ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing:
branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 1767 by gezelter, Fri Jul 6 22:01:58 2012 UTC vs.
trunk/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 2057 by gezelter, Tue Mar 3 15:22:26 2015 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39   * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40   * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
# Line 50 | Line 50 | namespace OpenMD {
50  
51    ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52  
53 <    // In a parallel computation, row and colum scans must visit all
54 <    // surrounding cells (not just the 14 upper triangular blocks that
55 <    // are used when the processor can see all pairs)
56 < #ifdef IS_MPI
53 >    // Row and colum scans must visit all surrounding cells
54      cellOffsets_.clear();
55      cellOffsets_.push_back( Vector3i(-1,-1,-1) );
56      cellOffsets_.push_back( Vector3i( 0,-1,-1) );
# Line 82 | Line 79 | namespace OpenMD {
79      cellOffsets_.push_back( Vector3i(-1, 1, 1) );
80      cellOffsets_.push_back( Vector3i( 0, 1, 1) );
81      cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 #endif    
82    }
83  
84  
# Line 99 | Line 95 | namespace OpenMD {
95      nGroups_ = info_->getNLocalCutoffGroups();
96      // gather the information for atomtype IDs (atids):
97      idents = info_->getIdentArray();
98 +    regions = info_->getRegions();
99      AtomLocalToGlobal = info_->getGlobalAtomIndices();
100      cgLocalToGlobal = info_->getGlobalGroupIndices();
101      vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
# Line 118 | Line 115 | namespace OpenMD {
115      
116   #ifdef IS_MPI
117  
118 <    MPI::Intracomm row = rowComm.getComm();
119 <    MPI::Intracomm col = colComm.getComm();
118 >    MPI_Comm row = rowComm.getComm();
119 >    MPI_Comm col = colComm.getComm();
120  
121      AtomPlanIntRow = new Plan<int>(row, nLocal_);
122      AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
# Line 163 | Line 160 | namespace OpenMD {
160      
161      AtomPlanIntRow->gather(idents, identsRow);
162      AtomPlanIntColumn->gather(idents, identsCol);
163 +
164 +    regionsRow.resize(nAtomsInRow_);
165 +    regionsCol.resize(nAtomsInCol_);
166      
167 +    AtomPlanIntRow->gather(regions, regionsRow);
168 +    AtomPlanIntColumn->gather(regions, regionsCol);
169 +    
170      // allocate memory for the parallel objects
171      atypesRow.resize(nAtomsInRow_);
172      atypesCol.resize(nAtomsInCol_);
# Line 299 | Line 302 | namespace OpenMD {
302            groupList_[i].push_back(j);
303          }
304        }      
305 <    }
303 <
304 <
305 <    createGtypeCutoffMap();
306 <
305 >    }    
306    }
308  
309  void ForceMatrixDecomposition::createGtypeCutoffMap() {
310    
311    RealType tol = 1e-6;
312    largestRcut_ = 0.0;
313    int atid;
314    set<AtomType*> atypes = info_->getSimulatedAtomTypes();
307      
316    map<int, RealType> atypeCutoff;
317      
318    for (set<AtomType*>::iterator at = atypes.begin();
319         at != atypes.end(); ++at){
320      atid = (*at)->getIdent();
321      if (userChoseCutoff_)
322        atypeCutoff[atid] = userCutoff_;
323      else
324        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
325    }
326    
327    vector<RealType> gTypeCutoffs;
328    // first we do a single loop over the cutoff groups to find the
329    // largest cutoff for any atypes present in this group.
330 #ifdef IS_MPI
331    vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
332    groupRowToGtype.resize(nGroupsInRow_);
333    for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
334      vector<int> atomListRow = getAtomsInGroupRow(cg1);
335      for (vector<int>::iterator ia = atomListRow.begin();
336           ia != atomListRow.end(); ++ia) {            
337        int atom1 = (*ia);
338        atid = identsRow[atom1];
339        if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
340          groupCutoffRow[cg1] = atypeCutoff[atid];
341        }
342      }
343
344      bool gTypeFound = false;
345      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
346        if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
347          groupRowToGtype[cg1] = gt;
348          gTypeFound = true;
349        }
350      }
351      if (!gTypeFound) {
352        gTypeCutoffs.push_back( groupCutoffRow[cg1] );
353        groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
354      }
355      
356    }
357    vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
358    groupColToGtype.resize(nGroupsInCol_);
359    for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
360      vector<int> atomListCol = getAtomsInGroupColumn(cg2);
361      for (vector<int>::iterator jb = atomListCol.begin();
362           jb != atomListCol.end(); ++jb) {            
363        int atom2 = (*jb);
364        atid = identsCol[atom2];
365        if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
366          groupCutoffCol[cg2] = atypeCutoff[atid];
367        }
368      }
369      bool gTypeFound = false;
370      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
371        if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
372          groupColToGtype[cg2] = gt;
373          gTypeFound = true;
374        }
375      }
376      if (!gTypeFound) {
377        gTypeCutoffs.push_back( groupCutoffCol[cg2] );
378        groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
379      }
380    }
381 #else
382
383    vector<RealType> groupCutoff(nGroups_, 0.0);
384    groupToGtype.resize(nGroups_);
385    for (int cg1 = 0; cg1 < nGroups_; cg1++) {
386      groupCutoff[cg1] = 0.0;
387      vector<int> atomList = getAtomsInGroupRow(cg1);
388      for (vector<int>::iterator ia = atomList.begin();
389           ia != atomList.end(); ++ia) {            
390        int atom1 = (*ia);
391        atid = idents[atom1];
392        if (atypeCutoff[atid] > groupCutoff[cg1])
393          groupCutoff[cg1] = atypeCutoff[atid];
394      }
395      
396      bool gTypeFound = false;
397      for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) {
398        if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
399          groupToGtype[cg1] = gt;
400          gTypeFound = true;
401        }
402      }
403      if (!gTypeFound) {      
404        gTypeCutoffs.push_back( groupCutoff[cg1] );
405        groupToGtype[cg1] = gTypeCutoffs.size() - 1;
406      }      
407    }
408 #endif
409
410    // Now we find the maximum group cutoff value present in the simulation
411
412    RealType groupMax = *max_element(gTypeCutoffs.begin(),
413                                     gTypeCutoffs.end());
414
415 #ifdef IS_MPI
416    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
417                              MPI::MAX);
418 #endif
419    
420    RealType tradRcut = groupMax;
421
422    for (unsigned int i = 0; i < gTypeCutoffs.size();  i++) {
423      for (unsigned int j = 0; j < gTypeCutoffs.size();  j++) {      
424        RealType thisRcut;
425        switch(cutoffPolicy_) {
426        case TRADITIONAL:
427          thisRcut = tradRcut;
428          break;
429        case MIX:
430          thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
431          break;
432        case MAX:
433          thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
434          break;
435        default:
436          sprintf(painCave.errMsg,
437                  "ForceMatrixDecomposition::createGtypeCutoffMap "
438                  "hit an unknown cutoff policy!\n");
439          painCave.severity = OPENMD_ERROR;
440          painCave.isFatal = 1;
441          simError();
442          break;
443        }
444
445        pair<int,int> key = make_pair(i,j);
446        gTypeCutoffMap[key].first = thisRcut;
447        if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
448        gTypeCutoffMap[key].second = thisRcut*thisRcut;
449        gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
450        // sanity check
451        
452        if (userChoseCutoff_) {
453          if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
454            sprintf(painCave.errMsg,
455                    "ForceMatrixDecomposition::createGtypeCutoffMap "
456                    "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
457            painCave.severity = OPENMD_ERROR;
458            painCave.isFatal = 1;
459            simError();            
460          }
461        }
462      }
463    }
464  }
465
466  groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
467    int i, j;  
468 #ifdef IS_MPI
469    i = groupRowToGtype[cg1];
470    j = groupColToGtype[cg2];
471 #else
472    i = groupToGtype[cg1];
473    j = groupToGtype[cg2];
474 #endif    
475    return gTypeCutoffMap[make_pair(i,j)];
476  }
477
308    int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
309      for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) {
310        if (toposForAtom[atom1][j] == atom2)
311          return topoDist[atom1][j];
312 <    }
312 >    }                                          
313      return 0;
314    }
315  
# Line 559 | Line 389 | namespace OpenMD {
389             atomColData.electricField.end(), V3Zero);
390      }
391  
392 <    if (storageLayout_ & DataStorage::dslFlucQForce) {    
393 <      fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(),
394 <           0.0);
395 <      fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(),
396 <           0.0);
392 >    if (storageLayout_ & DataStorage::dslSitePotential) {    
393 >      fill(atomRowData.sitePotential.begin(),
394 >           atomRowData.sitePotential.end(), 0.0);
395 >      fill(atomColData.sitePotential.begin(),
396 >           atomColData.sitePotential.end(), 0.0);
397      }
398  
399   #endif
# Line 598 | Line 428 | namespace OpenMD {
428        fill(snap_->atomData.electricField.begin(),
429             snap_->atomData.electricField.end(), V3Zero);
430      }
431 +    if (storageLayout_ & DataStorage::dslSitePotential) {      
432 +      fill(snap_->atomData.sitePotential.begin(),
433 +           snap_->atomData.sitePotential.end(), 0.0);
434 +    }
435    }
436  
437  
438    void ForceMatrixDecomposition::distributeData()  {
439      snap_ = sman_->getCurrentSnapshot();
440      storageLayout_ = sman_->getStorageLayout();
441 +
442 +    bool needsCG = true;
443 +    if(info_->getNCutoffGroups() != info_->getNAtoms())
444 +      needsCG = false;
445 +  
446   #ifdef IS_MPI
447      
448      // gather up the atomic positions
# Line 614 | Line 453 | namespace OpenMD {
453      
454      // gather up the cutoff group positions
455  
456 <    cgPlanVectorRow->gather(snap_->cgData.position,
457 <                            cgRowData.position);
456 >    if (needsCG) {
457 >      cgPlanVectorRow->gather(snap_->cgData.position,
458 >                              cgRowData.position);
459 >      
460 >      cgPlanVectorColumn->gather(snap_->cgData.position,
461 >                                 cgColData.position);
462 >    }
463  
620    cgPlanVectorColumn->gather(snap_->cgData.position,
621                               cgColData.position);
464  
623
624
465      if (needVelocities_) {
466        // gather up the atomic velocities
467        AtomPlanVectorColumn->gather(snap_->atomData.velocity,
468                                     atomColData.velocity);
469 <      
470 <      cgPlanVectorColumn->gather(snap_->cgData.velocity,
471 <                                 cgColData.velocity);
469 >
470 >      if (needsCG) {        
471 >        cgPlanVectorColumn->gather(snap_->cgData.velocity,
472 >                                   cgColData.velocity);
473 >      }
474      }
475  
476      
# Line 639 | Line 481 | namespace OpenMD {
481        AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
482                                     atomColData.aMat);
483      }
484 <    
485 <    // if needed, gather the atomic eletrostatic frames
486 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
487 <      AtomPlanMatrixRow->gather(snap_->atomData.electroFrame,
488 <                                atomRowData.electroFrame);
489 <      AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame,
490 <                                   atomColData.electroFrame);
484 >
485 >    // if needed, gather the atomic eletrostatic information
486 >    if (storageLayout_ & DataStorage::dslDipole) {
487 >      AtomPlanVectorRow->gather(snap_->atomData.dipole,
488 >                                atomRowData.dipole);
489 >      AtomPlanVectorColumn->gather(snap_->atomData.dipole,
490 >                                   atomColData.dipole);
491      }
492  
493 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
494 +      AtomPlanMatrixRow->gather(snap_->atomData.quadrupole,
495 +                                atomRowData.quadrupole);
496 +      AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole,
497 +                                   atomColData.quadrupole);
498 +    }
499 +        
500      // if needed, gather the atomic fluctuating charge values
501      if (storageLayout_ & DataStorage::dslFlucQPosition) {
502        AtomPlanRealRow->gather(snap_->atomData.flucQPos,
# Line 679 | Line 528 | namespace OpenMD {
528          snap_->atomData.density[i] += rho_tmp[i];
529      }
530  
531 +    // this isn't necessary if we don't have polarizable atoms, but
532 +    // we'll leave it here for now.
533      if (storageLayout_ & DataStorage::dslElectricField) {
534        
535        AtomPlanVectorRow->scatter(atomRowData.electricField,
# Line 686 | Line 537 | namespace OpenMD {
537        
538        int n = snap_->atomData.electricField.size();
539        vector<Vector3d> field_tmp(n, V3Zero);
540 <      AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp);
540 >      AtomPlanVectorColumn->scatter(atomColData.electricField,
541 >                                    field_tmp);
542        for (int i = 0; i < n; i++)
543          snap_->atomData.electricField[i] += field_tmp[i];
544      }
# Line 784 | Line 636 | namespace OpenMD {
636        for (int i = 0; i < nq; i++)
637          snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
638              
639 +    }
640 +
641 +    if (storageLayout_ & DataStorage::dslElectricField) {
642 +
643 +      int nef = snap_->atomData.electricField.size();
644 +      vector<Vector3d> efield_tmp(nef, V3Zero);
645 +
646 +      AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp);
647 +      for (int i = 0; i < nef; i++) {
648 +        snap_->atomData.electricField[i] += efield_tmp[i];
649 +        efield_tmp[i] = 0.0;
650 +      }
651 +      
652 +      AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp);
653 +      for (int i = 0; i < nef; i++)
654 +        snap_->atomData.electricField[i] += efield_tmp[i];
655      }
656  
657 +    if (storageLayout_ & DataStorage::dslSitePotential) {
658 +
659 +      int nsp = snap_->atomData.sitePotential.size();
660 +      vector<RealType> sp_tmp(nsp, 0.0);
661 +
662 +      AtomPlanRealRow->scatter(atomRowData.sitePotential, sp_tmp);
663 +      for (int i = 0; i < nsp; i++) {
664 +        snap_->atomData.sitePotential[i] += sp_tmp[i];
665 +        sp_tmp[i] = 0.0;
666 +      }
667 +      
668 +      AtomPlanRealColumn->scatter(atomColData.sitePotential, sp_tmp);
669 +      for (int i = 0; i < nsp; i++)
670 +        snap_->atomData.sitePotential[i] += sp_tmp[i];
671 +    }
672 +
673      nLocal_ = snap_->getNumberOfAtoms();
674  
675      vector<potVec> pot_temp(nLocal_,
# Line 869 | Line 753 | namespace OpenMD {
753      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
754        RealType ploc1 = pairwisePot[ii];
755        RealType ploc2 = 0.0;
756 <      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
756 >      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
757        pairwisePot[ii] = ploc2;
758      }
759  
760      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
761        RealType ploc1 = excludedPot[ii];
762        RealType ploc2 = 0.0;
763 <      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
763 >      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
764        excludedPot[ii] = ploc2;
765      }
766  
767      // Here be dragons.
768 <    MPI::Intracomm col = colComm.getComm();
768 >    MPI_Comm col = colComm.getComm();
769  
770 <    col.Allreduce(MPI::IN_PLACE,
770 >    MPI_Allreduce(MPI_IN_PLACE,
771                    &snap_->frameData.conductiveHeatFlux[0], 3,
772 <                  MPI::REALTYPE, MPI::SUM);
772 >                  MPI_REALTYPE, MPI_SUM, col);
773  
774  
775   #endif
# Line 904 | Line 788 | namespace OpenMD {
788      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
789        RealType ploc1 = embeddingPot[ii];
790        RealType ploc2 = 0.0;
791 <      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
791 >      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
792        embeddingPot[ii] = ploc2;
793      }    
794      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
795        RealType ploc1 = excludedSelfPot[ii];
796        RealType ploc2 = 0.0;
797 <      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
797 >      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
798        excludedSelfPot[ii] = ploc2;
799      }    
800   #endif
# Line 919 | Line 803 | namespace OpenMD {
803  
804  
805  
806 <  int ForceMatrixDecomposition::getNAtomsInRow() {  
806 >  int& ForceMatrixDecomposition::getNAtomsInRow() {  
807   #ifdef IS_MPI
808      return nAtomsInRow_;
809   #else
# Line 930 | Line 814 | namespace OpenMD {
814    /**
815     * returns the list of atoms belonging to this group.  
816     */
817 <  vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
817 >  vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
818   #ifdef IS_MPI
819      return groupListRow_[cg1];
820   #else
# Line 938 | Line 822 | namespace OpenMD {
822   #endif
823    }
824  
825 <  vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
825 >  vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
826   #ifdef IS_MPI
827      return groupListCol_[cg2];
828   #else
# Line 955 | Line 839 | namespace OpenMD {
839      d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
840   #endif
841      
842 <    snap_->wrapVector(d);
842 >    if (usePeriodicBoundaryConditions_) {
843 >      snap_->wrapVector(d);
844 >    }
845      return d;    
846    }
847  
848 <  Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
848 >  Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
849   #ifdef IS_MPI
850      return cgColData.velocity[cg2];
851   #else
# Line 967 | Line 853 | namespace OpenMD {
853   #endif
854    }
855  
856 <  Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
856 >  Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
857   #ifdef IS_MPI
858      return atomColData.velocity[atom2];
859   #else
# Line 985 | Line 871 | namespace OpenMD {
871   #else
872      d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
873   #endif
874 <
875 <    snap_->wrapVector(d);
874 >    if (usePeriodicBoundaryConditions_) {
875 >      snap_->wrapVector(d);
876 >    }
877      return d;    
878    }
879    
# Line 998 | Line 885 | namespace OpenMD {
885   #else
886      d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
887   #endif
888 <    
889 <    snap_->wrapVector(d);
888 >    if (usePeriodicBoundaryConditions_) {
889 >      snap_->wrapVector(d);
890 >    }
891      return d;    
892    }
893  
894 <  RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
894 >  RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) {
895   #ifdef IS_MPI
896      return massFactorsRow[atom1];
897   #else
# Line 1011 | Line 899 | namespace OpenMD {
899   #endif
900    }
901  
902 <  RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
902 >  RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
903   #ifdef IS_MPI
904      return massFactorsCol[atom2];
905   #else
# Line 1028 | Line 916 | namespace OpenMD {
916   #else
917      d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
918   #endif
919 <
920 <    snap_->wrapVector(d);
919 >    if (usePeriodicBoundaryConditions_) {
920 >      snap_->wrapVector(d);
921 >    }
922      return d;    
923    }
924  
925 <  vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
925 >  vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
926      return excludesForAtom[atom1];
927    }
928  
# Line 1042 | Line 931 | namespace OpenMD {
931     * the parallel decomposition.
932     */
933    bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) {
934 <    int unique_id_1, unique_id_2, group1, group2;
934 >    int unique_id_1, unique_id_2;
935          
936   #ifdef IS_MPI
937      // in MPI, we have to look up the unique IDs for each atom
938      unique_id_1 = AtomRowToGlobal[atom1];
939      unique_id_2 = AtomColToGlobal[atom2];
940 <    group1 = cgRowToGlobal[cg1];
941 <    group2 = cgColToGlobal[cg2];
940 >    // group1 = cgRowToGlobal[cg1];
941 >    // group2 = cgColToGlobal[cg2];
942   #else
943      unique_id_1 = AtomLocalToGlobal[atom1];
944      unique_id_2 = AtomLocalToGlobal[atom2];
945 <    group1 = cgLocalToGlobal[cg1];
946 <    group2 = cgLocalToGlobal[cg2];
945 >    int group1 = cgLocalToGlobal[cg1];
946 >    int group2 = cgLocalToGlobal[cg2];
947   #endif  
948  
949      if (unique_id_1 == unique_id_2) return true;
# Line 1118 | Line 1007 | namespace OpenMD {
1007  
1008      // filling interaction blocks with pointers
1009    void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1010 <                                                     int atom1, int atom2) {
1010 >                                                     int atom1, int atom2,
1011 >                                                     bool newAtom1) {
1012  
1013      idat.excluded = excludeAtomPair(atom1, atom2);
1014 <  
1014 >
1015 >    if (newAtom1) {
1016 >      
1017   #ifdef IS_MPI
1018 <    idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
1019 <    //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
1020 <    //                         ff_->getAtomType(identsCol[atom2]) );
1021 <    
1018 >      idat.atid1 = identsRow[atom1];
1019 >      idat.atid2 = identsCol[atom2];
1020 >      
1021 >      if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) {
1022 >        idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]);
1023 >      } else {
1024 >        idat.sameRegion = false;
1025 >      }
1026 >      
1027 >      if (storageLayout_ & DataStorage::dslAmat) {
1028 >        idat.A1 = &(atomRowData.aMat[atom1]);
1029 >        idat.A2 = &(atomColData.aMat[atom2]);
1030 >      }
1031 >      
1032 >      if (storageLayout_ & DataStorage::dslTorque) {
1033 >        idat.t1 = &(atomRowData.torque[atom1]);
1034 >        idat.t2 = &(atomColData.torque[atom2]);
1035 >      }
1036 >      
1037 >      if (storageLayout_ & DataStorage::dslDipole) {
1038 >        idat.dipole1 = &(atomRowData.dipole[atom1]);
1039 >        idat.dipole2 = &(atomColData.dipole[atom2]);
1040 >      }
1041 >      
1042 >      if (storageLayout_ & DataStorage::dslQuadrupole) {
1043 >        idat.quadrupole1 = &(atomRowData.quadrupole[atom1]);
1044 >        idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1045 >      }
1046 >      
1047 >      if (storageLayout_ & DataStorage::dslDensity) {
1048 >        idat.rho1 = &(atomRowData.density[atom1]);
1049 >        idat.rho2 = &(atomColData.density[atom2]);
1050 >      }
1051 >      
1052 >      if (storageLayout_ & DataStorage::dslFunctional) {
1053 >        idat.frho1 = &(atomRowData.functional[atom1]);
1054 >        idat.frho2 = &(atomColData.functional[atom2]);
1055 >      }
1056 >      
1057 >      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1058 >        idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1059 >        idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1060 >      }
1061 >      
1062 >      if (storageLayout_ & DataStorage::dslParticlePot) {
1063 >        idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1064 >        idat.particlePot2 = &(atomColData.particlePot[atom2]);
1065 >      }
1066 >      
1067 >      if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1068 >        idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1069 >        idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1070 >      }
1071 >      
1072 >      if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1073 >        idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1074 >        idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1075 >      }
1076 >      
1077 > #else
1078 >      
1079 >      idat.atid1 = idents[atom1];
1080 >      idat.atid2 = idents[atom2];
1081 >      
1082 >      if (regions[atom1] >= 0 && regions[atom2] >= 0) {
1083 >        idat.sameRegion = (regions[atom1] == regions[atom2]);
1084 >      } else {
1085 >        idat.sameRegion = false;
1086 >      }
1087 >      
1088 >      if (storageLayout_ & DataStorage::dslAmat) {
1089 >        idat.A1 = &(snap_->atomData.aMat[atom1]);
1090 >        idat.A2 = &(snap_->atomData.aMat[atom2]);
1091 >      }
1092 >      
1093 >      if (storageLayout_ & DataStorage::dslTorque) {
1094 >        idat.t1 = &(snap_->atomData.torque[atom1]);
1095 >        idat.t2 = &(snap_->atomData.torque[atom2]);
1096 >      }
1097 >      
1098 >      if (storageLayout_ & DataStorage::dslDipole) {
1099 >        idat.dipole1 = &(snap_->atomData.dipole[atom1]);
1100 >        idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1101 >      }
1102 >      
1103 >      if (storageLayout_ & DataStorage::dslQuadrupole) {
1104 >        idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]);
1105 >        idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1106 >      }
1107 >      
1108 >      if (storageLayout_ & DataStorage::dslDensity) {    
1109 >        idat.rho1 = &(snap_->atomData.density[atom1]);
1110 >        idat.rho2 = &(snap_->atomData.density[atom2]);
1111 >      }
1112 >      
1113 >      if (storageLayout_ & DataStorage::dslFunctional) {
1114 >        idat.frho1 = &(snap_->atomData.functional[atom1]);
1115 >        idat.frho2 = &(snap_->atomData.functional[atom2]);
1116 >      }
1117 >      
1118 >      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1119 >        idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1120 >        idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1121 >      }
1122 >      
1123 >      if (storageLayout_ & DataStorage::dslParticlePot) {
1124 >        idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1125 >        idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1126 >      }
1127 >      
1128 >      if (storageLayout_ & DataStorage::dslSkippedCharge) {
1129 >        idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1130 >        idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1131 >      }
1132 >      
1133 >      if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1134 >        idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1135 >        idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1136 >      }
1137 > #endif
1138 >      
1139 >    } else {
1140 >      // atom1 is not new, so don't bother updating properties of that atom:
1141 > #ifdef IS_MPI
1142 >    idat.atid2 = identsCol[atom2];
1143 >
1144 >    if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) {
1145 >      idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]);
1146 >    } else {
1147 >      idat.sameRegion = false;
1148 >    }
1149 >
1150      if (storageLayout_ & DataStorage::dslAmat) {
1131      idat.A1 = &(atomRowData.aMat[atom1]);
1151        idat.A2 = &(atomColData.aMat[atom2]);
1152      }
1153      
1135    if (storageLayout_ & DataStorage::dslElectroFrame) {
1136      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
1137      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
1138    }
1139
1154      if (storageLayout_ & DataStorage::dslTorque) {
1141      idat.t1 = &(atomRowData.torque[atom1]);
1155        idat.t2 = &(atomColData.torque[atom2]);
1156      }
1157  
1158 +    if (storageLayout_ & DataStorage::dslDipole) {
1159 +      idat.dipole2 = &(atomColData.dipole[atom2]);
1160 +    }
1161 +
1162 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1163 +      idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1164 +    }
1165 +
1166      if (storageLayout_ & DataStorage::dslDensity) {
1146      idat.rho1 = &(atomRowData.density[atom1]);
1167        idat.rho2 = &(atomColData.density[atom2]);
1168      }
1169  
1170      if (storageLayout_ & DataStorage::dslFunctional) {
1151      idat.frho1 = &(atomRowData.functional[atom1]);
1171        idat.frho2 = &(atomColData.functional[atom2]);
1172      }
1173  
1174      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1156      idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1175        idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1176      }
1177  
1178      if (storageLayout_ & DataStorage::dslParticlePot) {
1161      idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1179        idat.particlePot2 = &(atomColData.particlePot[atom2]);
1180      }
1181  
1182      if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1166      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1183        idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1184      }
1185  
1186 <    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1171 <      idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1186 >    if (storageLayout_ & DataStorage::dslFlucQPosition) {
1187        idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1188      }
1189  
1190 < #else
1191 <    
1177 <    idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
1190 > #else  
1191 >    idat.atid2 = idents[atom2];
1192  
1193 +    if (regions[atom1] >= 0 && regions[atom2] >= 0) {
1194 +      idat.sameRegion = (regions[atom1] == regions[atom2]);
1195 +    } else {
1196 +      idat.sameRegion = false;
1197 +    }
1198 +
1199      if (storageLayout_ & DataStorage::dslAmat) {
1180      idat.A1 = &(snap_->atomData.aMat[atom1]);
1200        idat.A2 = &(snap_->atomData.aMat[atom2]);
1201      }
1202  
1184    if (storageLayout_ & DataStorage::dslElectroFrame) {
1185      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
1186      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
1187    }
1188
1203      if (storageLayout_ & DataStorage::dslTorque) {
1190      idat.t1 = &(snap_->atomData.torque[atom1]);
1204        idat.t2 = &(snap_->atomData.torque[atom2]);
1205      }
1206  
1207 +    if (storageLayout_ & DataStorage::dslDipole) {
1208 +      idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1209 +    }
1210 +
1211 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1212 +      idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1213 +    }
1214 +
1215      if (storageLayout_ & DataStorage::dslDensity) {    
1195      idat.rho1 = &(snap_->atomData.density[atom1]);
1216        idat.rho2 = &(snap_->atomData.density[atom2]);
1217      }
1218  
1219      if (storageLayout_ & DataStorage::dslFunctional) {
1200      idat.frho1 = &(snap_->atomData.functional[atom1]);
1220        idat.frho2 = &(snap_->atomData.functional[atom2]);
1221      }
1222  
1223      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1205      idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1224        idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1225      }
1226  
1227      if (storageLayout_ & DataStorage::dslParticlePot) {
1210      idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1228        idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1229      }
1230  
1231      if (storageLayout_ & DataStorage::dslSkippedCharge) {
1215      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1232        idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1233      }
1234  
1235      if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1220      idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1236        idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1237      }
1238  
1239   #endif
1240 +    }
1241    }
1226
1242    
1243 <  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
1243 >  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat,
1244 >                                                       int atom1, int atom2) {  
1245   #ifdef IS_MPI
1246      pot_row[atom1] += RealType(0.5) *  *(idat.pot);
1247      pot_col[atom2] += RealType(0.5) *  *(idat.pot);
# Line 1245 | Line 1261 | namespace OpenMD {
1261        atomColData.electricField[atom2] += *(idat.eField2);
1262      }
1263  
1264 +    if (storageLayout_ & DataStorage::dslSitePotential) {              
1265 +      atomRowData.sitePotential[atom1] += *(idat.sPot1);
1266 +      atomColData.sitePotential[atom2] += *(idat.sPot2);
1267 +    }
1268 +
1269   #else
1270      pairwisePot += *(idat.pot);
1271      excludedPot += *(idat.excludedPot);
# Line 1271 | Line 1292 | namespace OpenMD {
1292        snap_->atomData.electricField[atom2] += *(idat.eField2);
1293      }
1294  
1295 +    if (storageLayout_ & DataStorage::dslSitePotential) {              
1296 +      snap_->atomData.sitePotential[atom1] += *(idat.sPot1);
1297 +      snap_->atomData.sitePotential[atom2] += *(idat.sPot2);
1298 +    }
1299 +
1300   #endif
1301      
1302    }
# Line 1278 | Line 1304 | namespace OpenMD {
1304    /*
1305     * buildNeighborList
1306     *
1307 <   * first element of pair is row-indexed CutoffGroup
1308 <   * second element of pair is column-indexed CutoffGroup
1307 >   * Constructs the Verlet neighbor list for a force-matrix
1308 >   * decomposition.  In this case, each processor is responsible for
1309 >   * row-site interactions with column-sites.
1310 >   *
1311 >   * neighborList is returned as a packed array of neighboring
1312 >   * column-ordered CutoffGroups.  The starting position in
1313 >   * neighborList for each row-ordered CutoffGroup is given by the
1314 >   * returned vector point.
1315     */
1316 <  vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1317 <      
1318 <    vector<pair<int, int> > neighborList;
1319 <    groupCutoffs cuts;
1316 >  void ForceMatrixDecomposition::buildNeighborList(vector<int>& neighborList,
1317 >                                                   vector<int>& point) {
1318 >    neighborList.clear();
1319 >    point.clear();
1320 >    int len = 0;
1321 >    
1322      bool doAllPairs = false;
1323  
1324 +    Snapshot* snap_ = sman_->getCurrentSnapshot();
1325 +    Mat3x3d box;
1326 +    Mat3x3d invBox;
1327 +
1328 +    Vector3d rs, scaled, dr;
1329 +    Vector3i whichCell;
1330 +    int cellIndex;
1331 +
1332   #ifdef IS_MPI
1333      cellListRow_.clear();
1334      cellListCol_.clear();
1335 +    point.resize(nGroupsInRow_+1);
1336   #else
1337      cellList_.clear();
1338 +    point.resize(nGroups_+1);
1339   #endif
1340 +    
1341 +    if (!usePeriodicBoundaryConditions_) {
1342 +      box = snap_->getBoundingBox();
1343 +      invBox = snap_->getInvBoundingBox();
1344 +    } else {
1345 +      box = snap_->getHmat();
1346 +      invBox = snap_->getInvHmat();
1347 +    }
1348 +    
1349 +    Vector3d A = box.getColumn(0);
1350 +    Vector3d B = box.getColumn(1);
1351 +    Vector3d C = box.getColumn(2);
1352  
1353 <    RealType rList_ = (largestRcut_ + skinThickness_);
1354 <    RealType rl2 = rList_ * rList_;
1355 <    Snapshot* snap_ = sman_->getCurrentSnapshot();
1356 <    Mat3x3d Hmat = snap_->getHmat();
1301 <    Vector3d Hx = Hmat.getColumn(0);
1302 <    Vector3d Hy = Hmat.getColumn(1);
1303 <    Vector3d Hz = Hmat.getColumn(2);
1353 >    // Required for triclinic cells
1354 >    Vector3d AxB = cross(A, B);
1355 >    Vector3d BxC = cross(B, C);
1356 >    Vector3d CxA = cross(C, A);
1357  
1358 <    nCells_.x() = (int) ( Hx.length() )/ rList_;
1359 <    nCells_.y() = (int) ( Hy.length() )/ rList_;
1360 <    nCells_.z() = (int) ( Hz.length() )/ rList_;
1358 >    // unit vectors perpendicular to the faces of the triclinic cell:
1359 >    AxB.normalize();
1360 >    BxC.normalize();
1361 >    CxA.normalize();
1362  
1363 <    // handle small boxes where the cell offsets can end up repeating cells
1363 >    // A set of perpendicular lengths in triclinic cells:
1364 >    RealType Wa = abs(dot(A, BxC));
1365 >    RealType Wb = abs(dot(B, CxA));
1366 >    RealType Wc = abs(dot(C, AxB));
1367      
1368 +    nCells_.x() = int( Wa / rList_ );
1369 +    nCells_.y() = int( Wb / rList_ );
1370 +    nCells_.z() = int( Wc / rList_ );
1371 +    
1372 +    // handle small boxes where the cell offsets can end up repeating cells
1373      if (nCells_.x() < 3) doAllPairs = true;
1374      if (nCells_.y() < 3) doAllPairs = true;
1375      if (nCells_.z() < 3) doAllPairs = true;
1376 <
1315 <    Mat3x3d invHmat = snap_->getInvHmat();
1316 <    Vector3d rs, scaled, dr;
1317 <    Vector3i whichCell;
1318 <    int cellIndex;
1376 >    
1377      int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1378 <
1378 >    
1379   #ifdef IS_MPI
1380      cellListRow_.resize(nCtot);
1381      cellListCol_.resize(nCtot);
1382   #else
1383      cellList_.resize(nCtot);
1384   #endif
1385 <
1385 >    
1386      if (!doAllPairs) {
1387 +      
1388   #ifdef IS_MPI
1389 <
1389 >      
1390        for (int i = 0; i < nGroupsInRow_; i++) {
1391          rs = cgRowData.position[i];
1392          
1393          // scaled positions relative to the box vectors
1394 <        scaled = invHmat * rs;
1394 >        scaled = invBox * rs;
1395          
1396          // wrap the vector back into the unit box by subtracting integer box
1397          // numbers
1398          for (int j = 0; j < 3; j++) {
1399            scaled[j] -= roundMe(scaled[j]);
1400            scaled[j] += 0.5;
1401 +          // Handle the special case when an object is exactly on the
1402 +          // boundary (a scaled coordinate of 1.0 is the same as
1403 +          // scaled coordinate of 0.0)
1404 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1405          }
1406          
1407          // find xyz-indices of cell that cutoffGroup is in.
# Line 1356 | Line 1419 | namespace OpenMD {
1419          rs = cgColData.position[i];
1420          
1421          // scaled positions relative to the box vectors
1422 <        scaled = invHmat * rs;
1422 >        scaled = invBox * rs;
1423          
1424          // wrap the vector back into the unit box by subtracting integer box
1425          // numbers
1426          for (int j = 0; j < 3; j++) {
1427            scaled[j] -= roundMe(scaled[j]);
1428            scaled[j] += 0.5;
1429 +          // Handle the special case when an object is exactly on the
1430 +          // boundary (a scaled coordinate of 1.0 is the same as
1431 +          // scaled coordinate of 0.0)
1432 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1433          }
1434          
1435          // find xyz-indices of cell that cutoffGroup is in.
# Line 1376 | Line 1443 | namespace OpenMD {
1443          // add this cutoff group to the list of groups in this cell;
1444          cellListCol_[cellIndex].push_back(i);
1445        }
1446 <    
1446 >            
1447   #else
1448        for (int i = 0; i < nGroups_; i++) {
1449          rs = snap_->cgData.position[i];
1450          
1451          // scaled positions relative to the box vectors
1452 <        scaled = invHmat * rs;
1452 >        scaled = invBox * rs;
1453          
1454          // wrap the vector back into the unit box by subtracting integer box
1455          // numbers
1456          for (int j = 0; j < 3; j++) {
1457            scaled[j] -= roundMe(scaled[j]);
1458            scaled[j] += 0.5;
1459 +          // Handle the special case when an object is exactly on the
1460 +          // boundary (a scaled coordinate of 1.0 is the same as
1461 +          // scaled coordinate of 0.0)
1462 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1463          }
1464          
1465          // find xyz-indices of cell that cutoffGroup is in.
1466 <        whichCell.x() = nCells_.x() * scaled.x();
1467 <        whichCell.y() = nCells_.y() * scaled.y();
1468 <        whichCell.z() = nCells_.z() * scaled.z();
1466 >        whichCell.x() = int(nCells_.x() * scaled.x());
1467 >        whichCell.y() = int(nCells_.y() * scaled.y());
1468 >        whichCell.z() = int(nCells_.z() * scaled.z());
1469          
1470          // find single index of this cell:
1471          cellIndex = Vlinear(whichCell, nCells_);
# Line 1405 | Line 1476 | namespace OpenMD {
1476  
1477   #endif
1478  
1408      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1409        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1410          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1411            Vector3i m1v(m1x, m1y, m1z);
1412            int m1 = Vlinear(m1v, nCells_);
1413            
1414            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1415                 os != cellOffsets_.end(); ++os) {
1416              
1417              Vector3i m2v = m1v + (*os);
1418            
1419
1420              if (m2v.x() >= nCells_.x()) {
1421                m2v.x() = 0;          
1422              } else if (m2v.x() < 0) {
1423                m2v.x() = nCells_.x() - 1;
1424              }
1425              
1426              if (m2v.y() >= nCells_.y()) {
1427                m2v.y() = 0;          
1428              } else if (m2v.y() < 0) {
1429                m2v.y() = nCells_.y() - 1;
1430              }
1431              
1432              if (m2v.z() >= nCells_.z()) {
1433                m2v.z() = 0;          
1434              } else if (m2v.z() < 0) {
1435                m2v.z() = nCells_.z() - 1;
1436              }
1437
1438              int m2 = Vlinear (m2v, nCells_);
1439              
1479   #ifdef IS_MPI
1480 <              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1481 <                   j1 != cellListRow_[m1].end(); ++j1) {
1443 <                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1444 <                     j2 != cellListCol_[m2].end(); ++j2) {
1445 <                  
1446 <                  // In parallel, we need to visit *all* pairs of row
1447 <                  // & column indicies and will divide labor in the
1448 <                  // force evaluation later.
1449 <                  dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1450 <                  snap_->wrapVector(dr);
1451 <                  cuts = getGroupCutoffs( (*j1), (*j2) );
1452 <                  if (dr.lengthSquare() < cuts.third) {
1453 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1454 <                  }                  
1455 <                }
1456 <              }
1480 >      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1481 >        rs = cgRowData.position[j1];
1482   #else
1458              for (vector<int>::iterator j1 = cellList_[m1].begin();
1459                   j1 != cellList_[m1].end(); ++j1) {
1460                for (vector<int>::iterator j2 = cellList_[m2].begin();
1461                     j2 != cellList_[m2].end(); ++j2) {
1462    
1463                  // Always do this if we're in different cells or if
1464                  // we're in the same cell and the global index of
1465                  // the j2 cutoff group is greater than or equal to
1466                  // the j1 cutoff group.  Note that Rappaport's code
1467                  // has a "less than" conditional here, but that
1468                  // deals with atom-by-atom computation.  OpenMD
1469                  // allows atoms within a single cutoff group to
1470                  // interact with each other.
1483  
1484 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1485 +        rs = snap_->cgData.position[j1];
1486 + #endif
1487 +        point[j1] = len;
1488 +        
1489 +        // scaled positions relative to the box vectors
1490 +        scaled = invBox * rs;
1491 +        
1492 +        // wrap the vector back into the unit box by subtracting integer box
1493 +        // numbers
1494 +        for (int j = 0; j < 3; j++) {
1495 +          scaled[j] -= roundMe(scaled[j]);
1496 +          scaled[j] += 0.5;
1497 +          // Handle the special case when an object is exactly on the
1498 +          // boundary (a scaled coordinate of 1.0 is the same as
1499 +          // scaled coordinate of 0.0)
1500 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1501 +        }
1502 +        
1503 +        // find xyz-indices of cell that cutoffGroup is in.
1504 +        whichCell.x() = nCells_.x() * scaled.x();
1505 +        whichCell.y() = nCells_.y() * scaled.y();
1506 +        whichCell.z() = nCells_.z() * scaled.z();
1507 +        
1508 +        // find single index of this cell:
1509 +        int m1 = Vlinear(whichCell, nCells_);
1510  
1511 +        for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1512 +             os != cellOffsets_.end(); ++os) {
1513 +              
1514 +          Vector3i m2v = whichCell + (*os);
1515  
1516 <                  if (m2 != m1 || (*j2) >= (*j1) ) {
1517 <
1518 <                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1519 <                    snap_->wrapVector(dr);
1520 <                    cuts = getGroupCutoffs( (*j1), (*j2) );
1521 <                    if (dr.lengthSquare() < cuts.third) {
1522 <                      neighborList.push_back(make_pair((*j1), (*j2)));
1523 <                    }
1524 <                  }
1525 <                }
1516 >          if (m2v.x() >= nCells_.x()) {
1517 >            m2v.x() = 0;          
1518 >          } else if (m2v.x() < 0) {
1519 >            m2v.x() = nCells_.x() - 1;
1520 >          }
1521 >          
1522 >          if (m2v.y() >= nCells_.y()) {
1523 >            m2v.y() = 0;          
1524 >          } else if (m2v.y() < 0) {
1525 >            m2v.y() = nCells_.y() - 1;
1526 >          }
1527 >          
1528 >          if (m2v.z() >= nCells_.z()) {
1529 >            m2v.z() = 0;          
1530 >          } else if (m2v.z() < 0) {
1531 >            m2v.z() = nCells_.z() - 1;
1532 >          }
1533 >          int m2 = Vlinear (m2v, nCells_);                                      
1534 > #ifdef IS_MPI
1535 >          for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1536 >               j2 != cellListCol_[m2].end(); ++j2) {
1537 >            
1538 >            // In parallel, we need to visit *all* pairs of row
1539 >            // & column indicies and will divide labor in the
1540 >            // force evaluation later.
1541 >            dr = cgColData.position[(*j2)] - rs;
1542 >            if (usePeriodicBoundaryConditions_) {
1543 >              snap_->wrapVector(dr);
1544 >            }
1545 >            if (dr.lengthSquare() < rListSq_) {
1546 >              neighborList.push_back( (*j2) );
1547 >              ++len;
1548 >            }                
1549 >          }        
1550 > #else
1551 >          for (vector<int>::iterator j2 = cellList_[m2].begin();
1552 >               j2 != cellList_[m2].end(); ++j2) {
1553 >          
1554 >            // Always do this if we're in different cells or if
1555 >            // we're in the same cell and the global index of
1556 >            // the j2 cutoff group is greater than or equal to
1557 >            // the j1 cutoff group.  Note that Rappaport's code
1558 >            // has a "less than" conditional here, but that
1559 >            // deals with atom-by-atom computation.  OpenMD
1560 >            // allows atoms within a single cutoff group to
1561 >            // interact with each other.
1562 >            
1563 >            if ( (*j2) >= j1 ) {
1564 >              
1565 >              dr = snap_->cgData.position[(*j2)] - rs;
1566 >              if (usePeriodicBoundaryConditions_) {
1567 >                snap_->wrapVector(dr);
1568                }
1569 < #endif
1569 >              if ( dr.lengthSquare() < rListSq_) {
1570 >                neighborList.push_back( (*j2) );
1571 >                ++len;
1572 >              }
1573              }
1574 <          }
1574 >          }                
1575 > #endif
1576          }
1577 <      }
1577 >      }      
1578      } else {
1579        // branch to do all cutoff group pairs
1580   #ifdef IS_MPI
1581        for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1582 +        point[j1] = len;
1583 +        rs = cgRowData.position[j1];
1584          for (int j2 = 0; j2 < nGroupsInCol_; j2++) {    
1585 <          dr = cgColData.position[j2] - cgRowData.position[j1];
1586 <          snap_->wrapVector(dr);
1587 <          cuts = getGroupCutoffs( j1, j2 );
1498 <          if (dr.lengthSquare() < cuts.third) {
1499 <            neighborList.push_back(make_pair(j1, j2));
1585 >          dr = cgColData.position[j2] - rs;
1586 >          if (usePeriodicBoundaryConditions_) {
1587 >            snap_->wrapVector(dr);
1588            }
1589 +          if (dr.lengthSquare() < rListSq_) {
1590 +            neighborList.push_back( j2 );
1591 +            ++len;
1592 +          }
1593          }
1594        }      
1595   #else
1596        // include all groups here.
1597        for (int j1 = 0; j1 < nGroups_; j1++) {
1598 +        point[j1] = len;
1599 +        rs = snap_->cgData.position[j1];
1600          // include self group interactions j2 == j1
1601          for (int j2 = j1; j2 < nGroups_; j2++) {
1602 <          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1603 <          snap_->wrapVector(dr);
1604 <          cuts = getGroupCutoffs( j1, j2 );
1511 <          if (dr.lengthSquare() < cuts.third) {
1512 <            neighborList.push_back(make_pair(j1, j2));
1602 >          dr = snap_->cgData.position[j2] - rs;
1603 >          if (usePeriodicBoundaryConditions_) {
1604 >            snap_->wrapVector(dr);
1605            }
1606 +          if (dr.lengthSquare() < rListSq_) {
1607 +            neighborList.push_back( j2 );
1608 +            ++len;
1609 +          }
1610          }    
1611        }
1612   #endif
1613      }
1614 <      
1614 >
1615 > #ifdef IS_MPI
1616 >    point[nGroupsInRow_] = len;
1617 > #else
1618 >    point[nGroups_] = len;
1619 > #endif
1620 >  
1621      // save the local cutoff group positions for the check that is
1622      // done on each loop:
1623      saved_CG_positions_.clear();
1624 +    saved_CG_positions_.reserve(nGroups_);
1625      for (int i = 0; i < nGroups_; i++)
1626        saved_CG_positions_.push_back(snap_->cgData.position[i]);
1524    
1525    return neighborList;
1627    }
1628   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines