ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing:
branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 1590 by gezelter, Mon Jul 11 01:39:49 2011 UTC vs.
trunk/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 2061 by gezelter, Tue Mar 3 16:24:44 2015 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42   #include "parallel/ForceMatrixDecomposition.hpp"
43   #include "math/SquareMatrix3.hpp"
# Line 47 | Line 48 | namespace OpenMD {
48   using namespace std;
49   namespace OpenMD {
50  
51 +  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52 +
53 +    // Row and colum scans must visit all surrounding cells
54 +    cellOffsets_.clear();
55 +    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
56 +    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
57 +    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                          
58 +    cellOffsets_.push_back( Vector3i(-1, 0,-1) );
59 +    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
60 +    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
61 +    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
62 +    cellOffsets_.push_back( Vector3i( 0, 1,-1) );      
63 +    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
64 +    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
65 +    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
66 +    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
67 +    cellOffsets_.push_back( Vector3i(-1, 0, 0) );      
68 +    cellOffsets_.push_back( Vector3i( 0, 0, 0) );
69 +    cellOffsets_.push_back( Vector3i( 1, 0, 0) );
70 +    cellOffsets_.push_back( Vector3i(-1, 1, 0) );
71 +    cellOffsets_.push_back( Vector3i( 0, 1, 0) );
72 +    cellOffsets_.push_back( Vector3i( 1, 1, 0) );
73 +    cellOffsets_.push_back( Vector3i(-1,-1, 1) );
74 +    cellOffsets_.push_back( Vector3i( 0,-1, 1) );
75 +    cellOffsets_.push_back( Vector3i( 1,-1, 1) );
76 +    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
77 +    cellOffsets_.push_back( Vector3i( 0, 0, 1) );
78 +    cellOffsets_.push_back( Vector3i( 1, 0, 1) );
79 +    cellOffsets_.push_back( Vector3i(-1, 1, 1) );
80 +    cellOffsets_.push_back( Vector3i( 0, 1, 1) );
81 +    cellOffsets_.push_back( Vector3i( 1, 1, 1) );
82 +  }
83 +
84 +
85    /**
86     * distributeInitialData is essentially a copy of the older fortran
87     * SimulationSetup
88     */
54  
89    void ForceMatrixDecomposition::distributeInitialData() {
90      snap_ = sman_->getCurrentSnapshot();
91      storageLayout_ = sman_->getStorageLayout();
92      ff_ = info_->getForceField();
93      nLocal_ = snap_->getNumberOfAtoms();
94 <    
94 >  
95      nGroups_ = info_->getNLocalCutoffGroups();
96      // gather the information for atomtype IDs (atids):
97      idents = info_->getIdentArray();
98 +    regions = info_->getRegions();
99      AtomLocalToGlobal = info_->getGlobalAtomIndices();
100      cgLocalToGlobal = info_->getGlobalGroupIndices();
101      vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
# Line 71 | Line 106 | namespace OpenMD {
106      PairList* oneTwo = info_->getOneTwoInteractions();
107      PairList* oneThree = info_->getOneThreeInteractions();
108      PairList* oneFour = info_->getOneFourInteractions();
109 <
109 >    
110 >    if (needVelocities_)
111 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition |
112 >                                     DataStorage::dslVelocity);
113 >    else
114 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition);
115 >    
116   #ifdef IS_MPI
117  
118 <    AtomCommIntRow = new Communicator<Row,int>(nLocal_);
119 <    AtomCommRealRow = new Communicator<Row,RealType>(nLocal_);
79 <    AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_);
80 <    AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_);
81 <    AtomCommPotRow = new Communicator<Row,potVec>(nLocal_);
118 >    MPI_Comm row = rowComm.getComm();
119 >    MPI_Comm col = colComm.getComm();
120  
121 <    AtomCommIntColumn = new Communicator<Column,int>(nLocal_);
122 <    AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_);
123 <    AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_);
124 <    AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_);
125 <    AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_);
121 >    AtomPlanIntRow = new Plan<int>(row, nLocal_);
122 >    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
123 >    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
124 >    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
125 >    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
126  
127 <    cgCommIntRow = new Communicator<Row,int>(nGroups_);
128 <    cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_);
129 <    cgCommIntColumn = new Communicator<Column,int>(nGroups_);
130 <    cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_);
127 >    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
128 >    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
129 >    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
130 >    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
131 >    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
132  
133 <    nAtomsInRow_ = AtomCommIntRow->getSize();
134 <    nAtomsInCol_ = AtomCommIntColumn->getSize();
135 <    nGroupsInRow_ = cgCommIntRow->getSize();
136 <    nGroupsInCol_ = cgCommIntColumn->getSize();
133 >    cgPlanIntRow = new Plan<int>(row, nGroups_);
134 >    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
135 >    cgPlanIntColumn = new Plan<int>(col, nGroups_);
136 >    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
137  
138 +    nAtomsInRow_ = AtomPlanIntRow->getSize();
139 +    nAtomsInCol_ = AtomPlanIntColumn->getSize();
140 +    nGroupsInRow_ = cgPlanIntRow->getSize();
141 +    nGroupsInCol_ = cgPlanIntColumn->getSize();
142 +
143      // Modify the data storage objects with the correct layouts and sizes:
144      atomRowData.resize(nAtomsInRow_);
145      atomRowData.setStorageLayout(storageLayout_);
# Line 104 | Line 148 | namespace OpenMD {
148      cgRowData.resize(nGroupsInRow_);
149      cgRowData.setStorageLayout(DataStorage::dslPosition);
150      cgColData.resize(nGroupsInCol_);
151 <    cgColData.setStorageLayout(DataStorage::dslPosition);
152 <        
151 >    if (needVelocities_)
152 >      // we only need column velocities if we need them.
153 >      cgColData.setStorageLayout(DataStorage::dslPosition |
154 >                                 DataStorage::dslVelocity);
155 >    else    
156 >      cgColData.setStorageLayout(DataStorage::dslPosition);
157 >      
158      identsRow.resize(nAtomsInRow_);
159      identsCol.resize(nAtomsInCol_);
160      
161 <    AtomCommIntRow->gather(idents, identsRow);
162 <    AtomCommIntColumn->gather(idents, identsCol);
161 >    AtomPlanIntRow->gather(idents, identsRow);
162 >    AtomPlanIntColumn->gather(idents, identsCol);
163 >
164 >    regionsRow.resize(nAtomsInRow_);
165 >    regionsCol.resize(nAtomsInCol_);
166      
167 +    AtomPlanIntRow->gather(regions, regionsRow);
168 +    AtomPlanIntColumn->gather(regions, regionsCol);
169 +    
170      // allocate memory for the parallel objects
171 +    atypesRow.resize(nAtomsInRow_);
172 +    atypesCol.resize(nAtomsInCol_);
173 +
174 +    for (int i = 0; i < nAtomsInRow_; i++)
175 +      atypesRow[i] = ff_->getAtomType(identsRow[i]);
176 +    for (int i = 0; i < nAtomsInCol_; i++)
177 +      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
178 +
179 +    pot_row.resize(nAtomsInRow_);
180 +    pot_col.resize(nAtomsInCol_);
181 +
182 +    expot_row.resize(nAtomsInRow_);
183 +    expot_col.resize(nAtomsInCol_);
184 +
185      AtomRowToGlobal.resize(nAtomsInRow_);
186      AtomColToGlobal.resize(nAtomsInCol_);
187 +    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
188 +    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
189 +
190      cgRowToGlobal.resize(nGroupsInRow_);
191      cgColToGlobal.resize(nGroupsInCol_);
192 +    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
193 +    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
194 +
195      massFactorsRow.resize(nAtomsInRow_);
196      massFactorsCol.resize(nAtomsInCol_);
197 <    pot_row.resize(nAtomsInRow_);
198 <    pot_col.resize(nAtomsInCol_);
197 >    AtomPlanRealRow->gather(massFactors, massFactorsRow);
198 >    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
199  
125    AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
126    AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
127    
128    cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
129    cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
130
131    AtomCommRealRow->gather(massFactors, massFactorsRow);
132    AtomCommRealColumn->gather(massFactors, massFactorsCol);
133
200      groupListRow_.clear();
201      groupListRow_.resize(nGroupsInRow_);
202      for (int i = 0; i < nGroupsInRow_; i++) {
# Line 185 | Line 251 | namespace OpenMD {
251        }      
252      }
253  
254 < #endif
189 <
190 <    groupList_.clear();
191 <    groupList_.resize(nGroups_);
192 <    for (int i = 0; i < nGroups_; i++) {
193 <      int gid = cgLocalToGlobal[i];
194 <      for (int j = 0; j < nLocal_; j++) {
195 <        int aid = AtomLocalToGlobal[j];
196 <        if (globalGroupMembership[aid] == gid) {
197 <          groupList_[i].push_back(j);
198 <        }
199 <      }      
200 <    }
201 <
254 > #else
255      excludesForAtom.clear();
256      excludesForAtom.resize(nLocal_);
257      toposForAtom.clear();
# Line 231 | Line 284 | namespace OpenMD {
284          }
285        }      
286      }
287 <    
235 <    createGtypeCutoffMap();
287 > #endif
288  
289 +    // allocate memory for the parallel objects
290 +    atypesLocal.resize(nLocal_);
291 +
292 +    for (int i = 0; i < nLocal_; i++)
293 +      atypesLocal[i] = ff_->getAtomType(idents[i]);
294 +
295 +    groupList_.clear();
296 +    groupList_.resize(nGroups_);
297 +    for (int i = 0; i < nGroups_; i++) {
298 +      int gid = cgLocalToGlobal[i];
299 +      for (int j = 0; j < nLocal_; j++) {
300 +        int aid = AtomLocalToGlobal[j];
301 +        if (globalGroupMembership[aid] == gid) {
302 +          groupList_[i].push_back(j);
303 +        }
304 +      }      
305 +    }    
306    }
238  
239  void ForceMatrixDecomposition::createGtypeCutoffMap() {
307      
308 <    RealType tol = 1e-6;
309 <    RealType rc;
243 <    int atid;
244 <    set<AtomType*> atypes = info_->getSimulatedAtomTypes();
245 <    map<int, RealType> atypeCutoff;
246 <      
247 <    for (set<AtomType*>::iterator at = atypes.begin();
248 <         at != atypes.end(); ++at){
249 <      atid = (*at)->getIdent();
250 <      if (userChoseCutoff_)
251 <        atypeCutoff[atid] = userCutoff_;
252 <      else
253 <        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
254 <    }
255 <
256 <    vector<RealType> gTypeCutoffs;
257 <    // first we do a single loop over the cutoff groups to find the
258 <    // largest cutoff for any atypes present in this group.
259 < #ifdef IS_MPI
260 <    vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
261 <    groupRowToGtype.resize(nGroupsInRow_);
262 <    for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
263 <      vector<int> atomListRow = getAtomsInGroupRow(cg1);
264 <      for (vector<int>::iterator ia = atomListRow.begin();
265 <           ia != atomListRow.end(); ++ia) {            
266 <        int atom1 = (*ia);
267 <        atid = identsRow[atom1];
268 <        if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
269 <          groupCutoffRow[cg1] = atypeCutoff[atid];
270 <        }
271 <      }
272 <
273 <      bool gTypeFound = false;
274 <      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
275 <        if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
276 <          groupRowToGtype[cg1] = gt;
277 <          gTypeFound = true;
278 <        }
279 <      }
280 <      if (!gTypeFound) {
281 <        gTypeCutoffs.push_back( groupCutoffRow[cg1] );
282 <        groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
283 <      }
284 <      
285 <    }
286 <    vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
287 <    groupColToGtype.resize(nGroupsInCol_);
288 <    for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
289 <      vector<int> atomListCol = getAtomsInGroupColumn(cg2);
290 <      for (vector<int>::iterator jb = atomListCol.begin();
291 <           jb != atomListCol.end(); ++jb) {            
292 <        int atom2 = (*jb);
293 <        atid = identsCol[atom2];
294 <        if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
295 <          groupCutoffCol[cg2] = atypeCutoff[atid];
296 <        }
297 <      }
298 <      bool gTypeFound = false;
299 <      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
300 <        if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
301 <          groupColToGtype[cg2] = gt;
302 <          gTypeFound = true;
303 <        }
304 <      }
305 <      if (!gTypeFound) {
306 <        gTypeCutoffs.push_back( groupCutoffCol[cg2] );
307 <        groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
308 <      }
309 <    }
310 < #else
311 <
312 <    vector<RealType> groupCutoff(nGroups_, 0.0);
313 <    groupToGtype.resize(nGroups_);
314 <    for (int cg1 = 0; cg1 < nGroups_; cg1++) {
315 <
316 <      groupCutoff[cg1] = 0.0;
317 <      vector<int> atomList = getAtomsInGroupRow(cg1);
318 <
319 <      for (vector<int>::iterator ia = atomList.begin();
320 <           ia != atomList.end(); ++ia) {            
321 <        int atom1 = (*ia);
322 <        atid = idents[atom1];
323 <        if (atypeCutoff[atid] > groupCutoff[cg1]) {
324 <          groupCutoff[cg1] = atypeCutoff[atid];
325 <        }
326 <      }
327 <
328 <      bool gTypeFound = false;
329 <      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
330 <        if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
331 <          groupToGtype[cg1] = gt;
332 <          gTypeFound = true;
333 <        }
334 <      }
335 <      if (!gTypeFound) {
336 <        gTypeCutoffs.push_back( groupCutoff[cg1] );
337 <        groupToGtype[cg1] = gTypeCutoffs.size() - 1;
338 <      }      
339 <    }
340 < #endif
341 <
342 <    // Now we find the maximum group cutoff value present in the simulation
343 <
344 <    RealType groupMax = *max_element(gTypeCutoffs.begin(),
345 <                                     gTypeCutoffs.end());
346 <
347 < #ifdef IS_MPI
348 <    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
349 <                              MPI::MAX);
350 < #endif
351 <    
352 <    RealType tradRcut = groupMax;
353 <
354 <    for (int i = 0; i < gTypeCutoffs.size();  i++) {
355 <      for (int j = 0; j < gTypeCutoffs.size();  j++) {      
356 <        RealType thisRcut;
357 <        switch(cutoffPolicy_) {
358 <        case TRADITIONAL:
359 <          thisRcut = tradRcut;
360 <          break;
361 <        case MIX:
362 <          thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
363 <          break;
364 <        case MAX:
365 <          thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
366 <          break;
367 <        default:
368 <          sprintf(painCave.errMsg,
369 <                  "ForceMatrixDecomposition::createGtypeCutoffMap "
370 <                  "hit an unknown cutoff policy!\n");
371 <          painCave.severity = OPENMD_ERROR;
372 <          painCave.isFatal = 1;
373 <          simError();
374 <          break;
375 <        }
376 <
377 <        pair<int,int> key = make_pair(i,j);
378 <        gTypeCutoffMap[key].first = thisRcut;
379 <
380 <        if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
381 <
382 <        gTypeCutoffMap[key].second = thisRcut*thisRcut;
383 <        
384 <        gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
385 <
386 <        // sanity check
387 <        
388 <        if (userChoseCutoff_) {
389 <          if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
390 <            sprintf(painCave.errMsg,
391 <                    "ForceMatrixDecomposition::createGtypeCutoffMap "
392 <                    "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
393 <            painCave.severity = OPENMD_ERROR;
394 <            painCave.isFatal = 1;
395 <            simError();            
396 <          }
397 <        }
398 <      }
399 <    }
400 <  }
401 <
402 <
403 <  groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
404 <    int i, j;  
405 < #ifdef IS_MPI
406 <    i = groupRowToGtype[cg1];
407 <    j = groupColToGtype[cg2];
408 < #else
409 <    i = groupToGtype[cg1];
410 <    j = groupToGtype[cg2];
411 < #endif    
412 <    return gTypeCutoffMap[make_pair(i,j)];
413 <  }
414 <
415 <  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
416 <    for (int j = 0; j < toposForAtom[atom1].size(); j++) {
308 >  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
309 >    for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) {
310        if (toposForAtom[atom1][j] == atom2)
311          return topoDist[atom1][j];
312 <    }
312 >    }                                          
313      return 0;
314    }
315  
316    void ForceMatrixDecomposition::zeroWorkArrays() {
317      pairwisePot = 0.0;
318      embeddingPot = 0.0;
319 +    excludedPot = 0.0;
320 +    excludedSelfPot = 0.0;
321  
322   #ifdef IS_MPI
323      if (storageLayout_ & DataStorage::dslForce) {
# Line 439 | Line 334 | namespace OpenMD {
334           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
335  
336      fill(pot_col.begin(), pot_col.end(),
337 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
338 +
339 +    fill(expot_row.begin(), expot_row.end(),
340 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
341 +
342 +    fill(expot_col.begin(), expot_col.end(),
343           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
344  
345      if (storageLayout_ & DataStorage::dslParticlePot) {    
# Line 474 | Line 375 | namespace OpenMD {
375             atomColData.skippedCharge.end(), 0.0);
376      }
377  
378 +    if (storageLayout_ & DataStorage::dslFlucQForce) {      
379 +      fill(atomRowData.flucQFrc.begin(),
380 +           atomRowData.flucQFrc.end(), 0.0);
381 +      fill(atomColData.flucQFrc.begin(),
382 +           atomColData.flucQFrc.end(), 0.0);
383 +    }
384 +
385 +    if (storageLayout_ & DataStorage::dslElectricField) {    
386 +      fill(atomRowData.electricField.begin(),
387 +           atomRowData.electricField.end(), V3Zero);
388 +      fill(atomColData.electricField.begin(),
389 +           atomColData.electricField.end(), V3Zero);
390 +    }
391 +
392 +    if (storageLayout_ & DataStorage::dslSitePotential) {    
393 +      fill(atomRowData.sitePotential.begin(),
394 +           atomRowData.sitePotential.end(), 0.0);
395 +      fill(atomColData.sitePotential.begin(),
396 +           atomColData.sitePotential.end(), 0.0);
397 +    }
398 +
399   #endif
400      // even in parallel, we need to zero out the local arrays:
401  
# Line 486 | Line 408 | namespace OpenMD {
408        fill(snap_->atomData.density.begin(),
409             snap_->atomData.density.end(), 0.0);
410      }
411 +
412      if (storageLayout_ & DataStorage::dslFunctional) {
413        fill(snap_->atomData.functional.begin(),
414             snap_->atomData.functional.end(), 0.0);
415      }
416 +
417      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
418        fill(snap_->atomData.functionalDerivative.begin(),
419             snap_->atomData.functionalDerivative.end(), 0.0);
420      }
421 +
422      if (storageLayout_ & DataStorage::dslSkippedCharge) {      
423        fill(snap_->atomData.skippedCharge.begin(),
424             snap_->atomData.skippedCharge.end(), 0.0);
425      }
426 <    
426 >
427 >    if (storageLayout_ & DataStorage::dslElectricField) {      
428 >      fill(snap_->atomData.electricField.begin(),
429 >           snap_->atomData.electricField.end(), V3Zero);
430 >    }
431 >    if (storageLayout_ & DataStorage::dslSitePotential) {      
432 >      fill(snap_->atomData.sitePotential.begin(),
433 >           snap_->atomData.sitePotential.end(), 0.0);
434 >    }
435    }
436  
437  
438    void ForceMatrixDecomposition::distributeData()  {
439 +  
440 + #ifdef IS_MPI
441 +
442      snap_ = sman_->getCurrentSnapshot();
443      storageLayout_ = sman_->getStorageLayout();
508 #ifdef IS_MPI
444      
445 +    bool needsCG = true;
446 +    if(info_->getNCutoffGroups() != info_->getNAtoms())
447 +      needsCG = false;
448 +
449      // gather up the atomic positions
450 <    AtomCommVectorRow->gather(snap_->atomData.position,
450 >    AtomPlanVectorRow->gather(snap_->atomData.position,
451                                atomRowData.position);
452 <    AtomCommVectorColumn->gather(snap_->atomData.position,
452 >    AtomPlanVectorColumn->gather(snap_->atomData.position,
453                                   atomColData.position);
454      
455      // gather up the cutoff group positions
456 <    cgCommVectorRow->gather(snap_->cgData.position,
457 <                            cgRowData.position);
458 <    cgCommVectorColumn->gather(snap_->cgData.position,
459 <                               cgColData.position);
456 >
457 >    if (needsCG) {
458 >      cgPlanVectorRow->gather(snap_->cgData.position,
459 >                              cgRowData.position);
460 >      
461 >      cgPlanVectorColumn->gather(snap_->cgData.position,
462 >                                 cgColData.position);
463 >    }
464 >
465 >
466 >    if (needVelocities_) {
467 >      // gather up the atomic velocities
468 >      AtomPlanVectorColumn->gather(snap_->atomData.velocity,
469 >                                   atomColData.velocity);
470 >
471 >      if (needsCG) {        
472 >        cgPlanVectorColumn->gather(snap_->cgData.velocity,
473 >                                   cgColData.velocity);
474 >      }
475 >    }
476 >
477      
478      // if needed, gather the atomic rotation matrices
479      if (storageLayout_ & DataStorage::dslAmat) {
480 <      AtomCommMatrixRow->gather(snap_->atomData.aMat,
480 >      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
481                                  atomRowData.aMat);
482 <      AtomCommMatrixColumn->gather(snap_->atomData.aMat,
482 >      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
483                                     atomColData.aMat);
484      }
485 <    
486 <    // if needed, gather the atomic eletrostatic frames
487 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
488 <      AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
489 <                                atomRowData.electroFrame);
490 <      AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
491 <                                   atomColData.electroFrame);
485 >
486 >    // if needed, gather the atomic eletrostatic information
487 >    if (storageLayout_ & DataStorage::dslDipole) {
488 >      AtomPlanVectorRow->gather(snap_->atomData.dipole,
489 >                                atomRowData.dipole);
490 >      AtomPlanVectorColumn->gather(snap_->atomData.dipole,
491 >                                   atomColData.dipole);
492      }
493  
494 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
495 +      AtomPlanMatrixRow->gather(snap_->atomData.quadrupole,
496 +                                atomRowData.quadrupole);
497 +      AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole,
498 +                                   atomColData.quadrupole);
499 +    }
500 +        
501 +    // if needed, gather the atomic fluctuating charge values
502 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {
503 +      AtomPlanRealRow->gather(snap_->atomData.flucQPos,
504 +                              atomRowData.flucQPos);
505 +      AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
506 +                                 atomColData.flucQPos);
507 +    }
508 +
509   #endif      
510    }
511    
# Line 548 | Line 519 | namespace OpenMD {
519      
520      if (storageLayout_ & DataStorage::dslDensity) {
521        
522 <      AtomCommRealRow->scatter(atomRowData.density,
522 >      AtomPlanRealRow->scatter(atomRowData.density,
523                                 snap_->atomData.density);
524        
525        int n = snap_->atomData.density.size();
526        vector<RealType> rho_tmp(n, 0.0);
527 <      AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
527 >      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
528        for (int i = 0; i < n; i++)
529          snap_->atomData.density[i] += rho_tmp[i];
530      }
531 +
532 +    // this isn't necessary if we don't have polarizable atoms, but
533 +    // we'll leave it here for now.
534 +    if (storageLayout_ & DataStorage::dslElectricField) {
535 +      
536 +      AtomPlanVectorRow->scatter(atomRowData.electricField,
537 +                                 snap_->atomData.electricField);
538 +      
539 +      int n = snap_->atomData.electricField.size();
540 +      vector<Vector3d> field_tmp(n, V3Zero);
541 +      AtomPlanVectorColumn->scatter(atomColData.electricField,
542 +                                    field_tmp);
543 +      for (int i = 0; i < n; i++)
544 +        snap_->atomData.electricField[i] += field_tmp[i];
545 +    }
546   #endif
547    }
548  
# Line 569 | Line 555 | namespace OpenMD {
555      storageLayout_ = sman_->getStorageLayout();
556   #ifdef IS_MPI
557      if (storageLayout_ & DataStorage::dslFunctional) {
558 <      AtomCommRealRow->gather(snap_->atomData.functional,
558 >      AtomPlanRealRow->gather(snap_->atomData.functional,
559                                atomRowData.functional);
560 <      AtomCommRealColumn->gather(snap_->atomData.functional,
560 >      AtomPlanRealColumn->gather(snap_->atomData.functional,
561                                   atomColData.functional);
562      }
563      
564      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
565 <      AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
565 >      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
566                                atomRowData.functionalDerivative);
567 <      AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
567 >      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
568                                   atomColData.functionalDerivative);
569      }
570   #endif
# Line 592 | Line 578 | namespace OpenMD {
578      int n = snap_->atomData.force.size();
579      vector<Vector3d> frc_tmp(n, V3Zero);
580      
581 <    AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
581 >    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
582      for (int i = 0; i < n; i++) {
583        snap_->atomData.force[i] += frc_tmp[i];
584        frc_tmp[i] = 0.0;
585      }
586      
587 <    AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
588 <    for (int i = 0; i < n; i++)
587 >    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
588 >    for (int i = 0; i < n; i++) {
589        snap_->atomData.force[i] += frc_tmp[i];
590 +    }
591          
592      if (storageLayout_ & DataStorage::dslTorque) {
593  
594        int nt = snap_->atomData.torque.size();
595        vector<Vector3d> trq_tmp(nt, V3Zero);
596  
597 <      AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
597 >      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
598        for (int i = 0; i < nt; i++) {
599          snap_->atomData.torque[i] += trq_tmp[i];
600          trq_tmp[i] = 0.0;
601        }
602        
603 <      AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
603 >      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
604        for (int i = 0; i < nt; i++)
605          snap_->atomData.torque[i] += trq_tmp[i];
606      }
# Line 623 | Line 610 | namespace OpenMD {
610        int ns = snap_->atomData.skippedCharge.size();
611        vector<RealType> skch_tmp(ns, 0.0);
612  
613 <      AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
613 >      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
614        for (int i = 0; i < ns; i++) {
615          snap_->atomData.skippedCharge[i] += skch_tmp[i];
616          skch_tmp[i] = 0.0;
617        }
618        
619 <      AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
620 <      for (int i = 0; i < ns; i++)
619 >      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
620 >      for (int i = 0; i < ns; i++)
621          snap_->atomData.skippedCharge[i] += skch_tmp[i];
622 +            
623      }
624      
625 +    if (storageLayout_ & DataStorage::dslFlucQForce) {
626 +
627 +      int nq = snap_->atomData.flucQFrc.size();
628 +      vector<RealType> fqfrc_tmp(nq, 0.0);
629 +
630 +      AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
631 +      for (int i = 0; i < nq; i++) {
632 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
633 +        fqfrc_tmp[i] = 0.0;
634 +      }
635 +      
636 +      AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
637 +      for (int i = 0; i < nq; i++)
638 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
639 +            
640 +    }
641 +
642 +    if (storageLayout_ & DataStorage::dslElectricField) {
643 +
644 +      int nef = snap_->atomData.electricField.size();
645 +      vector<Vector3d> efield_tmp(nef, V3Zero);
646 +
647 +      AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp);
648 +      for (int i = 0; i < nef; i++) {
649 +        snap_->atomData.electricField[i] += efield_tmp[i];
650 +        efield_tmp[i] = 0.0;
651 +      }
652 +      
653 +      AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp);
654 +      for (int i = 0; i < nef; i++)
655 +        snap_->atomData.electricField[i] += efield_tmp[i];
656 +    }
657 +
658 +    if (storageLayout_ & DataStorage::dslSitePotential) {
659 +
660 +      int nsp = snap_->atomData.sitePotential.size();
661 +      vector<RealType> sp_tmp(nsp, 0.0);
662 +
663 +      AtomPlanRealRow->scatter(atomRowData.sitePotential, sp_tmp);
664 +      for (int i = 0; i < nsp; i++) {
665 +        snap_->atomData.sitePotential[i] += sp_tmp[i];
666 +        sp_tmp[i] = 0.0;
667 +      }
668 +      
669 +      AtomPlanRealColumn->scatter(atomColData.sitePotential, sp_tmp);
670 +      for (int i = 0; i < nsp; i++)
671 +        snap_->atomData.sitePotential[i] += sp_tmp[i];
672 +    }
673 +
674      nLocal_ = snap_->getNumberOfAtoms();
675  
676      vector<potVec> pot_temp(nLocal_,
677                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
678 +    vector<potVec> expot_temp(nLocal_,
679 +                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
680  
681      // scatter/gather pot_row into the members of my column
682            
683 <    AtomCommPotRow->scatter(pot_row, pot_temp);
683 >    AtomPlanPotRow->scatter(pot_row, pot_temp);
684 >    AtomPlanPotRow->scatter(expot_row, expot_temp);
685  
686 <    for (int ii = 0;  ii < pot_temp.size(); ii++ )
686 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
687        pairwisePot += pot_temp[ii];
688 <    
688 >
689 >    for (int ii = 0;  ii < expot_temp.size(); ii++ )
690 >      excludedPot += expot_temp[ii];
691 >        
692 >    if (storageLayout_ & DataStorage::dslParticlePot) {
693 >      // This is the pairwise contribution to the particle pot.  The
694 >      // embedding contribution is added in each of the low level
695 >      // non-bonded routines.  In single processor, this is done in
696 >      // unpackInteractionData, not in collectData.
697 >      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
698 >        for (int i = 0; i < nLocal_; i++) {
699 >          // factor of two is because the total potential terms are divided
700 >          // by 2 in parallel due to row/ column scatter      
701 >          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
702 >        }
703 >      }
704 >    }
705 >
706      fill(pot_temp.begin(), pot_temp.end(),
707           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
708 +    fill(expot_temp.begin(), expot_temp.end(),
709 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
710        
711 <    AtomCommPotColumn->scatter(pot_col, pot_temp);    
711 >    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
712 >    AtomPlanPotColumn->scatter(expot_col, expot_temp);    
713      
714      for (int ii = 0;  ii < pot_temp.size(); ii++ )
715        pairwisePot += pot_temp[ii];    
716 +
717 +    for (int ii = 0;  ii < expot_temp.size(); ii++ )
718 +      excludedPot += expot_temp[ii];    
719 +
720 +    if (storageLayout_ & DataStorage::dslParticlePot) {
721 +      // This is the pairwise contribution to the particle pot.  The
722 +      // embedding contribution is added in each of the low level
723 +      // non-bonded routines.  In single processor, this is done in
724 +      // unpackInteractionData, not in collectData.
725 +      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
726 +        for (int i = 0; i < nLocal_; i++) {
727 +          // factor of two is because the total potential terms are divided
728 +          // by 2 in parallel due to row/ column scatter      
729 +          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
730 +        }
731 +      }
732 +    }
733 +    
734 +    if (storageLayout_ & DataStorage::dslParticlePot) {
735 +      int npp = snap_->atomData.particlePot.size();
736 +      vector<RealType> ppot_temp(npp, 0.0);
737 +
738 +      // This is the direct or embedding contribution to the particle
739 +      // pot.
740 +      
741 +      AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
742 +      for (int i = 0; i < npp; i++) {
743 +        snap_->atomData.particlePot[i] += ppot_temp[i];
744 +      }
745 +
746 +      fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
747 +      
748 +      AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
749 +      for (int i = 0; i < npp; i++) {
750 +        snap_->atomData.particlePot[i] += ppot_temp[i];
751 +      }
752 +    }
753 +
754 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
755 +      RealType ploc1 = pairwisePot[ii];
756 +      RealType ploc2 = 0.0;
757 +      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
758 +      pairwisePot[ii] = ploc2;
759 +    }
760 +
761 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
762 +      RealType ploc1 = excludedPot[ii];
763 +      RealType ploc2 = 0.0;
764 +      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
765 +      excludedPot[ii] = ploc2;
766 +    }
767 +
768 +    // Here be dragons.
769 +    MPI_Comm col = colComm.getComm();
770 +
771 +    MPI_Allreduce(MPI_IN_PLACE,
772 +                  &snap_->frameData.conductiveHeatFlux[0], 3,
773 +                  MPI_REALTYPE, MPI_SUM, col);
774 +
775 +
776   #endif
777  
778    }
779  
780 <  int ForceMatrixDecomposition::getNAtomsInRow() {  
780 >  /**
781 >   * Collects information obtained during the post-pair (and embedding
782 >   * functional) loops onto local data structures.
783 >   */
784 >  void ForceMatrixDecomposition::collectSelfData() {
785 >    snap_ = sman_->getCurrentSnapshot();
786 >    storageLayout_ = sman_->getStorageLayout();
787 >
788   #ifdef IS_MPI
789 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
790 +      RealType ploc1 = embeddingPot[ii];
791 +      RealType ploc2 = 0.0;
792 +      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
793 +      embeddingPot[ii] = ploc2;
794 +    }    
795 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
796 +      RealType ploc1 = excludedSelfPot[ii];
797 +      RealType ploc2 = 0.0;
798 +      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
799 +      excludedSelfPot[ii] = ploc2;
800 +    }    
801 + #endif
802 +    
803 +  }
804 +
805 +
806 +
807 +  int& ForceMatrixDecomposition::getNAtomsInRow() {  
808 + #ifdef IS_MPI
809      return nAtomsInRow_;
810   #else
811      return nLocal_;
# Line 668 | Line 815 | namespace OpenMD {
815    /**
816     * returns the list of atoms belonging to this group.  
817     */
818 <  vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
818 >  vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
819   #ifdef IS_MPI
820      return groupListRow_[cg1];
821   #else
# Line 676 | Line 823 | namespace OpenMD {
823   #endif
824    }
825  
826 <  vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
826 >  vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
827   #ifdef IS_MPI
828      return groupListCol_[cg2];
829   #else
# Line 693 | Line 840 | namespace OpenMD {
840      d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
841   #endif
842      
843 <    snap_->wrapVector(d);
843 >    if (usePeriodicBoundaryConditions_) {
844 >      snap_->wrapVector(d);
845 >    }
846      return d;    
847    }
848  
849 +  Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
850 + #ifdef IS_MPI
851 +    return cgColData.velocity[cg2];
852 + #else
853 +    return snap_->cgData.velocity[cg2];
854 + #endif
855 +  }
856  
857 +  Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
858 + #ifdef IS_MPI
859 +    return atomColData.velocity[atom2];
860 + #else
861 +    return snap_->atomData.velocity[atom2];
862 + #endif
863 +  }
864 +
865 +
866    Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
867  
868      Vector3d d;
# Line 707 | Line 872 | namespace OpenMD {
872   #else
873      d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
874   #endif
875 <
876 <    snap_->wrapVector(d);
875 >    if (usePeriodicBoundaryConditions_) {
876 >      snap_->wrapVector(d);
877 >    }
878      return d;    
879    }
880    
# Line 720 | Line 886 | namespace OpenMD {
886   #else
887      d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
888   #endif
889 <    
890 <    snap_->wrapVector(d);
889 >    if (usePeriodicBoundaryConditions_) {
890 >      snap_->wrapVector(d);
891 >    }
892      return d;    
893    }
894  
895 <  RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
895 >  RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) {
896   #ifdef IS_MPI
897      return massFactorsRow[atom1];
898   #else
# Line 733 | Line 900 | namespace OpenMD {
900   #endif
901    }
902  
903 <  RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
903 >  RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
904   #ifdef IS_MPI
905      return massFactorsCol[atom2];
906   #else
# Line 750 | Line 917 | namespace OpenMD {
917   #else
918      d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
919   #endif
920 <
921 <    snap_->wrapVector(d);
920 >    if (usePeriodicBoundaryConditions_) {
921 >      snap_->wrapVector(d);
922 >    }
923      return d;    
924    }
925  
926 <  vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
926 >  vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
927      return excludesForAtom[atom1];
928    }
929  
# Line 763 | Line 931 | namespace OpenMD {
931     * We need to exclude some overcounted interactions that result from
932     * the parallel decomposition.
933     */
934 <  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
934 >  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) {
935      int unique_id_1, unique_id_2;
936 <
936 >        
937   #ifdef IS_MPI
938      // in MPI, we have to look up the unique IDs for each atom
939      unique_id_1 = AtomRowToGlobal[atom1];
940      unique_id_2 = AtomColToGlobal[atom2];
941 +    // group1 = cgRowToGlobal[cg1];
942 +    // group2 = cgColToGlobal[cg2];
943 + #else
944 +    unique_id_1 = AtomLocalToGlobal[atom1];
945 +    unique_id_2 = AtomLocalToGlobal[atom2];
946 +    int group1 = cgLocalToGlobal[cg1];
947 +    int group2 = cgLocalToGlobal[cg2];
948 + #endif  
949  
774    // this situation should only arise in MPI simulations
950      if (unique_id_1 == unique_id_2) return true;
951 <    
951 >
952 > #ifdef IS_MPI
953      // this prevents us from doing the pair on multiple processors
954      if (unique_id_1 < unique_id_2) {
955        if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
956      } else {
957 <      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
957 >      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
958      }
959 + #endif    
960 +
961 + #ifndef IS_MPI
962 +    if (group1 == group2) {
963 +      if (unique_id_1 < unique_id_2) return true;
964 +    }
965   #endif
966 +    
967      return false;
968    }
969  
# Line 794 | Line 977 | namespace OpenMD {
977     * field) must still be handled for these pairs.
978     */
979    bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
980 <    int unique_id_2;
980 >
981 >    // excludesForAtom was constructed to use row/column indices in the MPI
982 >    // version, and to use local IDs in the non-MPI version:
983      
799 #ifdef IS_MPI
800    // in MPI, we have to look up the unique IDs for the row atom.
801    unique_id_2 = AtomColToGlobal[atom2];
802 #else
803    // in the normal loop, the atom numbers are unique
804    unique_id_2 = atom2;
805 #endif
806    
984      for (vector<int>::iterator i = excludesForAtom[atom1].begin();
985           i != excludesForAtom[atom1].end(); ++i) {
986 <      if ( (*i) == unique_id_2 ) return true;
986 >      if ( (*i) == atom2 ) return true;
987      }
988  
989      return false;
# Line 831 | Line 1008 | namespace OpenMD {
1008  
1009      // filling interaction blocks with pointers
1010    void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1011 <                                                     int atom1, int atom2) {
1011 >                                                     int atom1, int atom2,
1012 >                                                     bool newAtom1) {
1013  
1014      idat.excluded = excludeAtomPair(atom1, atom2);
1015 <  
1015 >
1016 >    if (newAtom1) {
1017 >      
1018   #ifdef IS_MPI
1019 <    
1020 <    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
1021 <                             ff_->getAtomType(identsCol[atom2]) );
1022 <    
1019 >      idat.atid1 = identsRow[atom1];
1020 >      idat.atid2 = identsCol[atom2];
1021 >      
1022 >      if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) {
1023 >        idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]);
1024 >      } else {
1025 >        idat.sameRegion = false;
1026 >      }
1027 >      
1028 >      if (storageLayout_ & DataStorage::dslAmat) {
1029 >        idat.A1 = &(atomRowData.aMat[atom1]);
1030 >        idat.A2 = &(atomColData.aMat[atom2]);
1031 >      }
1032 >      
1033 >      if (storageLayout_ & DataStorage::dslTorque) {
1034 >        idat.t1 = &(atomRowData.torque[atom1]);
1035 >        idat.t2 = &(atomColData.torque[atom2]);
1036 >      }
1037 >      
1038 >      if (storageLayout_ & DataStorage::dslDipole) {
1039 >        idat.dipole1 = &(atomRowData.dipole[atom1]);
1040 >        idat.dipole2 = &(atomColData.dipole[atom2]);
1041 >      }
1042 >      
1043 >      if (storageLayout_ & DataStorage::dslQuadrupole) {
1044 >        idat.quadrupole1 = &(atomRowData.quadrupole[atom1]);
1045 >        idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1046 >      }
1047 >      
1048 >      if (storageLayout_ & DataStorage::dslDensity) {
1049 >        idat.rho1 = &(atomRowData.density[atom1]);
1050 >        idat.rho2 = &(atomColData.density[atom2]);
1051 >      }
1052 >      
1053 >      if (storageLayout_ & DataStorage::dslFunctional) {
1054 >        idat.frho1 = &(atomRowData.functional[atom1]);
1055 >        idat.frho2 = &(atomColData.functional[atom2]);
1056 >      }
1057 >      
1058 >      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1059 >        idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1060 >        idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1061 >      }
1062 >      
1063 >      if (storageLayout_ & DataStorage::dslParticlePot) {
1064 >        idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1065 >        idat.particlePot2 = &(atomColData.particlePot[atom2]);
1066 >      }
1067 >      
1068 >      if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1069 >        idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1070 >        idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1071 >      }
1072 >      
1073 >      if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1074 >        idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1075 >        idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1076 >      }
1077 >      
1078 > #else
1079 >      
1080 >      idat.atid1 = idents[atom1];
1081 >      idat.atid2 = idents[atom2];
1082 >      
1083 >      if (regions[atom1] >= 0 && regions[atom2] >= 0) {
1084 >        idat.sameRegion = (regions[atom1] == regions[atom2]);
1085 >      } else {
1086 >        idat.sameRegion = false;
1087 >      }
1088 >      
1089 >      if (storageLayout_ & DataStorage::dslAmat) {
1090 >        idat.A1 = &(snap_->atomData.aMat[atom1]);
1091 >        idat.A2 = &(snap_->atomData.aMat[atom2]);
1092 >      }
1093 >      
1094 >      if (storageLayout_ & DataStorage::dslTorque) {
1095 >        idat.t1 = &(snap_->atomData.torque[atom1]);
1096 >        idat.t2 = &(snap_->atomData.torque[atom2]);
1097 >      }
1098 >      
1099 >      if (storageLayout_ & DataStorage::dslDipole) {
1100 >        idat.dipole1 = &(snap_->atomData.dipole[atom1]);
1101 >        idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1102 >      }
1103 >      
1104 >      if (storageLayout_ & DataStorage::dslQuadrupole) {
1105 >        idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]);
1106 >        idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1107 >      }
1108 >      
1109 >      if (storageLayout_ & DataStorage::dslDensity) {    
1110 >        idat.rho1 = &(snap_->atomData.density[atom1]);
1111 >        idat.rho2 = &(snap_->atomData.density[atom2]);
1112 >      }
1113 >      
1114 >      if (storageLayout_ & DataStorage::dslFunctional) {
1115 >        idat.frho1 = &(snap_->atomData.functional[atom1]);
1116 >        idat.frho2 = &(snap_->atomData.functional[atom2]);
1117 >      }
1118 >      
1119 >      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1120 >        idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1121 >        idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1122 >      }
1123 >      
1124 >      if (storageLayout_ & DataStorage::dslParticlePot) {
1125 >        idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1126 >        idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1127 >      }
1128 >      
1129 >      if (storageLayout_ & DataStorage::dslSkippedCharge) {
1130 >        idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1131 >        idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1132 >      }
1133 >      
1134 >      if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1135 >        idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1136 >        idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1137 >      }
1138 > #endif
1139 >      
1140 >    } else {
1141 >      // atom1 is not new, so don't bother updating properties of that atom:
1142 > #ifdef IS_MPI
1143 >    idat.atid2 = identsCol[atom2];
1144 >
1145 >    if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) {
1146 >      idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]);
1147 >    } else {
1148 >      idat.sameRegion = false;
1149 >    }
1150 >
1151      if (storageLayout_ & DataStorage::dslAmat) {
844      idat.A1 = &(atomRowData.aMat[atom1]);
1152        idat.A2 = &(atomColData.aMat[atom2]);
1153      }
1154      
848    if (storageLayout_ & DataStorage::dslElectroFrame) {
849      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
850      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
851    }
852
1155      if (storageLayout_ & DataStorage::dslTorque) {
854      idat.t1 = &(atomRowData.torque[atom1]);
1156        idat.t2 = &(atomColData.torque[atom2]);
1157      }
1158  
1159 +    if (storageLayout_ & DataStorage::dslDipole) {
1160 +      idat.dipole2 = &(atomColData.dipole[atom2]);
1161 +    }
1162 +
1163 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1164 +      idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1165 +    }
1166 +
1167      if (storageLayout_ & DataStorage::dslDensity) {
859      idat.rho1 = &(atomRowData.density[atom1]);
1168        idat.rho2 = &(atomColData.density[atom2]);
1169      }
1170  
1171      if (storageLayout_ & DataStorage::dslFunctional) {
864      idat.frho1 = &(atomRowData.functional[atom1]);
1172        idat.frho2 = &(atomColData.functional[atom2]);
1173      }
1174  
1175      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
869      idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1176        idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1177      }
1178  
1179      if (storageLayout_ & DataStorage::dslParticlePot) {
874      idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1180        idat.particlePot2 = &(atomColData.particlePot[atom2]);
1181      }
1182  
1183      if (storageLayout_ & DataStorage::dslSkippedCharge) {              
879      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1184        idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1185      }
1186  
1187 < #else
1187 >    if (storageLayout_ & DataStorage::dslFlucQPosition) {
1188 >      idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1189 >    }
1190  
1191 <    idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
1192 <                             ff_->getAtomType(idents[atom2]) );
1191 > #else  
1192 >    idat.atid2 = idents[atom2];
1193  
1194 +    if (regions[atom1] >= 0 && regions[atom2] >= 0) {
1195 +      idat.sameRegion = (regions[atom1] == regions[atom2]);
1196 +    } else {
1197 +      idat.sameRegion = false;
1198 +    }
1199 +
1200      if (storageLayout_ & DataStorage::dslAmat) {
889      idat.A1 = &(snap_->atomData.aMat[atom1]);
1201        idat.A2 = &(snap_->atomData.aMat[atom2]);
1202      }
1203  
893    if (storageLayout_ & DataStorage::dslElectroFrame) {
894      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
895      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
896    }
897
1204      if (storageLayout_ & DataStorage::dslTorque) {
899      idat.t1 = &(snap_->atomData.torque[atom1]);
1205        idat.t2 = &(snap_->atomData.torque[atom2]);
1206      }
1207  
1208 +    if (storageLayout_ & DataStorage::dslDipole) {
1209 +      idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1210 +    }
1211 +
1212 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1213 +      idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1214 +    }
1215 +
1216      if (storageLayout_ & DataStorage::dslDensity) {    
904      idat.rho1 = &(snap_->atomData.density[atom1]);
1217        idat.rho2 = &(snap_->atomData.density[atom2]);
1218      }
1219  
1220      if (storageLayout_ & DataStorage::dslFunctional) {
909      idat.frho1 = &(snap_->atomData.functional[atom1]);
1221        idat.frho2 = &(snap_->atomData.functional[atom2]);
1222      }
1223  
1224      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
914      idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1225        idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1226      }
1227  
1228      if (storageLayout_ & DataStorage::dslParticlePot) {
919      idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1229        idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1230      }
1231  
1232      if (storageLayout_ & DataStorage::dslSkippedCharge) {
924      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1233        idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1234      }
1235 +
1236 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1237 +      idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1238 +    }
1239 +
1240   #endif
1241 +    }
1242    }
929
1243    
1244 <  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
1244 >  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat,
1245 >                                                       int atom1, int atom2) {  
1246   #ifdef IS_MPI
1247 <    pot_row[atom1] += 0.5 *  *(idat.pot);
1248 <    pot_col[atom2] += 0.5 *  *(idat.pot);
1247 >    pot_row[atom1] += RealType(0.5) *  *(idat.pot);
1248 >    pot_col[atom2] += RealType(0.5) *  *(idat.pot);
1249 >    expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot);
1250 >    expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot);
1251  
1252      atomRowData.force[atom1] += *(idat.f1);
1253      atomColData.force[atom2] -= *(idat.f1);
1254 +
1255 +    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1256 +      atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1257 +      atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1258 +    }
1259 +
1260 +    if (storageLayout_ & DataStorage::dslElectricField) {              
1261 +      atomRowData.electricField[atom1] += *(idat.eField1);
1262 +      atomColData.electricField[atom2] += *(idat.eField2);
1263 +    }
1264 +
1265 +    if (storageLayout_ & DataStorage::dslSitePotential) {              
1266 +      atomRowData.sitePotential[atom1] += *(idat.sPot1);
1267 +      atomColData.sitePotential[atom2] += *(idat.sPot2);
1268 +    }
1269 +
1270   #else
1271      pairwisePot += *(idat.pot);
1272 +    excludedPot += *(idat.excludedPot);
1273  
1274      snap_->atomData.force[atom1] += *(idat.f1);
1275      snap_->atomData.force[atom2] -= *(idat.f1);
1276 +
1277 +    if (idat.doParticlePot) {
1278 +      // This is the pairwise contribution to the particle pot.  The
1279 +      // embedding contribution is added in each of the low level
1280 +      // non-bonded routines.  In parallel, this calculation is done
1281 +      // in collectData, not in unpackInteractionData.
1282 +      snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1283 +      snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1284 +    }
1285 +    
1286 +    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1287 +      snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1288 +      snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1289 +    }
1290 +
1291 +    if (storageLayout_ & DataStorage::dslElectricField) {              
1292 +      snap_->atomData.electricField[atom1] += *(idat.eField1);
1293 +      snap_->atomData.electricField[atom2] += *(idat.eField2);
1294 +    }
1295 +
1296 +    if (storageLayout_ & DataStorage::dslSitePotential) {              
1297 +      snap_->atomData.sitePotential[atom1] += *(idat.sPot1);
1298 +      snap_->atomData.sitePotential[atom2] += *(idat.sPot2);
1299 +    }
1300 +
1301   #endif
1302      
1303    }
# Line 947 | Line 1305 | namespace OpenMD {
1305    /*
1306     * buildNeighborList
1307     *
1308 <   * first element of pair is row-indexed CutoffGroup
1309 <   * second element of pair is column-indexed CutoffGroup
1308 >   * Constructs the Verlet neighbor list for a force-matrix
1309 >   * decomposition.  In this case, each processor is responsible for
1310 >   * row-site interactions with column-sites.
1311 >   *
1312 >   * neighborList is returned as a packed array of neighboring
1313 >   * column-ordered CutoffGroups.  The starting position in
1314 >   * neighborList for each row-ordered CutoffGroup is given by the
1315 >   * returned vector point.
1316     */
1317 <  vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1318 <      
1319 <    vector<pair<int, int> > neighborList;
1320 <    groupCutoffs cuts;
1317 >  void ForceMatrixDecomposition::buildNeighborList(vector<int>& neighborList,
1318 >                                                   vector<int>& point) {
1319 >    neighborList.clear();
1320 >    point.clear();
1321 >    int len = 0;
1322 >    
1323      bool doAllPairs = false;
1324  
1325 +    Snapshot* snap_ = sman_->getCurrentSnapshot();
1326 +    Mat3x3d box;
1327 +    Mat3x3d invBox;
1328 +
1329 +    Vector3d rs, scaled, dr;
1330 +    Vector3i whichCell;
1331 +    int cellIndex;
1332 +
1333   #ifdef IS_MPI
1334      cellListRow_.clear();
1335      cellListCol_.clear();
1336 +    point.resize(nGroupsInRow_+1);
1337   #else
1338      cellList_.clear();
1339 +    point.resize(nGroups_+1);
1340   #endif
1341 +    
1342 +    if (!usePeriodicBoundaryConditions_) {
1343 +      box = snap_->getBoundingBox();
1344 +      invBox = snap_->getInvBoundingBox();
1345 +    } else {
1346 +      box = snap_->getHmat();
1347 +      invBox = snap_->getInvHmat();
1348 +    }
1349 +    
1350 +    Vector3d A = box.getColumn(0);
1351 +    Vector3d B = box.getColumn(1);
1352 +    Vector3d C = box.getColumn(2);
1353  
1354 <    RealType rList_ = (largestRcut_ + skinThickness_);
1355 <    RealType rl2 = rList_ * rList_;
1356 <    Snapshot* snap_ = sman_->getCurrentSnapshot();
1357 <    Mat3x3d Hmat = snap_->getHmat();
970 <    Vector3d Hx = Hmat.getColumn(0);
971 <    Vector3d Hy = Hmat.getColumn(1);
972 <    Vector3d Hz = Hmat.getColumn(2);
1354 >    // Required for triclinic cells
1355 >    Vector3d AxB = cross(A, B);
1356 >    Vector3d BxC = cross(B, C);
1357 >    Vector3d CxA = cross(C, A);
1358  
1359 <    nCells_.x() = (int) ( Hx.length() )/ rList_;
1360 <    nCells_.y() = (int) ( Hy.length() )/ rList_;
1361 <    nCells_.z() = (int) ( Hz.length() )/ rList_;
1359 >    // unit vectors perpendicular to the faces of the triclinic cell:
1360 >    AxB.normalize();
1361 >    BxC.normalize();
1362 >    CxA.normalize();
1363  
1364 <    // handle small boxes where the cell offsets can end up repeating cells
1364 >    // A set of perpendicular lengths in triclinic cells:
1365 >    RealType Wa = abs(dot(A, BxC));
1366 >    RealType Wb = abs(dot(B, CxA));
1367 >    RealType Wc = abs(dot(C, AxB));
1368      
1369 +    nCells_.x() = int( Wa / rList_ );
1370 +    nCells_.y() = int( Wb / rList_ );
1371 +    nCells_.z() = int( Wc / rList_ );
1372 +    
1373 +    // handle small boxes where the cell offsets can end up repeating cells
1374      if (nCells_.x() < 3) doAllPairs = true;
1375      if (nCells_.y() < 3) doAllPairs = true;
1376      if (nCells_.z() < 3) doAllPairs = true;
1377 <
984 <    Mat3x3d invHmat = snap_->getInvHmat();
985 <    Vector3d rs, scaled, dr;
986 <    Vector3i whichCell;
987 <    int cellIndex;
1377 >    
1378      int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1379 <
1379 >    
1380   #ifdef IS_MPI
1381      cellListRow_.resize(nCtot);
1382      cellListCol_.resize(nCtot);
1383   #else
1384      cellList_.resize(nCtot);
1385   #endif
1386 <
1386 >    
1387      if (!doAllPairs) {
1388 +      
1389   #ifdef IS_MPI
1390 <
1390 >      
1391        for (int i = 0; i < nGroupsInRow_; i++) {
1392          rs = cgRowData.position[i];
1393          
1394          // scaled positions relative to the box vectors
1395 <        scaled = invHmat * rs;
1395 >        scaled = invBox * rs;
1396          
1397          // wrap the vector back into the unit box by subtracting integer box
1398          // numbers
1399          for (int j = 0; j < 3; j++) {
1400            scaled[j] -= roundMe(scaled[j]);
1401            scaled[j] += 0.5;
1402 +          // Handle the special case when an object is exactly on the
1403 +          // boundary (a scaled coordinate of 1.0 is the same as
1404 +          // scaled coordinate of 0.0)
1405 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1406          }
1407          
1408          // find xyz-indices of cell that cutoffGroup is in.
# Line 1021 | Line 1416 | namespace OpenMD {
1416          // add this cutoff group to the list of groups in this cell;
1417          cellListRow_[cellIndex].push_back(i);
1418        }
1024      
1419        for (int i = 0; i < nGroupsInCol_; i++) {
1420          rs = cgColData.position[i];
1421          
1422          // scaled positions relative to the box vectors
1423 <        scaled = invHmat * rs;
1423 >        scaled = invBox * rs;
1424          
1425          // wrap the vector back into the unit box by subtracting integer box
1426          // numbers
1427          for (int j = 0; j < 3; j++) {
1428            scaled[j] -= roundMe(scaled[j]);
1429            scaled[j] += 0.5;
1430 +          // Handle the special case when an object is exactly on the
1431 +          // boundary (a scaled coordinate of 1.0 is the same as
1432 +          // scaled coordinate of 0.0)
1433 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1434          }
1435          
1436          // find xyz-indices of cell that cutoffGroup is in.
# Line 1046 | Line 1444 | namespace OpenMD {
1444          // add this cutoff group to the list of groups in this cell;
1445          cellListCol_[cellIndex].push_back(i);
1446        }
1447 +            
1448   #else
1449        for (int i = 0; i < nGroups_; i++) {
1450          rs = snap_->cgData.position[i];
1451          
1452          // scaled positions relative to the box vectors
1453 <        scaled = invHmat * rs;
1453 >        scaled = invBox * rs;
1454          
1455          // wrap the vector back into the unit box by subtracting integer box
1456          // numbers
1457          for (int j = 0; j < 3; j++) {
1458            scaled[j] -= roundMe(scaled[j]);
1459            scaled[j] += 0.5;
1460 +          // Handle the special case when an object is exactly on the
1461 +          // boundary (a scaled coordinate of 1.0 is the same as
1462 +          // scaled coordinate of 0.0)
1463 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1464          }
1465          
1466          // find xyz-indices of cell that cutoffGroup is in.
1467 <        whichCell.x() = nCells_.x() * scaled.x();
1468 <        whichCell.y() = nCells_.y() * scaled.y();
1469 <        whichCell.z() = nCells_.z() * scaled.z();
1467 >        whichCell.x() = int(nCells_.x() * scaled.x());
1468 >        whichCell.y() = int(nCells_.y() * scaled.y());
1469 >        whichCell.z() = int(nCells_.z() * scaled.z());
1470          
1471          // find single index of this cell:
1472 <        cellIndex = Vlinear(whichCell, nCells_);      
1472 >        cellIndex = Vlinear(whichCell, nCells_);
1473          
1474          // add this cutoff group to the list of groups in this cell;
1475          cellList_[cellIndex].push_back(i);
1476        }
1477 +
1478   #endif
1479  
1076      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1077        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1078          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1079            Vector3i m1v(m1x, m1y, m1z);
1080            int m1 = Vlinear(m1v, nCells_);
1081            
1082            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1083                 os != cellOffsets_.end(); ++os) {
1084              
1085              Vector3i m2v = m1v + (*os);
1086              
1087              if (m2v.x() >= nCells_.x()) {
1088                m2v.x() = 0;          
1089              } else if (m2v.x() < 0) {
1090                m2v.x() = nCells_.x() - 1;
1091              }
1092              
1093              if (m2v.y() >= nCells_.y()) {
1094                m2v.y() = 0;          
1095              } else if (m2v.y() < 0) {
1096                m2v.y() = nCells_.y() - 1;
1097              }
1098              
1099              if (m2v.z() >= nCells_.z()) {
1100                m2v.z() = 0;          
1101              } else if (m2v.z() < 0) {
1102                m2v.z() = nCells_.z() - 1;
1103              }
1104              
1105              int m2 = Vlinear (m2v, nCells_);
1106              
1480   #ifdef IS_MPI
1481 <              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1482 <                   j1 != cellListRow_[m1].end(); ++j1) {
1483 <                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1484 <                     j2 != cellListCol_[m2].end(); ++j2) {
1485 <                  
1486 <                  // Always do this if we're in different cells or if
1487 <                  // we're in the same cell and the global index of the
1488 <                  // j2 cutoff group is less than the j1 cutoff group
1489 <                  
1490 <                  if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1491 <                    dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1492 <                    snap_->wrapVector(dr);
1493 <                    cuts = getGroupCutoffs( (*j1), (*j2) );
1494 <                    if (dr.lengthSquare() < cuts.third) {
1495 <                      neighborList.push_back(make_pair((*j1), (*j2)));
1496 <                    }
1497 <                  }
1498 <                }
1499 <              }
1481 >      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1482 >        rs = cgRowData.position[j1];
1483 > #else
1484 >
1485 >      for (int j1 = 0; j1 < nGroups_; j1++) {
1486 >        rs = snap_->cgData.position[j1];
1487 > #endif
1488 >        point[j1] = len;
1489 >        
1490 >        // scaled positions relative to the box vectors
1491 >        scaled = invBox * rs;
1492 >        
1493 >        // wrap the vector back into the unit box by subtracting integer box
1494 >        // numbers
1495 >        for (int j = 0; j < 3; j++) {
1496 >          scaled[j] -= roundMe(scaled[j]);
1497 >          scaled[j] += 0.5;
1498 >          // Handle the special case when an object is exactly on the
1499 >          // boundary (a scaled coordinate of 1.0 is the same as
1500 >          // scaled coordinate of 0.0)
1501 >          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1502 >        }
1503 >        
1504 >        // find xyz-indices of cell that cutoffGroup is in.
1505 >        whichCell.x() = nCells_.x() * scaled.x();
1506 >        whichCell.y() = nCells_.y() * scaled.y();
1507 >        whichCell.z() = nCells_.z() * scaled.z();
1508 >        
1509 >        // find single index of this cell:
1510 >        int m1 = Vlinear(whichCell, nCells_);
1511 >
1512 >        for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1513 >             os != cellOffsets_.end(); ++os) {
1514 >              
1515 >          Vector3i m2v = whichCell + (*os);
1516 >
1517 >          if (m2v.x() >= nCells_.x()) {
1518 >            m2v.x() = 0;          
1519 >          } else if (m2v.x() < 0) {
1520 >            m2v.x() = nCells_.x() - 1;
1521 >          }
1522 >          
1523 >          if (m2v.y() >= nCells_.y()) {
1524 >            m2v.y() = 0;          
1525 >          } else if (m2v.y() < 0) {
1526 >            m2v.y() = nCells_.y() - 1;
1527 >          }
1528 >          
1529 >          if (m2v.z() >= nCells_.z()) {
1530 >            m2v.z() = 0;          
1531 >          } else if (m2v.z() < 0) {
1532 >            m2v.z() = nCells_.z() - 1;
1533 >          }
1534 >          int m2 = Vlinear (m2v, nCells_);                                      
1535 > #ifdef IS_MPI
1536 >          for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1537 >               j2 != cellListCol_[m2].end(); ++j2) {
1538 >            
1539 >            // In parallel, we need to visit *all* pairs of row
1540 >            // & column indicies and will divide labor in the
1541 >            // force evaluation later.
1542 >            dr = cgColData.position[(*j2)] - rs;
1543 >            if (usePeriodicBoundaryConditions_) {
1544 >              snap_->wrapVector(dr);
1545 >            }
1546 >            if (dr.lengthSquare() < rListSq_) {
1547 >              neighborList.push_back( (*j2) );
1548 >              ++len;
1549 >            }                
1550 >          }        
1551   #else
1552 +          for (vector<int>::iterator j2 = cellList_[m2].begin();
1553 +               j2 != cellList_[m2].end(); ++j2) {
1554 +          
1555 +            // Always do this if we're in different cells or if
1556 +            // we're in the same cell and the global index of
1557 +            // the j2 cutoff group is greater than or equal to
1558 +            // the j1 cutoff group.  Note that Rappaport's code
1559 +            // has a "less than" conditional here, but that
1560 +            // deals with atom-by-atom computation.  OpenMD
1561 +            // allows atoms within a single cutoff group to
1562 +            // interact with each other.
1563 +            
1564 +            if ( (*j2) >= j1 ) {
1565                
1566 <              for (vector<int>::iterator j1 = cellList_[m1].begin();
1567 <                   j1 != cellList_[m1].end(); ++j1) {
1568 <                for (vector<int>::iterator j2 = cellList_[m2].begin();
1132 <                     j2 != cellList_[m2].end(); ++j2) {
1133 <                  
1134 <                  // Always do this if we're in different cells or if
1135 <                  // we're in the same cell and the global index of the
1136 <                  // j2 cutoff group is less than the j1 cutoff group
1137 <                  
1138 <                  if (m2 != m1 || (*j2) < (*j1)) {
1139 <                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1140 <                    snap_->wrapVector(dr);
1141 <                    cuts = getGroupCutoffs( (*j1), (*j2) );
1142 <                    if (dr.lengthSquare() < cuts.third) {
1143 <                      neighborList.push_back(make_pair((*j1), (*j2)));
1144 <                    }
1145 <                  }
1146 <                }
1566 >              dr = snap_->cgData.position[(*j2)] - rs;
1567 >              if (usePeriodicBoundaryConditions_) {
1568 >                snap_->wrapVector(dr);
1569                }
1570 < #endif
1570 >              if ( dr.lengthSquare() < rListSq_) {
1571 >                neighborList.push_back( (*j2) );
1572 >                ++len;
1573 >              }
1574              }
1575 <          }
1575 >          }                
1576 > #endif
1577          }
1578 <      }
1578 >      }      
1579      } else {
1580        // branch to do all cutoff group pairs
1581   #ifdef IS_MPI
1582        for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1583 <        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {      
1584 <          dr = cgColData.position[j2] - cgRowData.position[j1];
1585 <          snap_->wrapVector(dr);
1586 <          cuts = getGroupCutoffs( j1, j2 );
1587 <          if (dr.lengthSquare() < cuts.third) {
1588 <            neighborList.push_back(make_pair(j1, j2));
1583 >        point[j1] = len;
1584 >        rs = cgRowData.position[j1];
1585 >        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {    
1586 >          dr = cgColData.position[j2] - rs;
1587 >          if (usePeriodicBoundaryConditions_) {
1588 >            snap_->wrapVector(dr);
1589            }
1590 +          if (dr.lengthSquare() < rListSq_) {
1591 +            neighborList.push_back( j2 );
1592 +            ++len;
1593 +          }
1594          }
1595 <      }
1595 >      }      
1596   #else
1597 <      for (int j1 = 0; j1 < nGroups_ - 1; j1++) {
1598 <        for (int j2 = j1 + 1; j2 < nGroups_; j2++) {
1599 <          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1600 <          snap_->wrapVector(dr);
1601 <          cuts = getGroupCutoffs( j1, j2 );
1602 <          if (dr.lengthSquare() < cuts.third) {
1603 <            neighborList.push_back(make_pair(j1, j2));
1597 >      // include all groups here.
1598 >      for (int j1 = 0; j1 < nGroups_; j1++) {
1599 >        point[j1] = len;
1600 >        rs = snap_->cgData.position[j1];
1601 >        // include self group interactions j2 == j1
1602 >        for (int j2 = j1; j2 < nGroups_; j2++) {
1603 >          dr = snap_->cgData.position[j2] - rs;
1604 >          if (usePeriodicBoundaryConditions_) {
1605 >            snap_->wrapVector(dr);
1606            }
1607 <        }
1608 <      }        
1607 >          if (dr.lengthSquare() < rListSq_) {
1608 >            neighborList.push_back( j2 );
1609 >            ++len;
1610 >          }
1611 >        }    
1612 >      }
1613   #endif
1614      }
1615 <      
1615 >
1616 > #ifdef IS_MPI
1617 >    point[nGroupsInRow_] = len;
1618 > #else
1619 >    point[nGroups_] = len;
1620 > #endif
1621 >  
1622      // save the local cutoff group positions for the check that is
1623      // done on each loop:
1624      saved_CG_positions_.clear();
1625 +    saved_CG_positions_.reserve(nGroups_);
1626      for (int i = 0; i < nGroups_; i++)
1627        saved_CG_positions_.push_back(snap_->cgData.position[i]);
1185    
1186    return neighborList;
1628    }
1629   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines