp[i]; |
255 |
+ |
|
256 |
+ |
|
257 |
+ |
if (storageLayout_ & DataStorage::dslTorque) { |
258 |
|
|
259 |
< |
// First time through, construct column stride. |
260 |
< |
if (communicators.size() == 0) |
261 |
< |
{ |
262 |
< |
int nColumnsMax = (int) round(sqrt((float) nProcs)); |
263 |
< |
for (int i = 0; i < nProcs; ++i) |
264 |
< |
{ |
265 |
< |
if (nProcs%i==0) nColumns=i; |
259 |
> |
int nt = snap_->atomData.force.size(); |
260 |
> |
vector<Vector3d> trq_tmp(nt, V3Zero); |
261 |
> |
|
262 |
> |
AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
263 |
> |
for (int i = 0; i < n; i++) { |
264 |
> |
snap_->atomData.torque[i] += trq_tmp[i]; |
265 |
> |
trq_tmp[i] = 0.0; |
266 |
> |
} |
267 |
> |
|
268 |
> |
AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
269 |
> |
for (int i = 0; i < n; i++) |
270 |
> |
snap_->atomData.torque[i] += trq_tmp[i]; |
271 |
|
} |
272 |
+ |
|
273 |
+ |
nLocal_ = snap_->getNumberOfAtoms(); |
274 |
|
|
275 |
< |
int nRows = nProcs/nColumns; |
276 |
< |
myRank_ = (int) worldRank%nColumns; |
275 |
> |
vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES, |
276 |
> |
vector<RealType> (nLocal_, 0.0)); |
277 |
> |
|
278 |
> |
for (int i = 0; i < N_INTERACTION_FAMILIES; i++) { |
279 |
> |
AtomCommRealRow->scatter(pot_row[i], pot_temp[i]); |
280 |
> |
for (int ii = 0; ii < pot_temp[i].size(); ii++ ) { |
281 |
> |
pot_local[i] += pot_temp[i][ii]; |
282 |
> |
} |
283 |
> |
} |
284 |
> |
#endif |
285 |
|
} |
286 |
< |
else |
287 |
< |
{ |
288 |
< |
myRank_ = myRank/nColumns; |
286 |
> |
|
287 |
> |
/** |
288 |
> |
* returns the list of atoms belonging to this group. |
289 |
> |
*/ |
290 |
> |
vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
291 |
> |
#ifdef IS_MPI |
292 |
> |
return groupListRow_[cg1]; |
293 |
> |
#else |
294 |
> |
return groupList_[cg1]; |
295 |
> |
#endif |
296 |
|
} |
297 |
< |
MPI::Comm newComm = MPI:COMM_WORLD.Split(myRank_,0); |
297 |
> |
|
298 |
> |
vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
299 |
> |
#ifdef IS_MPI |
300 |
> |
return groupListCol_[cg2]; |
301 |
> |
#else |
302 |
> |
return groupList_[cg2]; |
303 |
> |
#endif |
304 |
> |
} |
305 |
|
|
306 |
< |
isColumn_ = false; |
307 |
< |
|
308 |
< |
} |
306 |
> |
Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ |
307 |
> |
Vector3d d; |
308 |
> |
|
309 |
> |
#ifdef IS_MPI |
310 |
> |
d = cgColData.position[cg2] - cgRowData.position[cg1]; |
311 |
> |
#else |
312 |
> |
d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; |
313 |
> |
#endif |
314 |
> |
|
315 |
> |
snap_->wrapVector(d); |
316 |
> |
return d; |
317 |
> |
} |
318 |
|
|
127 |
– |
ForceDecomposition::gather(sendbuf, receivebuf){ |
128 |
– |
communicators(myIndex_).Allgatherv(); |
129 |
– |
} |
319 |
|
|
320 |
+ |
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ |
321 |
|
|
322 |
+ |
Vector3d d; |
323 |
+ |
|
324 |
+ |
#ifdef IS_MPI |
325 |
+ |
d = cgRowData.position[cg1] - atomRowData.position[atom1]; |
326 |
+ |
#else |
327 |
+ |
d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; |
328 |
+ |
#endif |
329 |
|
|
330 |
< |
ForceDecomposition::scatter(sbuffer, rbuffer){ |
331 |
< |
communicators(myIndex_).Reduce_scatter(sbuffer, recevbuf. recvcounts, MPI::DOUBLE, MPI::SUM); |
332 |
< |
} |
330 |
> |
snap_->wrapVector(d); |
331 |
> |
return d; |
332 |
> |
} |
333 |
> |
|
334 |
> |
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){ |
335 |
> |
Vector3d d; |
336 |
> |
|
337 |
> |
#ifdef IS_MPI |
338 |
> |
d = cgColData.position[cg2] - atomColData.position[atom2]; |
339 |
> |
#else |
340 |
> |
d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; |
341 |
> |
#endif |
342 |
> |
|
343 |
> |
snap_->wrapVector(d); |
344 |
> |
return d; |
345 |
> |
} |
346 |
|
|
347 |
+ |
RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
348 |
+ |
#ifdef IS_MPI |
349 |
+ |
return massFactorsRow[atom1]; |
350 |
+ |
#else |
351 |
+ |
return massFactorsLocal[atom1]; |
352 |
+ |
#endif |
353 |
+ |
} |
354 |
|
|
355 |
+ |
RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
356 |
+ |
#ifdef IS_MPI |
357 |
+ |
return massFactorsCol[atom2]; |
358 |
+ |
#else |
359 |
+ |
return massFactorsLocal[atom2]; |
360 |
+ |
#endif |
361 |
+ |
|
362 |
+ |
} |
363 |
+ |
|
364 |
+ |
Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ |
365 |
+ |
Vector3d d; |
366 |
+ |
|
367 |
+ |
#ifdef IS_MPI |
368 |
+ |
d = atomColData.position[atom2] - atomRowData.position[atom1]; |
369 |
+ |
#else |
370 |
+ |
d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; |
371 |
+ |
#endif |
372 |
+ |
|
373 |
+ |
snap_->wrapVector(d); |
374 |
+ |
return d; |
375 |
+ |
} |
376 |
+ |
|
377 |
+ |
void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ |
378 |
+ |
#ifdef IS_MPI |
379 |
+ |
atomRowData.force[atom1] += fg; |
380 |
+ |
#else |
381 |
+ |
snap_->atomData.force[atom1] += fg; |
382 |
+ |
#endif |
383 |
+ |
} |
384 |
+ |
|
385 |
+ |
void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){ |
386 |
+ |
#ifdef IS_MPI |
387 |
+ |
atomColData.force[atom2] += fg; |
388 |
+ |
#else |
389 |
+ |
snap_->atomData.force[atom2] += fg; |
390 |
+ |
#endif |
391 |
+ |
} |
392 |
+ |
|
393 |
+ |
// filling interaction blocks with pointers |
394 |
+ |
InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { |
395 |
+ |
InteractionData idat; |
396 |
+ |
|
397 |
+ |
#ifdef IS_MPI |
398 |
+ |
if (storageLayout_ & DataStorage::dslAmat) { |
399 |
+ |
idat.A1 = &(atomRowData.aMat[atom1]); |
400 |
+ |
idat.A2 = &(atomColData.aMat[atom2]); |
401 |
+ |
} |
402 |
+ |
|
403 |
+ |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
404 |
+ |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
405 |
+ |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
406 |
+ |
} |
407 |
+ |
|
408 |
+ |
if (storageLayout_ & DataStorage::dslTorque) { |
409 |
+ |
idat.t1 = &(atomRowData.torque[atom1]); |
410 |
+ |
idat.t2 = &(atomColData.torque[atom2]); |
411 |
+ |
} |
412 |
+ |
|
413 |
+ |
if (storageLayout_ & DataStorage::dslDensity) { |
414 |
+ |
idat.rho1 = &(atomRowData.density[atom1]); |
415 |
+ |
idat.rho2 = &(atomColData.density[atom2]); |
416 |
+ |
} |
417 |
+ |
|
418 |
+ |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
419 |
+ |
idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); |
420 |
+ |
idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); |
421 |
+ |
} |
422 |
+ |
#else |
423 |
+ |
if (storageLayout_ & DataStorage::dslAmat) { |
424 |
+ |
idat.A1 = &(snap_->atomData.aMat[atom1]); |
425 |
+ |
idat.A2 = &(snap_->atomData.aMat[atom2]); |
426 |
+ |
} |
427 |
+ |
|
428 |
+ |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
429 |
+ |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
430 |
+ |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
431 |
+ |
} |
432 |
+ |
|
433 |
+ |
if (storageLayout_ & DataStorage::dslTorque) { |
434 |
+ |
idat.t1 = &(snap_->atomData.torque[atom1]); |
435 |
+ |
idat.t2 = &(snap_->atomData.torque[atom2]); |
436 |
+ |
} |
437 |
+ |
|
438 |
+ |
if (storageLayout_ & DataStorage::dslDensity) { |
439 |
+ |
idat.rho1 = &(snap_->atomData.density[atom1]); |
440 |
+ |
idat.rho2 = &(snap_->atomData.density[atom2]); |
441 |
+ |
} |
442 |
+ |
|
443 |
+ |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
444 |
+ |
idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); |
445 |
+ |
idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); |
446 |
+ |
} |
447 |
+ |
#endif |
448 |
+ |
return idat; |
449 |
+ |
} |
450 |
+ |
|
451 |
+ |
InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ |
452 |
+ |
|
453 |
+ |
InteractionData idat; |
454 |
+ |
#ifdef IS_MPI |
455 |
+ |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
456 |
+ |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
457 |
+ |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
458 |
+ |
} |
459 |
+ |
if (storageLayout_ & DataStorage::dslTorque) { |
460 |
+ |
idat.t1 = &(atomRowData.torque[atom1]); |
461 |
+ |
idat.t2 = &(atomColData.torque[atom2]); |
462 |
+ |
} |
463 |
+ |
if (storageLayout_ & DataStorage::dslForce) { |
464 |
+ |
idat.t1 = &(atomRowData.force[atom1]); |
465 |
+ |
idat.t2 = &(atomColData.force[atom2]); |
466 |
+ |
} |
467 |
+ |
#else |
468 |
+ |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
469 |
+ |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
470 |
+ |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
471 |
+ |
} |
472 |
+ |
if (storageLayout_ & DataStorage::dslTorque) { |
473 |
+ |
idat.t1 = &(snap_->atomData.torque[atom1]); |
474 |
+ |
idat.t2 = &(snap_->atomData.torque[atom2]); |
475 |
+ |
} |
476 |
+ |
if (storageLayout_ & DataStorage::dslForce) { |
477 |
+ |
idat.t1 = &(snap_->atomData.force[atom1]); |
478 |
+ |
idat.t2 = &(snap_->atomData.force[atom2]); |
479 |
+ |
} |
480 |
+ |
#endif |
481 |
+ |
|
482 |
+ |
} |
483 |
+ |
|
484 |
+ |
|
485 |
+ |
|
486 |
+ |
|
487 |
+ |
/* |
488 |
+ |
* buildNeighborList |
489 |
+ |
* |
490 |
+ |
* first element of pair is row-indexed CutoffGroup |
491 |
+ |
* second element of pair is column-indexed CutoffGroup |
492 |
+ |
*/ |
493 |
+ |
vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
494 |
+ |
|
495 |
+ |
vector<pair<int, int> > neighborList; |
496 |
+ |
#ifdef IS_MPI |
497 |
+ |
cellListRow_.clear(); |
498 |
+ |
cellListCol_.clear(); |
499 |
+ |
#else |
500 |
+ |
cellList_.clear(); |
501 |
+ |
#endif |
502 |
+ |
|
503 |
+ |
// dangerous to not do error checking. |
504 |
+ |
RealType rCut_; |
505 |
+ |
|
506 |
+ |
RealType rList_ = (rCut_ + skinThickness_); |
507 |
+ |
RealType rl2 = rList_ * rList_; |
508 |
+ |
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
509 |
+ |
Mat3x3d Hmat = snap_->getHmat(); |
510 |
+ |
Vector3d Hx = Hmat.getColumn(0); |
511 |
+ |
Vector3d Hy = Hmat.getColumn(1); |
512 |
+ |
Vector3d Hz = Hmat.getColumn(2); |
513 |
+ |
|
514 |
+ |
nCells_.x() = (int) ( Hx.length() )/ rList_; |
515 |
+ |
nCells_.y() = (int) ( Hy.length() )/ rList_; |
516 |
+ |
nCells_.z() = (int) ( Hz.length() )/ rList_; |
517 |
+ |
|
518 |
+ |
Mat3x3d invHmat = snap_->getInvHmat(); |
519 |
+ |
Vector3d rs, scaled, dr; |
520 |
+ |
Vector3i whichCell; |
521 |
+ |
int cellIndex; |
522 |
+ |
|
523 |
+ |
#ifdef IS_MPI |
524 |
+ |
for (int i = 0; i < nGroupsInRow_; i++) { |
525 |
+ |
rs = cgRowData.position[i]; |
526 |
+ |
// scaled positions relative to the box vectors |
527 |
+ |
scaled = invHmat * rs; |
528 |
+ |
// wrap the vector back into the unit box by subtracting integer box |
529 |
+ |
// numbers |
530 |
+ |
for (int j = 0; j < 3; j++) |
531 |
+ |
scaled[j] -= roundMe(scaled[j]); |
532 |
+ |
|
533 |
+ |
// find xyz-indices of cell that cutoffGroup is in. |
534 |
+ |
whichCell.x() = nCells_.x() * scaled.x(); |
535 |
+ |
whichCell.y() = nCells_.y() * scaled.y(); |
536 |
+ |
whichCell.z() = nCells_.z() * scaled.z(); |
537 |
+ |
|
538 |
+ |
// find single index of this cell: |
539 |
+ |
cellIndex = Vlinear(whichCell, nCells_); |
540 |
+ |
// add this cutoff group to the list of groups in this cell; |
541 |
+ |
cellListRow_[cellIndex].push_back(i); |
542 |
+ |
} |
543 |
+ |
|
544 |
+ |
for (int i = 0; i < nGroupsInCol_; i++) { |
545 |
+ |
rs = cgColData.position[i]; |
546 |
+ |
// scaled positions relative to the box vectors |
547 |
+ |
scaled = invHmat * rs; |
548 |
+ |
// wrap the vector back into the unit box by subtracting integer box |
549 |
+ |
// numbers |
550 |
+ |
for (int j = 0; j < 3; j++) |
551 |
+ |
scaled[j] -= roundMe(scaled[j]); |
552 |
+ |
|
553 |
+ |
// find xyz-indices of cell that cutoffGroup is in. |
554 |
+ |
whichCell.x() = nCells_.x() * scaled.x(); |
555 |
+ |
whichCell.y() = nCells_.y() * scaled.y(); |
556 |
+ |
whichCell.z() = nCells_.z() * scaled.z(); |
557 |
+ |
|
558 |
+ |
// find single index of this cell: |
559 |
+ |
cellIndex = Vlinear(whichCell, nCells_); |
560 |
+ |
// add this cutoff group to the list of groups in this cell; |
561 |
+ |
cellListCol_[cellIndex].push_back(i); |
562 |
+ |
} |
563 |
+ |
#else |
564 |
+ |
for (int i = 0; i < nGroups_; i++) { |
565 |
+ |
rs = snap_->cgData.position[i]; |
566 |
+ |
// scaled positions relative to the box vectors |
567 |
+ |
scaled = invHmat * rs; |
568 |
+ |
// wrap the vector back into the unit box by subtracting integer box |
569 |
+ |
// numbers |
570 |
+ |
for (int j = 0; j < 3; j++) |
571 |
+ |
scaled[j] -= roundMe(scaled[j]); |
572 |
+ |
|
573 |
+ |
// find xyz-indices of cell that cutoffGroup is in. |
574 |
+ |
whichCell.x() = nCells_.x() * scaled.x(); |
575 |
+ |
whichCell.y() = nCells_.y() * scaled.y(); |
576 |
+ |
whichCell.z() = nCells_.z() * scaled.z(); |
577 |
+ |
|
578 |
+ |
// find single index of this cell: |
579 |
+ |
cellIndex = Vlinear(whichCell, nCells_); |
580 |
+ |
// add this cutoff group to the list of groups in this cell; |
581 |
+ |
cellList_[cellIndex].push_back(i); |
582 |
+ |
} |
583 |
+ |
#endif |
584 |
+ |
|
585 |
+ |
|
586 |
+ |
|
587 |
+ |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
588 |
+ |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
589 |
+ |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
590 |
+ |
Vector3i m1v(m1x, m1y, m1z); |
591 |
+ |
int m1 = Vlinear(m1v, nCells_); |
592 |
+ |
|
593 |
+ |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
594 |
+ |
os != cellOffsets_.end(); ++os) { |
595 |
+ |
|
596 |
+ |
Vector3i m2v = m1v + (*os); |
597 |
+ |
|
598 |
+ |
if (m2v.x() >= nCells_.x()) { |
599 |
+ |
m2v.x() = 0; |
600 |
+ |
} else if (m2v.x() < 0) { |
601 |
+ |
m2v.x() = nCells_.x() - 1; |
602 |
+ |
} |
603 |
+ |
|
604 |
+ |
if (m2v.y() >= nCells_.y()) { |
605 |
+ |
m2v.y() = 0; |
606 |
+ |
} else if (m2v.y() < 0) { |
607 |
+ |
m2v.y() = nCells_.y() - 1; |
608 |
+ |
} |
609 |
+ |
|
610 |
+ |
if (m2v.z() >= nCells_.z()) { |
611 |
+ |
m2v.z() = 0; |
612 |
+ |
} else if (m2v.z() < 0) { |
613 |
+ |
m2v.z() = nCells_.z() - 1; |
614 |
+ |
} |
615 |
+ |
|
616 |
+ |
int m2 = Vlinear (m2v, nCells_); |
617 |
+ |
|
618 |
+ |
#ifdef IS_MPI |
619 |
+ |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
620 |
+ |
j1 != cellListRow_[m1].end(); ++j1) { |
621 |
+ |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
622 |
+ |
j2 != cellListCol_[m2].end(); ++j2) { |
623 |
+ |
|
624 |
+ |
// Always do this if we're in different cells or if |
625 |
+ |
// we're in the same cell and the global index of the |
626 |
+ |
// j2 cutoff group is less than the j1 cutoff group |
627 |
+ |
|
628 |
+ |
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
629 |
+ |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
630 |
+ |
snap_->wrapVector(dr); |
631 |
+ |
if (dr.lengthSquare() < rl2) { |
632 |
+ |
neighborList.push_back(make_pair((*j1), (*j2))); |
633 |
+ |
} |
634 |
+ |
} |
635 |
+ |
} |
636 |
+ |
} |
637 |
+ |
#else |
638 |
+ |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
639 |
+ |
j1 != cellList_[m1].end(); ++j1) { |
640 |
+ |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
641 |
+ |
j2 != cellList_[m2].end(); ++j2) { |
642 |
+ |
|
643 |
+ |
// Always do this if we're in different cells or if |
644 |
+ |
// we're in the same cell and the global index of the |
645 |
+ |
// j2 cutoff group is less than the j1 cutoff group |
646 |
+ |
|
647 |
+ |
if (m2 != m1 || (*j2) < (*j1)) { |
648 |
+ |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
649 |
+ |
snap_->wrapVector(dr); |
650 |
+ |
if (dr.lengthSquare() < rl2) { |
651 |
+ |
neighborList.push_back(make_pair((*j1), (*j2))); |
652 |
+ |
} |
653 |
+ |
} |
654 |
+ |
} |
655 |
+ |
} |
656 |
+ |
#endif |
657 |
+ |
} |
658 |
+ |
} |
659 |
+ |
} |
660 |
+ |
} |
661 |
+ |
|
662 |
+ |
// save the local cutoff group positions for the check that is |
663 |
+ |
// done on each loop: |
664 |
+ |
saved_CG_positions_.clear(); |
665 |
+ |
for (int i = 0; i < nGroups_; i++) |
666 |
+ |
saved_CG_positions_.push_back(snap_->cgData.position[i]); |
667 |
+ |
|
668 |
+ |
return neighborList; |
669 |
+ |
} |
670 |
+ |
} //end namespace OpenMD |