ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing:
branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 1551 by gezelter, Thu Apr 28 18:38:21 2011 UTC vs.
trunk/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 2057 by gezelter, Tue Mar 3 15:22:26 2015 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42   #include "parallel/ForceMatrixDecomposition.hpp"
43   #include "math/SquareMatrix3.hpp"
44   #include "nonbonded/NonBondedInteraction.hpp"
45   #include "brains/SnapshotManager.hpp"
46 + #include "brains/PairList.hpp"
47  
48   using namespace std;
49   namespace OpenMD {
50  
51 +  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52 +
53 +    // Row and colum scans must visit all surrounding cells
54 +    cellOffsets_.clear();
55 +    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
56 +    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
57 +    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                          
58 +    cellOffsets_.push_back( Vector3i(-1, 0,-1) );
59 +    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
60 +    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
61 +    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
62 +    cellOffsets_.push_back( Vector3i( 0, 1,-1) );      
63 +    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
64 +    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
65 +    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
66 +    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
67 +    cellOffsets_.push_back( Vector3i(-1, 0, 0) );      
68 +    cellOffsets_.push_back( Vector3i( 0, 0, 0) );
69 +    cellOffsets_.push_back( Vector3i( 1, 0, 0) );
70 +    cellOffsets_.push_back( Vector3i(-1, 1, 0) );
71 +    cellOffsets_.push_back( Vector3i( 0, 1, 0) );
72 +    cellOffsets_.push_back( Vector3i( 1, 1, 0) );
73 +    cellOffsets_.push_back( Vector3i(-1,-1, 1) );
74 +    cellOffsets_.push_back( Vector3i( 0,-1, 1) );
75 +    cellOffsets_.push_back( Vector3i( 1,-1, 1) );
76 +    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
77 +    cellOffsets_.push_back( Vector3i( 0, 0, 1) );
78 +    cellOffsets_.push_back( Vector3i( 1, 0, 1) );
79 +    cellOffsets_.push_back( Vector3i(-1, 1, 1) );
80 +    cellOffsets_.push_back( Vector3i( 0, 1, 1) );
81 +    cellOffsets_.push_back( Vector3i( 1, 1, 1) );
82 +  }
83 +
84 +
85    /**
86     * distributeInitialData is essentially a copy of the older fortran
87     * SimulationSetup
88     */
53  
89    void ForceMatrixDecomposition::distributeInitialData() {
90      snap_ = sman_->getCurrentSnapshot();
91      storageLayout_ = sman_->getStorageLayout();
92 < #ifdef IS_MPI    
93 <    int nLocal = snap_->getNumberOfAtoms();
94 <    int nGroups = snap_->getNumberOfCutoffGroups();
92 >    ff_ = info_->getForceField();
93 >    nLocal_ = snap_->getNumberOfAtoms();
94 >  
95 >    nGroups_ = info_->getNLocalCutoffGroups();
96 >    // gather the information for atomtype IDs (atids):
97 >    idents = info_->getIdentArray();
98 >    regions = info_->getRegions();
99 >    AtomLocalToGlobal = info_->getGlobalAtomIndices();
100 >    cgLocalToGlobal = info_->getGlobalGroupIndices();
101 >    vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
102 >
103 >    massFactors = info_->getMassFactors();
104 >
105 >    PairList* excludes = info_->getExcludedInteractions();
106 >    PairList* oneTwo = info_->getOneTwoInteractions();
107 >    PairList* oneThree = info_->getOneThreeInteractions();
108 >    PairList* oneFour = info_->getOneFourInteractions();
109      
110 <    AtomCommIntRow = new Communicator<Row,int>(nLocal);
111 <    AtomCommRealRow = new Communicator<Row,RealType>(nLocal);
112 <    AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal);
113 <    AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal);
110 >    if (needVelocities_)
111 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition |
112 >                                     DataStorage::dslVelocity);
113 >    else
114 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition);
115 >    
116 > #ifdef IS_MPI
117 >
118 >    MPI_Comm row = rowComm.getComm();
119 >    MPI_Comm col = colComm.getComm();
120  
121 <    AtomCommIntColumn = new Communicator<Column,int>(nLocal);
122 <    AtomCommRealColumn = new Communicator<Column,RealType>(nLocal);
123 <    AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal);
124 <    AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal);
121 >    AtomPlanIntRow = new Plan<int>(row, nLocal_);
122 >    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
123 >    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
124 >    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
125 >    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
126  
127 <    cgCommIntRow = new Communicator<Row,int>(nGroups);
128 <    cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups);
129 <    cgCommIntColumn = new Communicator<Column,int>(nGroups);
130 <    cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups);
127 >    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
128 >    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
129 >    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
130 >    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
131 >    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
132  
133 <    int nAtomsInRow = AtomCommIntRow->getSize();
134 <    int nAtomsInCol = AtomCommIntColumn->getSize();
135 <    int nGroupsInRow = cgCommIntRow->getSize();
136 <    int nGroupsInCol = cgCommIntColumn->getSize();
133 >    cgPlanIntRow = new Plan<int>(row, nGroups_);
134 >    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
135 >    cgPlanIntColumn = new Plan<int>(col, nGroups_);
136 >    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
137  
138 +    nAtomsInRow_ = AtomPlanIntRow->getSize();
139 +    nAtomsInCol_ = AtomPlanIntColumn->getSize();
140 +    nGroupsInRow_ = cgPlanIntRow->getSize();
141 +    nGroupsInCol_ = cgPlanIntColumn->getSize();
142 +
143      // Modify the data storage objects with the correct layouts and sizes:
144 <    atomRowData.resize(nAtomsInRow);
144 >    atomRowData.resize(nAtomsInRow_);
145      atomRowData.setStorageLayout(storageLayout_);
146 <    atomColData.resize(nAtomsInCol);
146 >    atomColData.resize(nAtomsInCol_);
147      atomColData.setStorageLayout(storageLayout_);
148 <    cgRowData.resize(nGroupsInRow);
148 >    cgRowData.resize(nGroupsInRow_);
149      cgRowData.setStorageLayout(DataStorage::dslPosition);
150 <    cgColData.resize(nGroupsInCol);
151 <    cgColData.setStorageLayout(DataStorage::dslPosition);
150 >    cgColData.resize(nGroupsInCol_);
151 >    if (needVelocities_)
152 >      // we only need column velocities if we need them.
153 >      cgColData.setStorageLayout(DataStorage::dslPosition |
154 >                                 DataStorage::dslVelocity);
155 >    else    
156 >      cgColData.setStorageLayout(DataStorage::dslPosition);
157 >      
158 >    identsRow.resize(nAtomsInRow_);
159 >    identsCol.resize(nAtomsInCol_);
160      
161 <    vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES,
162 <                                      vector<RealType> (nAtomsInRow, 0.0));
93 <    vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES,
94 <                                      vector<RealType> (nAtomsInCol, 0.0));
161 >    AtomPlanIntRow->gather(idents, identsRow);
162 >    AtomPlanIntColumn->gather(idents, identsCol);
163  
164 <
165 <    vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0);
164 >    regionsRow.resize(nAtomsInRow_);
165 >    regionsCol.resize(nAtomsInCol_);
166      
167 <    // gather the information for atomtype IDs (atids):
168 <    vector<int> identsLocal = info_->getIdentArray();
101 <    identsRow.reserve(nAtomsInRow);
102 <    identsCol.reserve(nAtomsInCol);
167 >    AtomPlanIntRow->gather(regions, regionsRow);
168 >    AtomPlanIntColumn->gather(regions, regionsCol);
169      
170 <    AtomCommIntRow->gather(identsLocal, identsRow);
171 <    AtomCommIntColumn->gather(identsLocal, identsCol);
172 <    
107 <    AtomLocalToGlobal = info_->getGlobalAtomIndices();
108 <    AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
109 <    AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
110 <    
111 <    cgLocalToGlobal = info_->getGlobalGroupIndices();
112 <    cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
113 <    cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
170 >    // allocate memory for the parallel objects
171 >    atypesRow.resize(nAtomsInRow_);
172 >    atypesCol.resize(nAtomsInCol_);
173  
174 <    // still need:
175 <    // topoDist
176 <    // exclude
174 >    for (int i = 0; i < nAtomsInRow_; i++)
175 >      atypesRow[i] = ff_->getAtomType(identsRow[i]);
176 >    for (int i = 0; i < nAtomsInCol_; i++)
177 >      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
178 >
179 >    pot_row.resize(nAtomsInRow_);
180 >    pot_col.resize(nAtomsInCol_);
181 >
182 >    expot_row.resize(nAtomsInRow_);
183 >    expot_col.resize(nAtomsInCol_);
184 >
185 >    AtomRowToGlobal.resize(nAtomsInRow_);
186 >    AtomColToGlobal.resize(nAtomsInCol_);
187 >    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
188 >    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
189 >
190 >    cgRowToGlobal.resize(nGroupsInRow_);
191 >    cgColToGlobal.resize(nGroupsInCol_);
192 >    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
193 >    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
194 >
195 >    massFactorsRow.resize(nAtomsInRow_);
196 >    massFactorsCol.resize(nAtomsInCol_);
197 >    AtomPlanRealRow->gather(massFactors, massFactorsRow);
198 >    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
199 >
200 >    groupListRow_.clear();
201 >    groupListRow_.resize(nGroupsInRow_);
202 >    for (int i = 0; i < nGroupsInRow_; i++) {
203 >      int gid = cgRowToGlobal[i];
204 >      for (int j = 0; j < nAtomsInRow_; j++) {
205 >        int aid = AtomRowToGlobal[j];
206 >        if (globalGroupMembership[aid] == gid)
207 >          groupListRow_[i].push_back(j);
208 >      }      
209 >    }
210 >
211 >    groupListCol_.clear();
212 >    groupListCol_.resize(nGroupsInCol_);
213 >    for (int i = 0; i < nGroupsInCol_; i++) {
214 >      int gid = cgColToGlobal[i];
215 >      for (int j = 0; j < nAtomsInCol_; j++) {
216 >        int aid = AtomColToGlobal[j];
217 >        if (globalGroupMembership[aid] == gid)
218 >          groupListCol_[i].push_back(j);
219 >      }      
220 >    }
221 >
222 >    excludesForAtom.clear();
223 >    excludesForAtom.resize(nAtomsInRow_);
224 >    toposForAtom.clear();
225 >    toposForAtom.resize(nAtomsInRow_);
226 >    topoDist.clear();
227 >    topoDist.resize(nAtomsInRow_);
228 >    for (int i = 0; i < nAtomsInRow_; i++) {
229 >      int iglob = AtomRowToGlobal[i];
230 >
231 >      for (int j = 0; j < nAtomsInCol_; j++) {
232 >        int jglob = AtomColToGlobal[j];
233 >
234 >        if (excludes->hasPair(iglob, jglob))
235 >          excludesForAtom[i].push_back(j);      
236 >        
237 >        if (oneTwo->hasPair(iglob, jglob)) {
238 >          toposForAtom[i].push_back(j);
239 >          topoDist[i].push_back(1);
240 >        } else {
241 >          if (oneThree->hasPair(iglob, jglob)) {
242 >            toposForAtom[i].push_back(j);
243 >            topoDist[i].push_back(2);
244 >          } else {
245 >            if (oneFour->hasPair(iglob, jglob)) {
246 >              toposForAtom[i].push_back(j);
247 >              topoDist[i].push_back(3);
248 >            }
249 >          }
250 >        }
251 >      }      
252 >    }
253 >
254 > #else
255 >    excludesForAtom.clear();
256 >    excludesForAtom.resize(nLocal_);
257 >    toposForAtom.clear();
258 >    toposForAtom.resize(nLocal_);
259 >    topoDist.clear();
260 >    topoDist.resize(nLocal_);
261 >
262 >    for (int i = 0; i < nLocal_; i++) {
263 >      int iglob = AtomLocalToGlobal[i];
264 >
265 >      for (int j = 0; j < nLocal_; j++) {
266 >        int jglob = AtomLocalToGlobal[j];
267 >
268 >        if (excludes->hasPair(iglob, jglob))
269 >          excludesForAtom[i].push_back(j);              
270 >        
271 >        if (oneTwo->hasPair(iglob, jglob)) {
272 >          toposForAtom[i].push_back(j);
273 >          topoDist[i].push_back(1);
274 >        } else {
275 >          if (oneThree->hasPair(iglob, jglob)) {
276 >            toposForAtom[i].push_back(j);
277 >            topoDist[i].push_back(2);
278 >          } else {
279 >            if (oneFour->hasPair(iglob, jglob)) {
280 >              toposForAtom[i].push_back(j);
281 >              topoDist[i].push_back(3);
282 >            }
283 >          }
284 >        }
285 >      }      
286 >    }
287   #endif
288 +
289 +    // allocate memory for the parallel objects
290 +    atypesLocal.resize(nLocal_);
291 +
292 +    for (int i = 0; i < nLocal_; i++)
293 +      atypesLocal[i] = ff_->getAtomType(idents[i]);
294 +
295 +    groupList_.clear();
296 +    groupList_.resize(nGroups_);
297 +    for (int i = 0; i < nGroups_; i++) {
298 +      int gid = cgLocalToGlobal[i];
299 +      for (int j = 0; j < nLocal_; j++) {
300 +        int aid = AtomLocalToGlobal[j];
301 +        if (globalGroupMembership[aid] == gid) {
302 +          groupList_[i].push_back(j);
303 +        }
304 +      }      
305 +    }    
306    }
307      
308 +  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
309 +    for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) {
310 +      if (toposForAtom[atom1][j] == atom2)
311 +        return topoDist[atom1][j];
312 +    }                                          
313 +    return 0;
314 +  }
315  
316 +  void ForceMatrixDecomposition::zeroWorkArrays() {
317 +    pairwisePot = 0.0;
318 +    embeddingPot = 0.0;
319 +    excludedPot = 0.0;
320 +    excludedSelfPot = 0.0;
321  
322 + #ifdef IS_MPI
323 +    if (storageLayout_ & DataStorage::dslForce) {
324 +      fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
325 +      fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
326 +    }
327 +
328 +    if (storageLayout_ & DataStorage::dslTorque) {
329 +      fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
330 +      fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
331 +    }
332 +    
333 +    fill(pot_row.begin(), pot_row.end(),
334 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
335 +
336 +    fill(pot_col.begin(), pot_col.end(),
337 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
338 +
339 +    fill(expot_row.begin(), expot_row.end(),
340 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
341 +
342 +    fill(expot_col.begin(), expot_col.end(),
343 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
344 +
345 +    if (storageLayout_ & DataStorage::dslParticlePot) {    
346 +      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
347 +           0.0);
348 +      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
349 +           0.0);
350 +    }
351 +
352 +    if (storageLayout_ & DataStorage::dslDensity) {      
353 +      fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
354 +      fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
355 +    }
356 +
357 +    if (storageLayout_ & DataStorage::dslFunctional) {  
358 +      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
359 +           0.0);
360 +      fill(atomColData.functional.begin(), atomColData.functional.end(),
361 +           0.0);
362 +    }
363 +
364 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
365 +      fill(atomRowData.functionalDerivative.begin(),
366 +           atomRowData.functionalDerivative.end(), 0.0);
367 +      fill(atomColData.functionalDerivative.begin(),
368 +           atomColData.functionalDerivative.end(), 0.0);
369 +    }
370 +
371 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
372 +      fill(atomRowData.skippedCharge.begin(),
373 +           atomRowData.skippedCharge.end(), 0.0);
374 +      fill(atomColData.skippedCharge.begin(),
375 +           atomColData.skippedCharge.end(), 0.0);
376 +    }
377 +
378 +    if (storageLayout_ & DataStorage::dslFlucQForce) {      
379 +      fill(atomRowData.flucQFrc.begin(),
380 +           atomRowData.flucQFrc.end(), 0.0);
381 +      fill(atomColData.flucQFrc.begin(),
382 +           atomColData.flucQFrc.end(), 0.0);
383 +    }
384 +
385 +    if (storageLayout_ & DataStorage::dslElectricField) {    
386 +      fill(atomRowData.electricField.begin(),
387 +           atomRowData.electricField.end(), V3Zero);
388 +      fill(atomColData.electricField.begin(),
389 +           atomColData.electricField.end(), V3Zero);
390 +    }
391 +
392 +    if (storageLayout_ & DataStorage::dslSitePotential) {    
393 +      fill(atomRowData.sitePotential.begin(),
394 +           atomRowData.sitePotential.end(), 0.0);
395 +      fill(atomColData.sitePotential.begin(),
396 +           atomColData.sitePotential.end(), 0.0);
397 +    }
398 +
399 + #endif
400 +    // even in parallel, we need to zero out the local arrays:
401 +
402 +    if (storageLayout_ & DataStorage::dslParticlePot) {      
403 +      fill(snap_->atomData.particlePot.begin(),
404 +           snap_->atomData.particlePot.end(), 0.0);
405 +    }
406 +    
407 +    if (storageLayout_ & DataStorage::dslDensity) {      
408 +      fill(snap_->atomData.density.begin(),
409 +           snap_->atomData.density.end(), 0.0);
410 +    }
411 +
412 +    if (storageLayout_ & DataStorage::dslFunctional) {
413 +      fill(snap_->atomData.functional.begin(),
414 +           snap_->atomData.functional.end(), 0.0);
415 +    }
416 +
417 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
418 +      fill(snap_->atomData.functionalDerivative.begin(),
419 +           snap_->atomData.functionalDerivative.end(), 0.0);
420 +    }
421 +
422 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
423 +      fill(snap_->atomData.skippedCharge.begin(),
424 +           snap_->atomData.skippedCharge.end(), 0.0);
425 +    }
426 +
427 +    if (storageLayout_ & DataStorage::dslElectricField) {      
428 +      fill(snap_->atomData.electricField.begin(),
429 +           snap_->atomData.electricField.end(), V3Zero);
430 +    }
431 +    if (storageLayout_ & DataStorage::dslSitePotential) {      
432 +      fill(snap_->atomData.sitePotential.begin(),
433 +           snap_->atomData.sitePotential.end(), 0.0);
434 +    }
435 +  }
436 +
437 +
438    void ForceMatrixDecomposition::distributeData()  {
439      snap_ = sman_->getCurrentSnapshot();
440      storageLayout_ = sman_->getStorageLayout();
441 +
442 +    bool needsCG = true;
443 +    if(info_->getNCutoffGroups() != info_->getNAtoms())
444 +      needsCG = false;
445 +  
446   #ifdef IS_MPI
447      
448      // gather up the atomic positions
449 <    AtomCommVectorRow->gather(snap_->atomData.position,
449 >    AtomPlanVectorRow->gather(snap_->atomData.position,
450                                atomRowData.position);
451 <    AtomCommVectorColumn->gather(snap_->atomData.position,
451 >    AtomPlanVectorColumn->gather(snap_->atomData.position,
452                                   atomColData.position);
453      
454      // gather up the cutoff group positions
455 <    cgCommVectorRow->gather(snap_->cgData.position,
456 <                            cgRowData.position);
457 <    cgCommVectorColumn->gather(snap_->cgData.position,
458 <                               cgColData.position);
455 >
456 >    if (needsCG) {
457 >      cgPlanVectorRow->gather(snap_->cgData.position,
458 >                              cgRowData.position);
459 >      
460 >      cgPlanVectorColumn->gather(snap_->cgData.position,
461 >                                 cgColData.position);
462 >    }
463 >
464 >
465 >    if (needVelocities_) {
466 >      // gather up the atomic velocities
467 >      AtomPlanVectorColumn->gather(snap_->atomData.velocity,
468 >                                   atomColData.velocity);
469 >
470 >      if (needsCG) {        
471 >        cgPlanVectorColumn->gather(snap_->cgData.velocity,
472 >                                   cgColData.velocity);
473 >      }
474 >    }
475 >
476      
477      // if needed, gather the atomic rotation matrices
478      if (storageLayout_ & DataStorage::dslAmat) {
479 <      AtomCommMatrixRow->gather(snap_->atomData.aMat,
479 >      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
480                                  atomRowData.aMat);
481 <      AtomCommMatrixColumn->gather(snap_->atomData.aMat,
481 >      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
482                                     atomColData.aMat);
483      }
484 <    
485 <    // if needed, gather the atomic eletrostatic frames
486 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
487 <      AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
488 <                                atomRowData.electroFrame);
489 <      AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
490 <                                   atomColData.electroFrame);
484 >
485 >    // if needed, gather the atomic eletrostatic information
486 >    if (storageLayout_ & DataStorage::dslDipole) {
487 >      AtomPlanVectorRow->gather(snap_->atomData.dipole,
488 >                                atomRowData.dipole);
489 >      AtomPlanVectorColumn->gather(snap_->atomData.dipole,
490 >                                   atomColData.dipole);
491      }
492 +
493 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
494 +      AtomPlanMatrixRow->gather(snap_->atomData.quadrupole,
495 +                                atomRowData.quadrupole);
496 +      AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole,
497 +                                   atomColData.quadrupole);
498 +    }
499 +        
500 +    // if needed, gather the atomic fluctuating charge values
501 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {
502 +      AtomPlanRealRow->gather(snap_->atomData.flucQPos,
503 +                              atomRowData.flucQPos);
504 +      AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
505 +                                 atomColData.flucQPos);
506 +    }
507 +
508   #endif      
509    }
510    
511 +  /* collects information obtained during the pre-pair loop onto local
512 +   * data structures.
513 +   */
514    void ForceMatrixDecomposition::collectIntermediateData() {
515      snap_ = sman_->getCurrentSnapshot();
516      storageLayout_ = sman_->getStorageLayout();
# Line 162 | Line 518 | namespace OpenMD {
518      
519      if (storageLayout_ & DataStorage::dslDensity) {
520        
521 <      AtomCommRealRow->scatter(atomRowData.density,
521 >      AtomPlanRealRow->scatter(atomRowData.density,
522                                 snap_->atomData.density);
523        
524        int n = snap_->atomData.density.size();
525 <      std::vector<RealType> rho_tmp(n, 0.0);
526 <      AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
525 >      vector<RealType> rho_tmp(n, 0.0);
526 >      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
527        for (int i = 0; i < n; i++)
528          snap_->atomData.density[i] += rho_tmp[i];
529      }
530 +
531 +    // this isn't necessary if we don't have polarizable atoms, but
532 +    // we'll leave it here for now.
533 +    if (storageLayout_ & DataStorage::dslElectricField) {
534 +      
535 +      AtomPlanVectorRow->scatter(atomRowData.electricField,
536 +                                 snap_->atomData.electricField);
537 +      
538 +      int n = snap_->atomData.electricField.size();
539 +      vector<Vector3d> field_tmp(n, V3Zero);
540 +      AtomPlanVectorColumn->scatter(atomColData.electricField,
541 +                                    field_tmp);
542 +      for (int i = 0; i < n; i++)
543 +        snap_->atomData.electricField[i] += field_tmp[i];
544 +    }
545   #endif
546    }
547 <  
547 >
548 >  /*
549 >   * redistributes information obtained during the pre-pair loop out to
550 >   * row and column-indexed data structures
551 >   */
552    void ForceMatrixDecomposition::distributeIntermediateData() {
553      snap_ = sman_->getCurrentSnapshot();
554      storageLayout_ = sman_->getStorageLayout();
555   #ifdef IS_MPI
556      if (storageLayout_ & DataStorage::dslFunctional) {
557 <      AtomCommRealRow->gather(snap_->atomData.functional,
557 >      AtomPlanRealRow->gather(snap_->atomData.functional,
558                                atomRowData.functional);
559 <      AtomCommRealColumn->gather(snap_->atomData.functional,
559 >      AtomPlanRealColumn->gather(snap_->atomData.functional,
560                                   atomColData.functional);
561      }
562      
563      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
564 <      AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
564 >      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
565                                atomRowData.functionalDerivative);
566 <      AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
566 >      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
567                                   atomColData.functionalDerivative);
568      }
569   #endif
# Line 202 | Line 577 | namespace OpenMD {
577      int n = snap_->atomData.force.size();
578      vector<Vector3d> frc_tmp(n, V3Zero);
579      
580 <    AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
580 >    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
581      for (int i = 0; i < n; i++) {
582        snap_->atomData.force[i] += frc_tmp[i];
583        frc_tmp[i] = 0.0;
584      }
585      
586 <    AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
587 <    for (int i = 0; i < n; i++)
586 >    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
587 >    for (int i = 0; i < n; i++) {
588        snap_->atomData.force[i] += frc_tmp[i];
589 <    
590 <    
589 >    }
590 >        
591      if (storageLayout_ & DataStorage::dslTorque) {
592  
593 <      int nt = snap_->atomData.force.size();
593 >      int nt = snap_->atomData.torque.size();
594        vector<Vector3d> trq_tmp(nt, V3Zero);
595  
596 <      AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
597 <      for (int i = 0; i < n; i++) {
596 >      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
597 >      for (int i = 0; i < nt; i++) {
598          snap_->atomData.torque[i] += trq_tmp[i];
599          trq_tmp[i] = 0.0;
600        }
601        
602 <      AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
603 <      for (int i = 0; i < n; i++)
602 >      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
603 >      for (int i = 0; i < nt; i++)
604          snap_->atomData.torque[i] += trq_tmp[i];
605      }
606 +
607 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
608 +
609 +      int ns = snap_->atomData.skippedCharge.size();
610 +      vector<RealType> skch_tmp(ns, 0.0);
611 +
612 +      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
613 +      for (int i = 0; i < ns; i++) {
614 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
615 +        skch_tmp[i] = 0.0;
616 +      }
617 +      
618 +      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
619 +      for (int i = 0; i < ns; i++)
620 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
621 +            
622 +    }
623      
624 <    int nLocal = snap_->getNumberOfAtoms();
624 >    if (storageLayout_ & DataStorage::dslFlucQForce) {
625  
626 <    vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES,
627 <                                       vector<RealType> (nLocal, 0.0));
626 >      int nq = snap_->atomData.flucQFrc.size();
627 >      vector<RealType> fqfrc_tmp(nq, 0.0);
628 >
629 >      AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
630 >      for (int i = 0; i < nq; i++) {
631 >        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
632 >        fqfrc_tmp[i] = 0.0;
633 >      }
634 >      
635 >      AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
636 >      for (int i = 0; i < nq; i++)
637 >        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
638 >            
639 >    }
640 >
641 >    if (storageLayout_ & DataStorage::dslElectricField) {
642 >
643 >      int nef = snap_->atomData.electricField.size();
644 >      vector<Vector3d> efield_tmp(nef, V3Zero);
645 >
646 >      AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp);
647 >      for (int i = 0; i < nef; i++) {
648 >        snap_->atomData.electricField[i] += efield_tmp[i];
649 >        efield_tmp[i] = 0.0;
650 >      }
651 >      
652 >      AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp);
653 >      for (int i = 0; i < nef; i++)
654 >        snap_->atomData.electricField[i] += efield_tmp[i];
655 >    }
656 >
657 >    if (storageLayout_ & DataStorage::dslSitePotential) {
658 >
659 >      int nsp = snap_->atomData.sitePotential.size();
660 >      vector<RealType> sp_tmp(nsp, 0.0);
661 >
662 >      AtomPlanRealRow->scatter(atomRowData.sitePotential, sp_tmp);
663 >      for (int i = 0; i < nsp; i++) {
664 >        snap_->atomData.sitePotential[i] += sp_tmp[i];
665 >        sp_tmp[i] = 0.0;
666 >      }
667 >      
668 >      AtomPlanRealColumn->scatter(atomColData.sitePotential, sp_tmp);
669 >      for (int i = 0; i < nsp; i++)
670 >        snap_->atomData.sitePotential[i] += sp_tmp[i];
671 >    }
672 >
673 >    nLocal_ = snap_->getNumberOfAtoms();
674 >
675 >    vector<potVec> pot_temp(nLocal_,
676 >                            Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
677 >    vector<potVec> expot_temp(nLocal_,
678 >                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
679 >
680 >    // scatter/gather pot_row into the members of my column
681 >          
682 >    AtomPlanPotRow->scatter(pot_row, pot_temp);
683 >    AtomPlanPotRow->scatter(expot_row, expot_temp);
684 >
685 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
686 >      pairwisePot += pot_temp[ii];
687 >
688 >    for (int ii = 0;  ii < expot_temp.size(); ii++ )
689 >      excludedPot += expot_temp[ii];
690 >        
691 >    if (storageLayout_ & DataStorage::dslParticlePot) {
692 >      // This is the pairwise contribution to the particle pot.  The
693 >      // embedding contribution is added in each of the low level
694 >      // non-bonded routines.  In single processor, this is done in
695 >      // unpackInteractionData, not in collectData.
696 >      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
697 >        for (int i = 0; i < nLocal_; i++) {
698 >          // factor of two is because the total potential terms are divided
699 >          // by 2 in parallel due to row/ column scatter      
700 >          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
701 >        }
702 >      }
703 >    }
704 >
705 >    fill(pot_temp.begin(), pot_temp.end(),
706 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
707 >    fill(expot_temp.begin(), expot_temp.end(),
708 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
709 >      
710 >    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
711 >    AtomPlanPotColumn->scatter(expot_col, expot_temp);    
712      
713 <    for (int i = 0; i < N_INTERACTION_FAMILIES; i++) {
714 <      AtomCommRealRow->scatter(pot_row[i], pot_temp[i]);
715 <      for (int ii = 0;  ii < pot_temp[i].size(); ii++ ) {
716 <        pot_local[i] += pot_temp[i][ii];
713 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
714 >      pairwisePot += pot_temp[ii];    
715 >
716 >    for (int ii = 0;  ii < expot_temp.size(); ii++ )
717 >      excludedPot += expot_temp[ii];    
718 >
719 >    if (storageLayout_ & DataStorage::dslParticlePot) {
720 >      // This is the pairwise contribution to the particle pot.  The
721 >      // embedding contribution is added in each of the low level
722 >      // non-bonded routines.  In single processor, this is done in
723 >      // unpackInteractionData, not in collectData.
724 >      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
725 >        for (int i = 0; i < nLocal_; i++) {
726 >          // factor of two is because the total potential terms are divided
727 >          // by 2 in parallel due to row/ column scatter      
728 >          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
729 >        }
730        }
731      }
732 +    
733 +    if (storageLayout_ & DataStorage::dslParticlePot) {
734 +      int npp = snap_->atomData.particlePot.size();
735 +      vector<RealType> ppot_temp(npp, 0.0);
736 +
737 +      // This is the direct or embedding contribution to the particle
738 +      // pot.
739 +      
740 +      AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
741 +      for (int i = 0; i < npp; i++) {
742 +        snap_->atomData.particlePot[i] += ppot_temp[i];
743 +      }
744 +
745 +      fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
746 +      
747 +      AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
748 +      for (int i = 0; i < npp; i++) {
749 +        snap_->atomData.particlePot[i] += ppot_temp[i];
750 +      }
751 +    }
752 +
753 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
754 +      RealType ploc1 = pairwisePot[ii];
755 +      RealType ploc2 = 0.0;
756 +      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
757 +      pairwisePot[ii] = ploc2;
758 +    }
759 +
760 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
761 +      RealType ploc1 = excludedPot[ii];
762 +      RealType ploc2 = 0.0;
763 +      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
764 +      excludedPot[ii] = ploc2;
765 +    }
766 +
767 +    // Here be dragons.
768 +    MPI_Comm col = colComm.getComm();
769 +
770 +    MPI_Allreduce(MPI_IN_PLACE,
771 +                  &snap_->frameData.conductiveHeatFlux[0], 3,
772 +                  MPI_REALTYPE, MPI_SUM, col);
773 +
774 +
775   #endif
776 +
777    }
778  
779 +  /**
780 +   * Collects information obtained during the post-pair (and embedding
781 +   * functional) loops onto local data structures.
782 +   */
783 +  void ForceMatrixDecomposition::collectSelfData() {
784 +    snap_ = sman_->getCurrentSnapshot();
785 +    storageLayout_ = sman_->getStorageLayout();
786 +
787 + #ifdef IS_MPI
788 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
789 +      RealType ploc1 = embeddingPot[ii];
790 +      RealType ploc2 = 0.0;
791 +      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
792 +      embeddingPot[ii] = ploc2;
793 +    }    
794 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
795 +      RealType ploc1 = excludedSelfPot[ii];
796 +      RealType ploc2 = 0.0;
797 +      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
798 +      excludedSelfPot[ii] = ploc2;
799 +    }    
800 + #endif
801 +    
802 +  }
803 +
804 +
805 +
806 +  int& ForceMatrixDecomposition::getNAtomsInRow() {  
807 + #ifdef IS_MPI
808 +    return nAtomsInRow_;
809 + #else
810 +    return nLocal_;
811 + #endif
812 +  }
813 +
814 +  /**
815 +   * returns the list of atoms belonging to this group.  
816 +   */
817 +  vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
818 + #ifdef IS_MPI
819 +    return groupListRow_[cg1];
820 + #else
821 +    return groupList_[cg1];
822 + #endif
823 +  }
824 +
825 +  vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
826 + #ifdef IS_MPI
827 +    return groupListCol_[cg2];
828 + #else
829 +    return groupList_[cg2];
830 + #endif
831 +  }
832    
833    Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
834      Vector3d d;
# Line 253 | Line 839 | namespace OpenMD {
839      d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
840   #endif
841      
842 <    snap_->wrapVector(d);
842 >    if (usePeriodicBoundaryConditions_) {
843 >      snap_->wrapVector(d);
844 >    }
845      return d;    
846    }
847  
848 +  Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
849 + #ifdef IS_MPI
850 +    return cgColData.velocity[cg2];
851 + #else
852 +    return snap_->cgData.velocity[cg2];
853 + #endif
854 +  }
855  
856 +  Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
857 + #ifdef IS_MPI
858 +    return atomColData.velocity[atom2];
859 + #else
860 +    return snap_->atomData.velocity[atom2];
861 + #endif
862 +  }
863 +
864 +
865    Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
866  
867      Vector3d d;
# Line 267 | Line 871 | namespace OpenMD {
871   #else
872      d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
873   #endif
874 <
875 <    snap_->wrapVector(d);
874 >    if (usePeriodicBoundaryConditions_) {
875 >      snap_->wrapVector(d);
876 >    }
877      return d;    
878    }
879    
# Line 280 | Line 885 | namespace OpenMD {
885   #else
886      d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
887   #endif
888 <    
889 <    snap_->wrapVector(d);
888 >    if (usePeriodicBoundaryConditions_) {
889 >      snap_->wrapVector(d);
890 >    }
891      return d;    
892    }
893 +
894 +  RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) {
895 + #ifdef IS_MPI
896 +    return massFactorsRow[atom1];
897 + #else
898 +    return massFactors[atom1];
899 + #endif
900 +  }
901 +
902 +  RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
903 + #ifdef IS_MPI
904 +    return massFactorsCol[atom2];
905 + #else
906 +    return massFactors[atom2];
907 + #endif
908 +
909 +  }
910      
911    Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
912      Vector3d d;
# Line 293 | Line 916 | namespace OpenMD {
916   #else
917      d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
918   #endif
919 <
920 <    snap_->wrapVector(d);
919 >    if (usePeriodicBoundaryConditions_) {
920 >      snap_->wrapVector(d);
921 >    }
922      return d;    
923    }
924  
925 +  vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
926 +    return excludesForAtom[atom1];
927 +  }
928 +
929 +  /**
930 +   * We need to exclude some overcounted interactions that result from
931 +   * the parallel decomposition.
932 +   */
933 +  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) {
934 +    int unique_id_1, unique_id_2;
935 +        
936 + #ifdef IS_MPI
937 +    // in MPI, we have to look up the unique IDs for each atom
938 +    unique_id_1 = AtomRowToGlobal[atom1];
939 +    unique_id_2 = AtomColToGlobal[atom2];
940 +    // group1 = cgRowToGlobal[cg1];
941 +    // group2 = cgColToGlobal[cg2];
942 + #else
943 +    unique_id_1 = AtomLocalToGlobal[atom1];
944 +    unique_id_2 = AtomLocalToGlobal[atom2];
945 +    int group1 = cgLocalToGlobal[cg1];
946 +    int group2 = cgLocalToGlobal[cg2];
947 + #endif  
948 +
949 +    if (unique_id_1 == unique_id_2) return true;
950 +
951 + #ifdef IS_MPI
952 +    // this prevents us from doing the pair on multiple processors
953 +    if (unique_id_1 < unique_id_2) {
954 +      if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
955 +    } else {
956 +      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
957 +    }
958 + #endif    
959 +
960 + #ifndef IS_MPI
961 +    if (group1 == group2) {
962 +      if (unique_id_1 < unique_id_2) return true;
963 +    }
964 + #endif
965 +    
966 +    return false;
967 +  }
968 +
969 +  /**
970 +   * We need to handle the interactions for atoms who are involved in
971 +   * the same rigid body as well as some short range interactions
972 +   * (bonds, bends, torsions) differently from other interactions.
973 +   * We'll still visit the pairwise routines, but with a flag that
974 +   * tells those routines to exclude the pair from direct long range
975 +   * interactions.  Some indirect interactions (notably reaction
976 +   * field) must still be handled for these pairs.
977 +   */
978 +  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
979 +
980 +    // excludesForAtom was constructed to use row/column indices in the MPI
981 +    // version, and to use local IDs in the non-MPI version:
982 +    
983 +    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
984 +         i != excludesForAtom[atom1].end(); ++i) {
985 +      if ( (*i) == atom2 ) return true;
986 +    }
987 +
988 +    return false;
989 +  }
990 +
991 +
992    void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
993   #ifdef IS_MPI
994      atomRowData.force[atom1] += fg;
# Line 312 | Line 1003 | namespace OpenMD {
1003   #else
1004      snap_->atomData.force[atom2] += fg;
1005   #endif
315
1006    }
1007  
1008      // filling interaction blocks with pointers
1009 <  InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) {    
1009 >  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1010 >                                                     int atom1, int atom2,
1011 >                                                     bool newAtom1) {
1012  
1013 <    InteractionData idat;
1013 >    idat.excluded = excludeAtomPair(atom1, atom2);
1014 >
1015 >    if (newAtom1) {
1016 >      
1017 > #ifdef IS_MPI
1018 >      idat.atid1 = identsRow[atom1];
1019 >      idat.atid2 = identsCol[atom2];
1020 >      
1021 >      if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) {
1022 >        idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]);
1023 >      } else {
1024 >        idat.sameRegion = false;
1025 >      }
1026 >      
1027 >      if (storageLayout_ & DataStorage::dslAmat) {
1028 >        idat.A1 = &(atomRowData.aMat[atom1]);
1029 >        idat.A2 = &(atomColData.aMat[atom2]);
1030 >      }
1031 >      
1032 >      if (storageLayout_ & DataStorage::dslTorque) {
1033 >        idat.t1 = &(atomRowData.torque[atom1]);
1034 >        idat.t2 = &(atomColData.torque[atom2]);
1035 >      }
1036 >      
1037 >      if (storageLayout_ & DataStorage::dslDipole) {
1038 >        idat.dipole1 = &(atomRowData.dipole[atom1]);
1039 >        idat.dipole2 = &(atomColData.dipole[atom2]);
1040 >      }
1041 >      
1042 >      if (storageLayout_ & DataStorage::dslQuadrupole) {
1043 >        idat.quadrupole1 = &(atomRowData.quadrupole[atom1]);
1044 >        idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1045 >      }
1046 >      
1047 >      if (storageLayout_ & DataStorage::dslDensity) {
1048 >        idat.rho1 = &(atomRowData.density[atom1]);
1049 >        idat.rho2 = &(atomColData.density[atom2]);
1050 >      }
1051 >      
1052 >      if (storageLayout_ & DataStorage::dslFunctional) {
1053 >        idat.frho1 = &(atomRowData.functional[atom1]);
1054 >        idat.frho2 = &(atomColData.functional[atom2]);
1055 >      }
1056 >      
1057 >      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1058 >        idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1059 >        idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1060 >      }
1061 >      
1062 >      if (storageLayout_ & DataStorage::dslParticlePot) {
1063 >        idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1064 >        idat.particlePot2 = &(atomColData.particlePot[atom2]);
1065 >      }
1066 >      
1067 >      if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1068 >        idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1069 >        idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1070 >      }
1071 >      
1072 >      if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1073 >        idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1074 >        idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1075 >      }
1076 >      
1077 > #else
1078 >      
1079 >      idat.atid1 = idents[atom1];
1080 >      idat.atid2 = idents[atom2];
1081 >      
1082 >      if (regions[atom1] >= 0 && regions[atom2] >= 0) {
1083 >        idat.sameRegion = (regions[atom1] == regions[atom2]);
1084 >      } else {
1085 >        idat.sameRegion = false;
1086 >      }
1087 >      
1088 >      if (storageLayout_ & DataStorage::dslAmat) {
1089 >        idat.A1 = &(snap_->atomData.aMat[atom1]);
1090 >        idat.A2 = &(snap_->atomData.aMat[atom2]);
1091 >      }
1092 >      
1093 >      if (storageLayout_ & DataStorage::dslTorque) {
1094 >        idat.t1 = &(snap_->atomData.torque[atom1]);
1095 >        idat.t2 = &(snap_->atomData.torque[atom2]);
1096 >      }
1097 >      
1098 >      if (storageLayout_ & DataStorage::dslDipole) {
1099 >        idat.dipole1 = &(snap_->atomData.dipole[atom1]);
1100 >        idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1101 >      }
1102 >      
1103 >      if (storageLayout_ & DataStorage::dslQuadrupole) {
1104 >        idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]);
1105 >        idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1106 >      }
1107 >      
1108 >      if (storageLayout_ & DataStorage::dslDensity) {    
1109 >        idat.rho1 = &(snap_->atomData.density[atom1]);
1110 >        idat.rho2 = &(snap_->atomData.density[atom2]);
1111 >      }
1112 >      
1113 >      if (storageLayout_ & DataStorage::dslFunctional) {
1114 >        idat.frho1 = &(snap_->atomData.functional[atom1]);
1115 >        idat.frho2 = &(snap_->atomData.functional[atom2]);
1116 >      }
1117 >      
1118 >      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1119 >        idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1120 >        idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1121 >      }
1122 >      
1123 >      if (storageLayout_ & DataStorage::dslParticlePot) {
1124 >        idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1125 >        idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1126 >      }
1127 >      
1128 >      if (storageLayout_ & DataStorage::dslSkippedCharge) {
1129 >        idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1130 >        idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1131 >      }
1132 >      
1133 >      if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1134 >        idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1135 >        idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1136 >      }
1137 > #endif
1138 >      
1139 >    } else {
1140 >      // atom1 is not new, so don't bother updating properties of that atom:
1141   #ifdef IS_MPI
1142 +    idat.atid2 = identsCol[atom2];
1143 +
1144 +    if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) {
1145 +      idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]);
1146 +    } else {
1147 +      idat.sameRegion = false;
1148 +    }
1149 +
1150      if (storageLayout_ & DataStorage::dslAmat) {
1151 <      idat.A1 = atomRowData.aMat[atom1];
325 <      idat.A2 = atomColData.aMat[atom2];
1151 >      idat.A2 = &(atomColData.aMat[atom2]);
1152      }
1153 +    
1154 +    if (storageLayout_ & DataStorage::dslTorque) {
1155 +      idat.t2 = &(atomColData.torque[atom2]);
1156 +    }
1157  
1158 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
1159 <      idat.eFrame1 = atomRowData.electroFrame[atom1];
330 <      idat.eFrame2 = atomColData.electroFrame[atom2];
1158 >    if (storageLayout_ & DataStorage::dslDipole) {
1159 >      idat.dipole2 = &(atomColData.dipole[atom2]);
1160      }
1161  
1162 <    if (storageLayout_ & DataStorage::dslTorque) {
1163 <      idat.t1 = atomRowData.torque[atom1];
335 <      idat.t2 = atomColData.torque[atom2];
1162 >    if (storageLayout_ & DataStorage::dslQuadrupole) {
1163 >      idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1164      }
1165  
1166      if (storageLayout_ & DataStorage::dslDensity) {
1167 <      idat.rho1 = atomRowData.density[atom1];
340 <      idat.rho2 = atomColData.density[atom2];
1167 >      idat.rho2 = &(atomColData.density[atom2]);
1168      }
1169  
1170 +    if (storageLayout_ & DataStorage::dslFunctional) {
1171 +      idat.frho2 = &(atomColData.functional[atom2]);
1172 +    }
1173 +
1174      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1175 <      idat.dfrho1 = atomRowData.functionalDerivative[atom1];
345 <      idat.dfrho2 = atomColData.functionalDerivative[atom2];
1175 >      idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1176      }
1177 +
1178 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1179 +      idat.particlePot2 = &(atomColData.particlePot[atom2]);
1180 +    }
1181 +
1182 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1183 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1184 +    }
1185 +
1186 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {
1187 +      idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1188 +    }
1189 +
1190 + #else  
1191 +    idat.atid2 = idents[atom2];
1192 +
1193 +    if (regions[atom1] >= 0 && regions[atom2] >= 0) {
1194 +      idat.sameRegion = (regions[atom1] == regions[atom2]);
1195 +    } else {
1196 +      idat.sameRegion = false;
1197 +    }
1198 +
1199 +    if (storageLayout_ & DataStorage::dslAmat) {
1200 +      idat.A2 = &(snap_->atomData.aMat[atom2]);
1201 +    }
1202 +
1203 +    if (storageLayout_ & DataStorage::dslTorque) {
1204 +      idat.t2 = &(snap_->atomData.torque[atom2]);
1205 +    }
1206 +
1207 +    if (storageLayout_ & DataStorage::dslDipole) {
1208 +      idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1209 +    }
1210 +
1211 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1212 +      idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1213 +    }
1214 +
1215 +    if (storageLayout_ & DataStorage::dslDensity) {    
1216 +      idat.rho2 = &(snap_->atomData.density[atom2]);
1217 +    }
1218 +
1219 +    if (storageLayout_ & DataStorage::dslFunctional) {
1220 +      idat.frho2 = &(snap_->atomData.functional[atom2]);
1221 +    }
1222 +
1223 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1224 +      idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1225 +    }
1226 +
1227 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1228 +      idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1229 +    }
1230 +
1231 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
1232 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1233 +    }
1234 +
1235 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1236 +      idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1237 +    }
1238 +
1239   #endif
1240 <    
1240 >    }
1241    }
1242 <  InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){
1243 <  }
1244 <  SelfData ForceMatrixDecomposition::fillSelfData(int atom1) {
1242 >  
1243 >  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat,
1244 >                                                       int atom1, int atom2) {  
1245 > #ifdef IS_MPI
1246 >    pot_row[atom1] += RealType(0.5) *  *(idat.pot);
1247 >    pot_col[atom2] += RealType(0.5) *  *(idat.pot);
1248 >    expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot);
1249 >    expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot);
1250 >
1251 >    atomRowData.force[atom1] += *(idat.f1);
1252 >    atomColData.force[atom2] -= *(idat.f1);
1253 >
1254 >    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1255 >      atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1256 >      atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1257 >    }
1258 >
1259 >    if (storageLayout_ & DataStorage::dslElectricField) {              
1260 >      atomRowData.electricField[atom1] += *(idat.eField1);
1261 >      atomColData.electricField[atom2] += *(idat.eField2);
1262 >    }
1263 >
1264 >    if (storageLayout_ & DataStorage::dslSitePotential) {              
1265 >      atomRowData.sitePotential[atom1] += *(idat.sPot1);
1266 >      atomColData.sitePotential[atom2] += *(idat.sPot2);
1267 >    }
1268 >
1269 > #else
1270 >    pairwisePot += *(idat.pot);
1271 >    excludedPot += *(idat.excludedPot);
1272 >
1273 >    snap_->atomData.force[atom1] += *(idat.f1);
1274 >    snap_->atomData.force[atom2] -= *(idat.f1);
1275 >
1276 >    if (idat.doParticlePot) {
1277 >      // This is the pairwise contribution to the particle pot.  The
1278 >      // embedding contribution is added in each of the low level
1279 >      // non-bonded routines.  In parallel, this calculation is done
1280 >      // in collectData, not in unpackInteractionData.
1281 >      snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1282 >      snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1283 >    }
1284 >    
1285 >    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1286 >      snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1287 >      snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1288 >    }
1289 >
1290 >    if (storageLayout_ & DataStorage::dslElectricField) {              
1291 >      snap_->atomData.electricField[atom1] += *(idat.eField1);
1292 >      snap_->atomData.electricField[atom2] += *(idat.eField2);
1293 >    }
1294 >
1295 >    if (storageLayout_ & DataStorage::dslSitePotential) {              
1296 >      snap_->atomData.sitePotential[atom1] += *(idat.sPot1);
1297 >      snap_->atomData.sitePotential[atom2] += *(idat.sPot2);
1298 >    }
1299 >
1300 > #endif
1301 >    
1302    }
1303  
1304 +  /*
1305 +   * buildNeighborList
1306 +   *
1307 +   * Constructs the Verlet neighbor list for a force-matrix
1308 +   * decomposition.  In this case, each processor is responsible for
1309 +   * row-site interactions with column-sites.
1310 +   *
1311 +   * neighborList is returned as a packed array of neighboring
1312 +   * column-ordered CutoffGroups.  The starting position in
1313 +   * neighborList for each row-ordered CutoffGroup is given by the
1314 +   * returned vector point.
1315 +   */
1316 +  void ForceMatrixDecomposition::buildNeighborList(vector<int>& neighborList,
1317 +                                                   vector<int>& point) {
1318 +    neighborList.clear();
1319 +    point.clear();
1320 +    int len = 0;
1321 +    
1322 +    bool doAllPairs = false;
1323 +
1324 +    Snapshot* snap_ = sman_->getCurrentSnapshot();
1325 +    Mat3x3d box;
1326 +    Mat3x3d invBox;
1327 +
1328 +    Vector3d rs, scaled, dr;
1329 +    Vector3i whichCell;
1330 +    int cellIndex;
1331 +
1332 + #ifdef IS_MPI
1333 +    cellListRow_.clear();
1334 +    cellListCol_.clear();
1335 +    point.resize(nGroupsInRow_+1);
1336 + #else
1337 +    cellList_.clear();
1338 +    point.resize(nGroups_+1);
1339 + #endif
1340 +    
1341 +    if (!usePeriodicBoundaryConditions_) {
1342 +      box = snap_->getBoundingBox();
1343 +      invBox = snap_->getInvBoundingBox();
1344 +    } else {
1345 +      box = snap_->getHmat();
1346 +      invBox = snap_->getInvHmat();
1347 +    }
1348 +    
1349 +    Vector3d A = box.getColumn(0);
1350 +    Vector3d B = box.getColumn(1);
1351 +    Vector3d C = box.getColumn(2);
1352 +
1353 +    // Required for triclinic cells
1354 +    Vector3d AxB = cross(A, B);
1355 +    Vector3d BxC = cross(B, C);
1356 +    Vector3d CxA = cross(C, A);
1357 +
1358 +    // unit vectors perpendicular to the faces of the triclinic cell:
1359 +    AxB.normalize();
1360 +    BxC.normalize();
1361 +    CxA.normalize();
1362 +
1363 +    // A set of perpendicular lengths in triclinic cells:
1364 +    RealType Wa = abs(dot(A, BxC));
1365 +    RealType Wb = abs(dot(B, CxA));
1366 +    RealType Wc = abs(dot(C, AxB));
1367 +    
1368 +    nCells_.x() = int( Wa / rList_ );
1369 +    nCells_.y() = int( Wb / rList_ );
1370 +    nCells_.z() = int( Wc / rList_ );
1371 +    
1372 +    // handle small boxes where the cell offsets can end up repeating cells
1373 +    if (nCells_.x() < 3) doAllPairs = true;
1374 +    if (nCells_.y() < 3) doAllPairs = true;
1375 +    if (nCells_.z() < 3) doAllPairs = true;
1376 +    
1377 +    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1378 +    
1379 + #ifdef IS_MPI
1380 +    cellListRow_.resize(nCtot);
1381 +    cellListCol_.resize(nCtot);
1382 + #else
1383 +    cellList_.resize(nCtot);
1384 + #endif
1385 +    
1386 +    if (!doAllPairs) {
1387 +      
1388 + #ifdef IS_MPI
1389 +      
1390 +      for (int i = 0; i < nGroupsInRow_; i++) {
1391 +        rs = cgRowData.position[i];
1392 +        
1393 +        // scaled positions relative to the box vectors
1394 +        scaled = invBox * rs;
1395 +        
1396 +        // wrap the vector back into the unit box by subtracting integer box
1397 +        // numbers
1398 +        for (int j = 0; j < 3; j++) {
1399 +          scaled[j] -= roundMe(scaled[j]);
1400 +          scaled[j] += 0.5;
1401 +          // Handle the special case when an object is exactly on the
1402 +          // boundary (a scaled coordinate of 1.0 is the same as
1403 +          // scaled coordinate of 0.0)
1404 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1405 +        }
1406 +        
1407 +        // find xyz-indices of cell that cutoffGroup is in.
1408 +        whichCell.x() = nCells_.x() * scaled.x();
1409 +        whichCell.y() = nCells_.y() * scaled.y();
1410 +        whichCell.z() = nCells_.z() * scaled.z();
1411 +        
1412 +        // find single index of this cell:
1413 +        cellIndex = Vlinear(whichCell, nCells_);
1414 +        
1415 +        // add this cutoff group to the list of groups in this cell;
1416 +        cellListRow_[cellIndex].push_back(i);
1417 +      }
1418 +      for (int i = 0; i < nGroupsInCol_; i++) {
1419 +        rs = cgColData.position[i];
1420 +        
1421 +        // scaled positions relative to the box vectors
1422 +        scaled = invBox * rs;
1423 +        
1424 +        // wrap the vector back into the unit box by subtracting integer box
1425 +        // numbers
1426 +        for (int j = 0; j < 3; j++) {
1427 +          scaled[j] -= roundMe(scaled[j]);
1428 +          scaled[j] += 0.5;
1429 +          // Handle the special case when an object is exactly on the
1430 +          // boundary (a scaled coordinate of 1.0 is the same as
1431 +          // scaled coordinate of 0.0)
1432 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1433 +        }
1434 +        
1435 +        // find xyz-indices of cell that cutoffGroup is in.
1436 +        whichCell.x() = nCells_.x() * scaled.x();
1437 +        whichCell.y() = nCells_.y() * scaled.y();
1438 +        whichCell.z() = nCells_.z() * scaled.z();
1439 +        
1440 +        // find single index of this cell:
1441 +        cellIndex = Vlinear(whichCell, nCells_);
1442 +        
1443 +        // add this cutoff group to the list of groups in this cell;
1444 +        cellListCol_[cellIndex].push_back(i);
1445 +      }
1446 +            
1447 + #else
1448 +      for (int i = 0; i < nGroups_; i++) {
1449 +        rs = snap_->cgData.position[i];
1450 +        
1451 +        // scaled positions relative to the box vectors
1452 +        scaled = invBox * rs;
1453 +        
1454 +        // wrap the vector back into the unit box by subtracting integer box
1455 +        // numbers
1456 +        for (int j = 0; j < 3; j++) {
1457 +          scaled[j] -= roundMe(scaled[j]);
1458 +          scaled[j] += 0.5;
1459 +          // Handle the special case when an object is exactly on the
1460 +          // boundary (a scaled coordinate of 1.0 is the same as
1461 +          // scaled coordinate of 0.0)
1462 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1463 +        }
1464 +        
1465 +        // find xyz-indices of cell that cutoffGroup is in.
1466 +        whichCell.x() = int(nCells_.x() * scaled.x());
1467 +        whichCell.y() = int(nCells_.y() * scaled.y());
1468 +        whichCell.z() = int(nCells_.z() * scaled.z());
1469 +        
1470 +        // find single index of this cell:
1471 +        cellIndex = Vlinear(whichCell, nCells_);
1472 +        
1473 +        // add this cutoff group to the list of groups in this cell;
1474 +        cellList_[cellIndex].push_back(i);
1475 +      }
1476 +
1477 + #endif
1478 +
1479 + #ifdef IS_MPI
1480 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1481 +        rs = cgRowData.position[j1];
1482 + #else
1483 +
1484 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1485 +        rs = snap_->cgData.position[j1];
1486 + #endif
1487 +        point[j1] = len;
1488 +        
1489 +        // scaled positions relative to the box vectors
1490 +        scaled = invBox * rs;
1491 +        
1492 +        // wrap the vector back into the unit box by subtracting integer box
1493 +        // numbers
1494 +        for (int j = 0; j < 3; j++) {
1495 +          scaled[j] -= roundMe(scaled[j]);
1496 +          scaled[j] += 0.5;
1497 +          // Handle the special case when an object is exactly on the
1498 +          // boundary (a scaled coordinate of 1.0 is the same as
1499 +          // scaled coordinate of 0.0)
1500 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1501 +        }
1502 +        
1503 +        // find xyz-indices of cell that cutoffGroup is in.
1504 +        whichCell.x() = nCells_.x() * scaled.x();
1505 +        whichCell.y() = nCells_.y() * scaled.y();
1506 +        whichCell.z() = nCells_.z() * scaled.z();
1507 +        
1508 +        // find single index of this cell:
1509 +        int m1 = Vlinear(whichCell, nCells_);
1510 +
1511 +        for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1512 +             os != cellOffsets_.end(); ++os) {
1513 +              
1514 +          Vector3i m2v = whichCell + (*os);
1515 +
1516 +          if (m2v.x() >= nCells_.x()) {
1517 +            m2v.x() = 0;          
1518 +          } else if (m2v.x() < 0) {
1519 +            m2v.x() = nCells_.x() - 1;
1520 +          }
1521 +          
1522 +          if (m2v.y() >= nCells_.y()) {
1523 +            m2v.y() = 0;          
1524 +          } else if (m2v.y() < 0) {
1525 +            m2v.y() = nCells_.y() - 1;
1526 +          }
1527 +          
1528 +          if (m2v.z() >= nCells_.z()) {
1529 +            m2v.z() = 0;          
1530 +          } else if (m2v.z() < 0) {
1531 +            m2v.z() = nCells_.z() - 1;
1532 +          }
1533 +          int m2 = Vlinear (m2v, nCells_);                                      
1534 + #ifdef IS_MPI
1535 +          for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1536 +               j2 != cellListCol_[m2].end(); ++j2) {
1537 +            
1538 +            // In parallel, we need to visit *all* pairs of row
1539 +            // & column indicies and will divide labor in the
1540 +            // force evaluation later.
1541 +            dr = cgColData.position[(*j2)] - rs;
1542 +            if (usePeriodicBoundaryConditions_) {
1543 +              snap_->wrapVector(dr);
1544 +            }
1545 +            if (dr.lengthSquare() < rListSq_) {
1546 +              neighborList.push_back( (*j2) );
1547 +              ++len;
1548 +            }                
1549 +          }        
1550 + #else
1551 +          for (vector<int>::iterator j2 = cellList_[m2].begin();
1552 +               j2 != cellList_[m2].end(); ++j2) {
1553 +          
1554 +            // Always do this if we're in different cells or if
1555 +            // we're in the same cell and the global index of
1556 +            // the j2 cutoff group is greater than or equal to
1557 +            // the j1 cutoff group.  Note that Rappaport's code
1558 +            // has a "less than" conditional here, but that
1559 +            // deals with atom-by-atom computation.  OpenMD
1560 +            // allows atoms within a single cutoff group to
1561 +            // interact with each other.
1562 +            
1563 +            if ( (*j2) >= j1 ) {
1564 +              
1565 +              dr = snap_->cgData.position[(*j2)] - rs;
1566 +              if (usePeriodicBoundaryConditions_) {
1567 +                snap_->wrapVector(dr);
1568 +              }
1569 +              if ( dr.lengthSquare() < rListSq_) {
1570 +                neighborList.push_back( (*j2) );
1571 +                ++len;
1572 +              }
1573 +            }
1574 +          }                
1575 + #endif
1576 +        }
1577 +      }      
1578 +    } else {
1579 +      // branch to do all cutoff group pairs
1580 + #ifdef IS_MPI
1581 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1582 +        point[j1] = len;
1583 +        rs = cgRowData.position[j1];
1584 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {    
1585 +          dr = cgColData.position[j2] - rs;
1586 +          if (usePeriodicBoundaryConditions_) {
1587 +            snap_->wrapVector(dr);
1588 +          }
1589 +          if (dr.lengthSquare() < rListSq_) {
1590 +            neighborList.push_back( j2 );
1591 +            ++len;
1592 +          }
1593 +        }
1594 +      }      
1595 + #else
1596 +      // include all groups here.
1597 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1598 +        point[j1] = len;
1599 +        rs = snap_->cgData.position[j1];
1600 +        // include self group interactions j2 == j1
1601 +        for (int j2 = j1; j2 < nGroups_; j2++) {
1602 +          dr = snap_->cgData.position[j2] - rs;
1603 +          if (usePeriodicBoundaryConditions_) {
1604 +            snap_->wrapVector(dr);
1605 +          }
1606 +          if (dr.lengthSquare() < rListSq_) {
1607 +            neighborList.push_back( j2 );
1608 +            ++len;
1609 +          }
1610 +        }    
1611 +      }
1612 + #endif
1613 +    }
1614 +
1615 + #ifdef IS_MPI
1616 +    point[nGroupsInRow_] = len;
1617 + #else
1618 +    point[nGroups_] = len;
1619 + #endif
1620    
1621 +    // save the local cutoff group positions for the check that is
1622 +    // done on each loop:
1623 +    saved_CG_positions_.clear();
1624 +    saved_CG_positions_.reserve(nGroups_);
1625 +    for (int i = 0; i < nGroups_; i++)
1626 +      saved_CG_positions_.push_back(snap_->cgData.position[i]);
1627 +  }
1628   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines