ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing:
branches/development/src/parallel/ForceDecomposition.cpp (file contents), Revision 1547 by gezelter, Mon Apr 11 18:44:16 2011 UTC vs.
branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 1616 by gezelter, Tue Aug 30 15:45:35 2011 UTC

# Line 38 | Line 38
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39   * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41 < #include "parallel/ForceDecomposition.hpp"
41 > #include "parallel/ForceMatrixDecomposition.hpp"
42   #include "math/SquareMatrix3.hpp"
43   #include "nonbonded/NonBondedInteraction.hpp"
44   #include "brains/SnapshotManager.hpp"
45 + #include "brains/PairList.hpp"
46  
47   using namespace std;
48   namespace OpenMD {
49  
50 +  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
51 +
52 +    // In a parallel computation, row and colum scans must visit all
53 +    // surrounding cells (not just the 14 upper triangular blocks that
54 +    // are used when the processor can see all pairs)
55 + #ifdef IS_MPI
56 +    cellOffsets_.clear();
57 +    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
58 +    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
59 +    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                          
60 +    cellOffsets_.push_back( Vector3i(-1, 0,-1) );
61 +    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
62 +    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
63 +    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
64 +    cellOffsets_.push_back( Vector3i( 0, 1,-1) );      
65 +    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
66 +    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
67 +    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
68 +    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
69 +    cellOffsets_.push_back( Vector3i(-1, 0, 0) );      
70 +    cellOffsets_.push_back( Vector3i( 0, 0, 0) );
71 +    cellOffsets_.push_back( Vector3i( 1, 0, 0) );
72 +    cellOffsets_.push_back( Vector3i(-1, 1, 0) );
73 +    cellOffsets_.push_back( Vector3i( 0, 1, 0) );
74 +    cellOffsets_.push_back( Vector3i( 1, 1, 0) );
75 +    cellOffsets_.push_back( Vector3i(-1,-1, 1) );
76 +    cellOffsets_.push_back( Vector3i( 0,-1, 1) );
77 +    cellOffsets_.push_back( Vector3i( 1,-1, 1) );
78 +    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
79 +    cellOffsets_.push_back( Vector3i( 0, 0, 1) );
80 +    cellOffsets_.push_back( Vector3i( 1, 0, 1) );
81 +    cellOffsets_.push_back( Vector3i(-1, 1, 1) );
82 +    cellOffsets_.push_back( Vector3i( 0, 1, 1) );
83 +    cellOffsets_.push_back( Vector3i( 1, 1, 1) );
84 + #endif    
85 +  }
86 +
87 +
88    /**
89     * distributeInitialData is essentially a copy of the older fortran
90     * SimulationSetup
91     */
92 <  
93 <  void ForceDecomposition::distributeInitialData() {
94 < #ifdef IS_MPI    
95 <    Snapshot* snap = sman_->getCurrentSnapshot();
96 <    int nLocal = snap->getNumberOfAtoms();
97 <    int nGroups = snap->getNumberOfCutoffGroups();
92 >  void ForceMatrixDecomposition::distributeInitialData() {
93 >    snap_ = sman_->getCurrentSnapshot();
94 >    storageLayout_ = sman_->getStorageLayout();
95 >    ff_ = info_->getForceField();
96 >    nLocal_ = snap_->getNumberOfAtoms();
97 >    
98 >    nGroups_ = info_->getNLocalCutoffGroups();
99 >    // gather the information for atomtype IDs (atids):
100 >    idents = info_->getIdentArray();
101 >    AtomLocalToGlobal = info_->getGlobalAtomIndices();
102 >    cgLocalToGlobal = info_->getGlobalGroupIndices();
103 >    vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
104  
105 <    AtomCommIntI = new Communicator<Row,int>(nLocal);
61 <    AtomCommRealI = new Communicator<Row,RealType>(nLocal);
62 <    AtomCommVectorI = new Communicator<Row,Vector3d>(nLocal);
63 <    AtomCommMatrixI = new Communicator<Row,Mat3x3d>(nLocal);
105 >    massFactors = info_->getMassFactors();
106  
107 <    AtomCommIntJ = new Communicator<Column,int>(nLocal);
108 <    AtomCommRealJ = new Communicator<Column,RealType>(nLocal);
109 <    AtomCommVectorJ = new Communicator<Column,Vector3d>(nLocal);
110 <    AtomCommMatrixJ = new Communicator<Column,Mat3x3d>(nLocal);
107 >    PairList* excludes = info_->getExcludedInteractions();
108 >    PairList* oneTwo = info_->getOneTwoInteractions();
109 >    PairList* oneThree = info_->getOneThreeInteractions();
110 >    PairList* oneFour = info_->getOneFourInteractions();
111  
112 <    cgCommIntI = new Communicator<Row,int>(nGroups);
113 <    cgCommVectorI = new Communicator<Row,Vector3d>(nGroups);
114 <    cgCommIntJ = new Communicator<Column,int>(nGroups);
115 <    cgCommVectorJ = new Communicator<Column,Vector3d>(nGroups);
112 > #ifdef IS_MPI
113 >
114 >    MPI::Intracomm row = rowComm.getComm();
115 >    MPI::Intracomm col = colComm.getComm();
116  
117 <    int nAtomsInRow = AtomCommIntI->getSize();
118 <    int nAtomsInCol = AtomCommIntJ->getSize();
119 <    int nGroupsInRow = cgCommIntI->getSize();
120 <    int nGroupsInCol = cgCommIntJ->getSize();
117 >    AtomPlanIntRow = new Plan<int>(row, nLocal_);
118 >    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
119 >    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
120 >    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
121 >    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
122  
123 <    vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES,
124 <                                      vector<RealType> (nAtomsInRow, 0.0));
125 <    vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES,
126 <                                      vector<RealType> (nAtomsInCol, 0.0));
123 >    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
124 >    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
125 >    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
126 >    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
127 >    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
128 >
129 >    cgPlanIntRow = new Plan<int>(row, nGroups_);
130 >    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
131 >    cgPlanIntColumn = new Plan<int>(col, nGroups_);
132 >    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
133 >
134 >    nAtomsInRow_ = AtomPlanIntRow->getSize();
135 >    nAtomsInCol_ = AtomPlanIntColumn->getSize();
136 >    nGroupsInRow_ = cgPlanIntRow->getSize();
137 >    nGroupsInCol_ = cgPlanIntColumn->getSize();
138 >
139 >    // Modify the data storage objects with the correct layouts and sizes:
140 >    atomRowData.resize(nAtomsInRow_);
141 >    atomRowData.setStorageLayout(storageLayout_);
142 >    atomColData.resize(nAtomsInCol_);
143 >    atomColData.setStorageLayout(storageLayout_);
144 >    cgRowData.resize(nGroupsInRow_);
145 >    cgRowData.setStorageLayout(DataStorage::dslPosition);
146 >    cgColData.resize(nGroupsInCol_);
147 >    cgColData.setStorageLayout(DataStorage::dslPosition);
148 >        
149 >    identsRow.resize(nAtomsInRow_);
150 >    identsCol.resize(nAtomsInCol_);
151      
152 <    vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0);
152 >    AtomPlanIntRow->gather(idents, identsRow);
153 >    AtomPlanIntColumn->gather(idents, identsCol);
154 >    
155 >    // allocate memory for the parallel objects
156 >    atypesRow.resize(nAtomsInRow_);
157 >    atypesCol.resize(nAtomsInCol_);
158  
159 <    // gather the information for atomtype IDs (atids):
160 <    vector<int> identsLocal = info_->getIdentArray();
161 <    identsRow.reserve(nAtomsInRow);
162 <    identsCol.reserve(nAtomsInCol);
159 >    for (int i = 0; i < nAtomsInRow_; i++)
160 >      atypesRow[i] = ff_->getAtomType(identsRow[i]);
161 >    for (int i = 0; i < nAtomsInCol_; i++)
162 >      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
163  
164 <    AtomCommIntI->gather(identsLocal, identsRow);
165 <    AtomCommIntJ->gather(identsLocal, identsCol);
164 >    pot_row.resize(nAtomsInRow_);
165 >    pot_col.resize(nAtomsInCol_);
166  
167 <    AtomLocalToGlobal = info_->getLocalToGlobalAtomIndex();
168 <    AtomCommIntI->gather(AtomLocalToGlobal, AtomRowToGlobal);
169 <    AtomCommIntJ->gather(AtomLocalToGlobal, AtomColToGlobal);
167 >    AtomRowToGlobal.resize(nAtomsInRow_);
168 >    AtomColToGlobal.resize(nAtomsInCol_);
169 >    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
170 >    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
171  
172 <    cgLocalToGlobal = info_->getLocalToGlobalCutoffGroupIndex();
173 <    cgCommIntI->gather(cgLocalToGlobal, cgRowToGlobal);
174 <    cgCommIntJ->gather(cgLocalToGlobal, cgColToGlobal);
172 >    cgRowToGlobal.resize(nGroupsInRow_);
173 >    cgColToGlobal.resize(nGroupsInCol_);
174 >    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
175 >    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
176  
177 <    
177 >    massFactorsRow.resize(nAtomsInRow_);
178 >    massFactorsCol.resize(nAtomsInCol_);
179 >    AtomPlanRealRow->gather(massFactors, massFactorsRow);
180 >    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
181  
182 <    // still need:
183 <    // topoDist
184 <    // exclude
182 >    groupListRow_.clear();
183 >    groupListRow_.resize(nGroupsInRow_);
184 >    for (int i = 0; i < nGroupsInRow_; i++) {
185 >      int gid = cgRowToGlobal[i];
186 >      for (int j = 0; j < nAtomsInRow_; j++) {
187 >        int aid = AtomRowToGlobal[j];
188 >        if (globalGroupMembership[aid] == gid)
189 >          groupListRow_[i].push_back(j);
190 >      }      
191 >    }
192 >
193 >    groupListCol_.clear();
194 >    groupListCol_.resize(nGroupsInCol_);
195 >    for (int i = 0; i < nGroupsInCol_; i++) {
196 >      int gid = cgColToGlobal[i];
197 >      for (int j = 0; j < nAtomsInCol_; j++) {
198 >        int aid = AtomColToGlobal[j];
199 >        if (globalGroupMembership[aid] == gid)
200 >          groupListCol_[i].push_back(j);
201 >      }      
202 >    }
203 >
204 >    excludesForAtom.clear();
205 >    excludesForAtom.resize(nAtomsInRow_);
206 >    toposForAtom.clear();
207 >    toposForAtom.resize(nAtomsInRow_);
208 >    topoDist.clear();
209 >    topoDist.resize(nAtomsInRow_);
210 >    for (int i = 0; i < nAtomsInRow_; i++) {
211 >      int iglob = AtomRowToGlobal[i];
212 >
213 >      for (int j = 0; j < nAtomsInCol_; j++) {
214 >        int jglob = AtomColToGlobal[j];
215 >
216 >        if (excludes->hasPair(iglob, jglob))
217 >          excludesForAtom[i].push_back(j);      
218 >        
219 >        if (oneTwo->hasPair(iglob, jglob)) {
220 >          toposForAtom[i].push_back(j);
221 >          topoDist[i].push_back(1);
222 >        } else {
223 >          if (oneThree->hasPair(iglob, jglob)) {
224 >            toposForAtom[i].push_back(j);
225 >            topoDist[i].push_back(2);
226 >          } else {
227 >            if (oneFour->hasPair(iglob, jglob)) {
228 >              toposForAtom[i].push_back(j);
229 >              topoDist[i].push_back(3);
230 >            }
231 >          }
232 >        }
233 >      }      
234 >    }
235 >
236 > #else
237 >    excludesForAtom.clear();
238 >    excludesForAtom.resize(nLocal_);
239 >    toposForAtom.clear();
240 >    toposForAtom.resize(nLocal_);
241 >    topoDist.clear();
242 >    topoDist.resize(nLocal_);
243 >
244 >    for (int i = 0; i < nLocal_; i++) {
245 >      int iglob = AtomLocalToGlobal[i];
246 >
247 >      for (int j = 0; j < nLocal_; j++) {
248 >        int jglob = AtomLocalToGlobal[j];
249 >
250 >        if (excludes->hasPair(iglob, jglob))
251 >          excludesForAtom[i].push_back(j);              
252 >        
253 >        if (oneTwo->hasPair(iglob, jglob)) {
254 >          toposForAtom[i].push_back(j);
255 >          topoDist[i].push_back(1);
256 >        } else {
257 >          if (oneThree->hasPair(iglob, jglob)) {
258 >            toposForAtom[i].push_back(j);
259 >            topoDist[i].push_back(2);
260 >          } else {
261 >            if (oneFour->hasPair(iglob, jglob)) {
262 >              toposForAtom[i].push_back(j);
263 >              topoDist[i].push_back(3);
264 >            }
265 >          }
266 >        }
267 >      }      
268 >    }
269   #endif
270 +
271 +    // allocate memory for the parallel objects
272 +    atypesLocal.resize(nLocal_);
273 +
274 +    for (int i = 0; i < nLocal_; i++)
275 +      atypesLocal[i] = ff_->getAtomType(idents[i]);
276 +
277 +    groupList_.clear();
278 +    groupList_.resize(nGroups_);
279 +    for (int i = 0; i < nGroups_; i++) {
280 +      int gid = cgLocalToGlobal[i];
281 +      for (int j = 0; j < nLocal_; j++) {
282 +        int aid = AtomLocalToGlobal[j];
283 +        if (globalGroupMembership[aid] == gid) {
284 +          groupList_[i].push_back(j);
285 +        }
286 +      }      
287 +    }
288 +
289 +
290 +    createGtypeCutoffMap();
291 +
292    }
293 +  
294 +  void ForceMatrixDecomposition::createGtypeCutoffMap() {
295      
296 +    RealType tol = 1e-6;
297 +    largestRcut_ = 0.0;
298 +    RealType rc;
299 +    int atid;
300 +    set<AtomType*> atypes = info_->getSimulatedAtomTypes();
301 +    
302 +    map<int, RealType> atypeCutoff;
303 +      
304 +    for (set<AtomType*>::iterator at = atypes.begin();
305 +         at != atypes.end(); ++at){
306 +      atid = (*at)->getIdent();
307 +      if (userChoseCutoff_)
308 +        atypeCutoff[atid] = userCutoff_;
309 +      else
310 +        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
311 +    }
312 +    
313 +    vector<RealType> gTypeCutoffs;
314 +    // first we do a single loop over the cutoff groups to find the
315 +    // largest cutoff for any atypes present in this group.
316 + #ifdef IS_MPI
317 +    vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
318 +    groupRowToGtype.resize(nGroupsInRow_);
319 +    for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
320 +      vector<int> atomListRow = getAtomsInGroupRow(cg1);
321 +      for (vector<int>::iterator ia = atomListRow.begin();
322 +           ia != atomListRow.end(); ++ia) {            
323 +        int atom1 = (*ia);
324 +        atid = identsRow[atom1];
325 +        if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
326 +          groupCutoffRow[cg1] = atypeCutoff[atid];
327 +        }
328 +      }
329  
330 +      bool gTypeFound = false;
331 +      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
332 +        if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
333 +          groupRowToGtype[cg1] = gt;
334 +          gTypeFound = true;
335 +        }
336 +      }
337 +      if (!gTypeFound) {
338 +        gTypeCutoffs.push_back( groupCutoffRow[cg1] );
339 +        groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
340 +      }
341 +      
342 +    }
343 +    vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
344 +    groupColToGtype.resize(nGroupsInCol_);
345 +    for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
346 +      vector<int> atomListCol = getAtomsInGroupColumn(cg2);
347 +      for (vector<int>::iterator jb = atomListCol.begin();
348 +           jb != atomListCol.end(); ++jb) {            
349 +        int atom2 = (*jb);
350 +        atid = identsCol[atom2];
351 +        if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
352 +          groupCutoffCol[cg2] = atypeCutoff[atid];
353 +        }
354 +      }
355 +      bool gTypeFound = false;
356 +      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
357 +        if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
358 +          groupColToGtype[cg2] = gt;
359 +          gTypeFound = true;
360 +        }
361 +      }
362 +      if (!gTypeFound) {
363 +        gTypeCutoffs.push_back( groupCutoffCol[cg2] );
364 +        groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
365 +      }
366 +    }
367 + #else
368  
369 <  void ForceDecomposition::distributeData()  {
369 >    vector<RealType> groupCutoff(nGroups_, 0.0);
370 >    groupToGtype.resize(nGroups_);
371 >    for (int cg1 = 0; cg1 < nGroups_; cg1++) {
372 >      groupCutoff[cg1] = 0.0;
373 >      vector<int> atomList = getAtomsInGroupRow(cg1);
374 >      for (vector<int>::iterator ia = atomList.begin();
375 >           ia != atomList.end(); ++ia) {            
376 >        int atom1 = (*ia);
377 >        atid = idents[atom1];
378 >        if (atypeCutoff[atid] > groupCutoff[cg1])
379 >          groupCutoff[cg1] = atypeCutoff[atid];
380 >      }
381 >      
382 >      bool gTypeFound = false;
383 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
384 >        if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
385 >          groupToGtype[cg1] = gt;
386 >          gTypeFound = true;
387 >        }
388 >      }
389 >      if (!gTypeFound) {      
390 >        gTypeCutoffs.push_back( groupCutoff[cg1] );
391 >        groupToGtype[cg1] = gTypeCutoffs.size() - 1;
392 >      }      
393 >    }
394 > #endif
395 >
396 >    // Now we find the maximum group cutoff value present in the simulation
397 >
398 >    RealType groupMax = *max_element(gTypeCutoffs.begin(),
399 >                                     gTypeCutoffs.end());
400 >
401   #ifdef IS_MPI
402 <    Snapshot* snap = sman_->getCurrentSnapshot();
402 >    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
403 >                              MPI::MAX);
404 > #endif
405      
406 +    RealType tradRcut = groupMax;
407 +
408 +    for (int i = 0; i < gTypeCutoffs.size();  i++) {
409 +      for (int j = 0; j < gTypeCutoffs.size();  j++) {      
410 +        RealType thisRcut;
411 +        switch(cutoffPolicy_) {
412 +        case TRADITIONAL:
413 +          thisRcut = tradRcut;
414 +          break;
415 +        case MIX:
416 +          thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
417 +          break;
418 +        case MAX:
419 +          thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
420 +          break;
421 +        default:
422 +          sprintf(painCave.errMsg,
423 +                  "ForceMatrixDecomposition::createGtypeCutoffMap "
424 +                  "hit an unknown cutoff policy!\n");
425 +          painCave.severity = OPENMD_ERROR;
426 +          painCave.isFatal = 1;
427 +          simError();
428 +          break;
429 +        }
430 +
431 +        pair<int,int> key = make_pair(i,j);
432 +        gTypeCutoffMap[key].first = thisRcut;
433 +        if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
434 +        gTypeCutoffMap[key].second = thisRcut*thisRcut;
435 +        gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
436 +        // sanity check
437 +        
438 +        if (userChoseCutoff_) {
439 +          if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
440 +            sprintf(painCave.errMsg,
441 +                    "ForceMatrixDecomposition::createGtypeCutoffMap "
442 +                    "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
443 +            painCave.severity = OPENMD_ERROR;
444 +            painCave.isFatal = 1;
445 +            simError();            
446 +          }
447 +        }
448 +      }
449 +    }
450 +  }
451 +
452 +
453 +  groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
454 +    int i, j;  
455 + #ifdef IS_MPI
456 +    i = groupRowToGtype[cg1];
457 +    j = groupColToGtype[cg2];
458 + #else
459 +    i = groupToGtype[cg1];
460 +    j = groupToGtype[cg2];
461 + #endif    
462 +    return gTypeCutoffMap[make_pair(i,j)];
463 +  }
464 +
465 +  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
466 +    for (int j = 0; j < toposForAtom[atom1].size(); j++) {
467 +      if (toposForAtom[atom1][j] == atom2)
468 +        return topoDist[atom1][j];
469 +    }
470 +    return 0;
471 +  }
472 +
473 +  void ForceMatrixDecomposition::zeroWorkArrays() {
474 +    pairwisePot = 0.0;
475 +    embeddingPot = 0.0;
476 +
477 + #ifdef IS_MPI
478 +    if (storageLayout_ & DataStorage::dslForce) {
479 +      fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
480 +      fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
481 +    }
482 +
483 +    if (storageLayout_ & DataStorage::dslTorque) {
484 +      fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
485 +      fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
486 +    }
487 +    
488 +    fill(pot_row.begin(), pot_row.end(),
489 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
490 +
491 +    fill(pot_col.begin(), pot_col.end(),
492 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
493 +
494 +    if (storageLayout_ & DataStorage::dslParticlePot) {    
495 +      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
496 +           0.0);
497 +      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
498 +           0.0);
499 +    }
500 +
501 +    if (storageLayout_ & DataStorage::dslDensity) {      
502 +      fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
503 +      fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
504 +    }
505 +
506 +    if (storageLayout_ & DataStorage::dslFunctional) {  
507 +      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
508 +           0.0);
509 +      fill(atomColData.functional.begin(), atomColData.functional.end(),
510 +           0.0);
511 +    }
512 +
513 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
514 +      fill(atomRowData.functionalDerivative.begin(),
515 +           atomRowData.functionalDerivative.end(), 0.0);
516 +      fill(atomColData.functionalDerivative.begin(),
517 +           atomColData.functionalDerivative.end(), 0.0);
518 +    }
519 +
520 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
521 +      fill(atomRowData.skippedCharge.begin(),
522 +           atomRowData.skippedCharge.end(), 0.0);
523 +      fill(atomColData.skippedCharge.begin(),
524 +           atomColData.skippedCharge.end(), 0.0);
525 +    }
526 +
527 + #endif
528 +    // even in parallel, we need to zero out the local arrays:
529 +
530 +    if (storageLayout_ & DataStorage::dslParticlePot) {      
531 +      fill(snap_->atomData.particlePot.begin(),
532 +           snap_->atomData.particlePot.end(), 0.0);
533 +    }
534 +    
535 +    if (storageLayout_ & DataStorage::dslDensity) {      
536 +      fill(snap_->atomData.density.begin(),
537 +           snap_->atomData.density.end(), 0.0);
538 +    }
539 +    if (storageLayout_ & DataStorage::dslFunctional) {
540 +      fill(snap_->atomData.functional.begin(),
541 +           snap_->atomData.functional.end(), 0.0);
542 +    }
543 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
544 +      fill(snap_->atomData.functionalDerivative.begin(),
545 +           snap_->atomData.functionalDerivative.end(), 0.0);
546 +    }
547 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
548 +      fill(snap_->atomData.skippedCharge.begin(),
549 +           snap_->atomData.skippedCharge.end(), 0.0);
550 +    }
551 +    
552 +  }
553 +
554 +
555 +  void ForceMatrixDecomposition::distributeData()  {
556 +    snap_ = sman_->getCurrentSnapshot();
557 +    storageLayout_ = sman_->getStorageLayout();
558 + #ifdef IS_MPI
559 +    
560      // gather up the atomic positions
561 <    AtomCommVectorI->gather(snap->atomData.position,
562 <                            snap->atomIData.position);
563 <    AtomCommVectorJ->gather(snap->atomData.position,
564 <                            snap->atomJData.position);
561 >    AtomPlanVectorRow->gather(snap_->atomData.position,
562 >                              atomRowData.position);
563 >    AtomPlanVectorColumn->gather(snap_->atomData.position,
564 >                                 atomColData.position);
565      
566      // gather up the cutoff group positions
567 <    cgCommVectorI->gather(snap->cgData.position,
568 <                          snap->cgIData.position);
569 <    cgCommVectorJ->gather(snap->cgData.position,
570 <                          snap->cgJData.position);
567 >
568 >    cgPlanVectorRow->gather(snap_->cgData.position,
569 >                            cgRowData.position);
570 >
571 >    cgPlanVectorColumn->gather(snap_->cgData.position,
572 >                               cgColData.position);
573 >
574      
575      // if needed, gather the atomic rotation matrices
576 <    if (snap->atomData.getStorageLayout() & DataStorage::dslAmat) {
577 <      AtomCommMatrixI->gather(snap->atomData.aMat,
578 <                              snap->atomIData.aMat);
579 <      AtomCommMatrixJ->gather(snap->atomData.aMat,
580 <                              snap->atomJData.aMat);
576 >    if (storageLayout_ & DataStorage::dslAmat) {
577 >      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
578 >                                atomRowData.aMat);
579 >      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
580 >                                   atomColData.aMat);
581      }
582      
583      // if needed, gather the atomic eletrostatic frames
584 <    if (snap->atomData.getStorageLayout() & DataStorage::dslElectroFrame) {
585 <      AtomCommMatrixI->gather(snap->atomData.electroFrame,
586 <                              snap->atomIData.electroFrame);
587 <      AtomCommMatrixJ->gather(snap->atomData.electroFrame,
588 <                              snap->atomJData.electroFrame);
584 >    if (storageLayout_ & DataStorage::dslElectroFrame) {
585 >      AtomPlanMatrixRow->gather(snap_->atomData.electroFrame,
586 >                                atomRowData.electroFrame);
587 >      AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame,
588 >                                   atomColData.electroFrame);
589      }
590 +
591   #endif      
592    }
593    
594 <  void ForceDecomposition::collectIntermediateData() {
594 >  /* collects information obtained during the pre-pair loop onto local
595 >   * data structures.
596 >   */
597 >  void ForceMatrixDecomposition::collectIntermediateData() {
598 >    snap_ = sman_->getCurrentSnapshot();
599 >    storageLayout_ = sman_->getStorageLayout();
600   #ifdef IS_MPI
149    Snapshot* snap = sman_->getCurrentSnapshot();
601      
602 <    if (snap->atomData.getStorageLayout() & DataStorage::dslDensity) {
603 <
604 <      AtomCommRealI->scatter(snap->atomIData.density,
605 <                             snap->atomData.density);
606 <
607 <      int n = snap->atomData.density.size();
608 <      std::vector<RealType> rho_tmp(n, 0.0);
609 <      AtomCommRealJ->scatter(snap->atomJData.density, rho_tmp);
602 >    if (storageLayout_ & DataStorage::dslDensity) {
603 >      
604 >      AtomPlanRealRow->scatter(atomRowData.density,
605 >                               snap_->atomData.density);
606 >      
607 >      int n = snap_->atomData.density.size();
608 >      vector<RealType> rho_tmp(n, 0.0);
609 >      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
610        for (int i = 0; i < n; i++)
611 <        snap->atomData.density[i] += rho_tmp[i];
611 >        snap_->atomData.density[i] += rho_tmp[i];
612      }
613   #endif
614    }
615 <  
616 <  void ForceDecomposition::distributeIntermediateData() {
615 >
616 >  /*
617 >   * redistributes information obtained during the pre-pair loop out to
618 >   * row and column-indexed data structures
619 >   */
620 >  void ForceMatrixDecomposition::distributeIntermediateData() {
621 >    snap_ = sman_->getCurrentSnapshot();
622 >    storageLayout_ = sman_->getStorageLayout();
623   #ifdef IS_MPI
624 <    Snapshot* snap = sman_->getCurrentSnapshot();
625 <    if (snap->atomData.getStorageLayout() & DataStorage::dslFunctional) {
626 <      AtomCommRealI->gather(snap->atomData.functional,
627 <                            snap->atomIData.functional);
628 <      AtomCommRealJ->gather(snap->atomData.functional,
172 <                            snap->atomJData.functional);
624 >    if (storageLayout_ & DataStorage::dslFunctional) {
625 >      AtomPlanRealRow->gather(snap_->atomData.functional,
626 >                              atomRowData.functional);
627 >      AtomPlanRealColumn->gather(snap_->atomData.functional,
628 >                                 atomColData.functional);
629      }
630      
631 <    if (snap->atomData.getStorageLayout() & DataStorage::dslFunctionalDerivative) {
632 <      AtomCommRealI->gather(snap->atomData.functionalDerivative,
633 <                            snap->atomIData.functionalDerivative);
634 <      AtomCommRealJ->gather(snap->atomData.functionalDerivative,
635 <                            snap->atomJData.functionalDerivative);
631 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
632 >      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
633 >                              atomRowData.functionalDerivative);
634 >      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
635 >                                 atomColData.functionalDerivative);
636      }
637   #endif
638    }
639    
640    
641 <  void ForceDecomposition::collectData() {
642 < #ifdef IS_MPI
643 <    Snapshot* snap = sman_->getCurrentSnapshot();
644 <    
645 <    int n = snap->atomData.force.size();
641 >  void ForceMatrixDecomposition::collectData() {
642 >    snap_ = sman_->getCurrentSnapshot();
643 >    storageLayout_ = sman_->getStorageLayout();
644 > #ifdef IS_MPI    
645 >    int n = snap_->atomData.force.size();
646      vector<Vector3d> frc_tmp(n, V3Zero);
647      
648 <    AtomCommVectorI->scatter(snap->atomIData.force, frc_tmp);
648 >    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
649      for (int i = 0; i < n; i++) {
650 <      snap->atomData.force[i] += frc_tmp[i];
650 >      snap_->atomData.force[i] += frc_tmp[i];
651        frc_tmp[i] = 0.0;
652      }
653      
654 <    AtomCommVectorJ->scatter(snap->atomJData.force, frc_tmp);
655 <    for (int i = 0; i < n; i++)
656 <      snap->atomData.force[i] += frc_tmp[i];
657 <    
658 <    
659 <    if (snap->atomData.getStorageLayout() & DataStorage::dslTorque) {
654 >    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
655 >    for (int i = 0; i < n; i++) {
656 >      snap_->atomData.force[i] += frc_tmp[i];
657 >    }
658 >        
659 >    if (storageLayout_ & DataStorage::dslTorque) {
660  
661 <      int nt = snap->atomData.force.size();
661 >      int nt = snap_->atomData.torque.size();
662        vector<Vector3d> trq_tmp(nt, V3Zero);
663  
664 <      AtomCommVectorI->scatter(snap->atomIData.torque, trq_tmp);
665 <      for (int i = 0; i < n; i++) {
666 <        snap->atomData.torque[i] += trq_tmp[i];
664 >      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
665 >      for (int i = 0; i < nt; i++) {
666 >        snap_->atomData.torque[i] += trq_tmp[i];
667          trq_tmp[i] = 0.0;
668        }
669        
670 <      AtomCommVectorJ->scatter(snap->atomJData.torque, trq_tmp);
671 <      for (int i = 0; i < n; i++)
672 <        snap->atomData.torque[i] += trq_tmp[i];
670 >      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
671 >      for (int i = 0; i < nt; i++)
672 >        snap_->atomData.torque[i] += trq_tmp[i];
673      }
674 +
675 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
676 +
677 +      int ns = snap_->atomData.skippedCharge.size();
678 +      vector<RealType> skch_tmp(ns, 0.0);
679 +
680 +      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
681 +      for (int i = 0; i < ns; i++) {
682 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
683 +        skch_tmp[i] = 0.0;
684 +      }
685 +      
686 +      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
687 +      for (int i = 0; i < ns; i++)
688 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
689 +            
690 +    }
691      
692 <    int nLocal = snap->getNumberOfAtoms();
692 >    nLocal_ = snap_->getNumberOfAtoms();
693  
694 <    vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES,
695 <                                       vector<RealType> (nLocal, 0.0));
694 >    vector<potVec> pot_temp(nLocal_,
695 >                            Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
696 >
697 >    // scatter/gather pot_row into the members of my column
698 >          
699 >    AtomPlanPotRow->scatter(pot_row, pot_temp);
700 >
701 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
702 >      pairwisePot += pot_temp[ii];
703      
704 <    for (int i = 0; i < N_INTERACTION_FAMILIES; i++) {
705 <      AtomCommRealI->scatter(pot_row[i], pot_temp[i]);
706 <      for (int ii = 0;  ii < pot_temp[i].size(); ii++ ) {
707 <        pot_local[i] += pot_temp[i][ii];
708 <      }
704 >    fill(pot_temp.begin(), pot_temp.end(),
705 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
706 >      
707 >    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
708 >    
709 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
710 >      pairwisePot += pot_temp[ii];    
711 >    
712 >    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
713 >      RealType ploc1 = pairwisePot[ii];
714 >      RealType ploc2 = 0.0;
715 >      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
716 >      pairwisePot[ii] = ploc2;
717      }
718 +
719 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
720 +      RealType ploc1 = embeddingPot[ii];
721 +      RealType ploc2 = 0.0;
722 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
723 +      embeddingPot[ii] = ploc2;
724 +    }
725 +
726   #endif
727 +
728    }
729 +
730 +  int ForceMatrixDecomposition::getNAtomsInRow() {  
731 + #ifdef IS_MPI
732 +    return nAtomsInRow_;
733 + #else
734 +    return nLocal_;
735 + #endif
736 +  }
737 +
738 +  /**
739 +   * returns the list of atoms belonging to this group.  
740 +   */
741 +  vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
742 + #ifdef IS_MPI
743 +    return groupListRow_[cg1];
744 + #else
745 +    return groupList_[cg1];
746 + #endif
747 +  }
748 +
749 +  vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
750 + #ifdef IS_MPI
751 +    return groupListCol_[cg2];
752 + #else
753 +    return groupList_[cg2];
754 + #endif
755 +  }
756    
757 +  Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
758 +    Vector3d d;
759 +    
760 + #ifdef IS_MPI
761 +    d = cgColData.position[cg2] - cgRowData.position[cg1];
762 + #else
763 +    d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
764 + #endif
765 +    
766 +    snap_->wrapVector(d);
767 +    return d;    
768 +  }
769 +
770 +
771 +  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
772 +
773 +    Vector3d d;
774 +    
775 + #ifdef IS_MPI
776 +    d = cgRowData.position[cg1] - atomRowData.position[atom1];
777 + #else
778 +    d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
779 + #endif
780 +
781 +    snap_->wrapVector(d);
782 +    return d;    
783 +  }
784 +  
785 +  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
786 +    Vector3d d;
787 +    
788 + #ifdef IS_MPI
789 +    d = cgColData.position[cg2] - atomColData.position[atom2];
790 + #else
791 +    d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
792 + #endif
793 +    
794 +    snap_->wrapVector(d);
795 +    return d;    
796 +  }
797 +
798 +  RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
799 + #ifdef IS_MPI
800 +    return massFactorsRow[atom1];
801 + #else
802 +    return massFactors[atom1];
803 + #endif
804 +  }
805 +
806 +  RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
807 + #ifdef IS_MPI
808 +    return massFactorsCol[atom2];
809 + #else
810 +    return massFactors[atom2];
811 + #endif
812 +
813 +  }
814 +    
815 +  Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
816 +    Vector3d d;
817 +    
818 + #ifdef IS_MPI
819 +    d = atomColData.position[atom2] - atomRowData.position[atom1];
820 + #else
821 +    d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
822 + #endif
823 +
824 +    snap_->wrapVector(d);
825 +    return d;    
826 +  }
827 +
828 +  vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
829 +    return excludesForAtom[atom1];
830 +  }
831 +
832 +  /**
833 +   * We need to exclude some overcounted interactions that result from
834 +   * the parallel decomposition.
835 +   */
836 +  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
837 +    int unique_id_1, unique_id_2;
838 +        
839 + #ifdef IS_MPI
840 +    // in MPI, we have to look up the unique IDs for each atom
841 +    unique_id_1 = AtomRowToGlobal[atom1];
842 +    unique_id_2 = AtomColToGlobal[atom2];
843 + #else
844 +    unique_id_1 = AtomLocalToGlobal[atom1];
845 +    unique_id_2 = AtomLocalToGlobal[atom2];
846 + #endif  
847 +
848 +    if (unique_id_1 == unique_id_2) return true;
849 +
850 + #ifdef IS_MPI
851 +    // this prevents us from doing the pair on multiple processors
852 +    if (unique_id_1 < unique_id_2) {
853 +      if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
854 +    } else {
855 +      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
856 +    }
857 + #endif
858 +    
859 +    return false;
860 +  }
861 +
862 +  /**
863 +   * We need to handle the interactions for atoms who are involved in
864 +   * the same rigid body as well as some short range interactions
865 +   * (bonds, bends, torsions) differently from other interactions.
866 +   * We'll still visit the pairwise routines, but with a flag that
867 +   * tells those routines to exclude the pair from direct long range
868 +   * interactions.  Some indirect interactions (notably reaction
869 +   * field) must still be handled for these pairs.
870 +   */
871 +  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
872 +
873 +    // excludesForAtom was constructed to use row/column indices in the MPI
874 +    // version, and to use local IDs in the non-MPI version:
875 +    
876 +    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
877 +         i != excludesForAtom[atom1].end(); ++i) {
878 +      if ( (*i) == atom2 ) return true;
879 +    }
880 +
881 +    return false;
882 +  }
883 +
884 +
885 +  void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
886 + #ifdef IS_MPI
887 +    atomRowData.force[atom1] += fg;
888 + #else
889 +    snap_->atomData.force[atom1] += fg;
890 + #endif
891 +  }
892 +
893 +  void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
894 + #ifdef IS_MPI
895 +    atomColData.force[atom2] += fg;
896 + #else
897 +    snap_->atomData.force[atom2] += fg;
898 + #endif
899 +  }
900 +
901 +    // filling interaction blocks with pointers
902 +  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
903 +                                                     int atom1, int atom2) {
904 +
905 +    idat.excluded = excludeAtomPair(atom1, atom2);
906 +  
907 + #ifdef IS_MPI
908 +    idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
909 +    //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
910 +    //                         ff_->getAtomType(identsCol[atom2]) );
911 +    
912 +    if (storageLayout_ & DataStorage::dslAmat) {
913 +      idat.A1 = &(atomRowData.aMat[atom1]);
914 +      idat.A2 = &(atomColData.aMat[atom2]);
915 +    }
916 +    
917 +    if (storageLayout_ & DataStorage::dslElectroFrame) {
918 +      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
919 +      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
920 +    }
921 +
922 +    if (storageLayout_ & DataStorage::dslTorque) {
923 +      idat.t1 = &(atomRowData.torque[atom1]);
924 +      idat.t2 = &(atomColData.torque[atom2]);
925 +    }
926 +
927 +    if (storageLayout_ & DataStorage::dslDensity) {
928 +      idat.rho1 = &(atomRowData.density[atom1]);
929 +      idat.rho2 = &(atomColData.density[atom2]);
930 +    }
931 +
932 +    if (storageLayout_ & DataStorage::dslFunctional) {
933 +      idat.frho1 = &(atomRowData.functional[atom1]);
934 +      idat.frho2 = &(atomColData.functional[atom2]);
935 +    }
936 +
937 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
938 +      idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
939 +      idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
940 +    }
941 +
942 +    if (storageLayout_ & DataStorage::dslParticlePot) {
943 +      idat.particlePot1 = &(atomRowData.particlePot[atom1]);
944 +      idat.particlePot2 = &(atomColData.particlePot[atom2]);
945 +    }
946 +
947 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
948 +      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
949 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
950 +    }
951 +
952 + #else
953 +
954 +    idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
955 +    //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
956 +    //                         ff_->getAtomType(idents[atom2]) );
957 +
958 +    if (storageLayout_ & DataStorage::dslAmat) {
959 +      idat.A1 = &(snap_->atomData.aMat[atom1]);
960 +      idat.A2 = &(snap_->atomData.aMat[atom2]);
961 +    }
962 +
963 +    if (storageLayout_ & DataStorage::dslElectroFrame) {
964 +      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
965 +      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
966 +    }
967 +
968 +    if (storageLayout_ & DataStorage::dslTorque) {
969 +      idat.t1 = &(snap_->atomData.torque[atom1]);
970 +      idat.t2 = &(snap_->atomData.torque[atom2]);
971 +    }
972 +
973 +    if (storageLayout_ & DataStorage::dslDensity) {    
974 +      idat.rho1 = &(snap_->atomData.density[atom1]);
975 +      idat.rho2 = &(snap_->atomData.density[atom2]);
976 +    }
977 +
978 +    if (storageLayout_ & DataStorage::dslFunctional) {
979 +      idat.frho1 = &(snap_->atomData.functional[atom1]);
980 +      idat.frho2 = &(snap_->atomData.functional[atom2]);
981 +    }
982 +
983 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
984 +      idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
985 +      idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
986 +    }
987 +
988 +    if (storageLayout_ & DataStorage::dslParticlePot) {
989 +      idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
990 +      idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
991 +    }
992 +
993 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
994 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
995 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
996 +    }
997 + #endif
998 +  }
999 +
1000 +  
1001 +  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
1002 + #ifdef IS_MPI
1003 +    pot_row[atom1] += 0.5 *  *(idat.pot);
1004 +    pot_col[atom2] += 0.5 *  *(idat.pot);
1005 +
1006 +    atomRowData.force[atom1] += *(idat.f1);
1007 +    atomColData.force[atom2] -= *(idat.f1);
1008 + #else
1009 +    pairwisePot += *(idat.pot);
1010 +
1011 +    snap_->atomData.force[atom1] += *(idat.f1);
1012 +    snap_->atomData.force[atom2] -= *(idat.f1);
1013 + #endif
1014 +    
1015 +  }
1016 +
1017 +  /*
1018 +   * buildNeighborList
1019 +   *
1020 +   * first element of pair is row-indexed CutoffGroup
1021 +   * second element of pair is column-indexed CutoffGroup
1022 +   */
1023 +  vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1024 +      
1025 +    vector<pair<int, int> > neighborList;
1026 +    groupCutoffs cuts;
1027 +    bool doAllPairs = false;
1028 +
1029 + #ifdef IS_MPI
1030 +    cellListRow_.clear();
1031 +    cellListCol_.clear();
1032 + #else
1033 +    cellList_.clear();
1034 + #endif
1035 +
1036 +    RealType rList_ = (largestRcut_ + skinThickness_);
1037 +    RealType rl2 = rList_ * rList_;
1038 +    Snapshot* snap_ = sman_->getCurrentSnapshot();
1039 +    Mat3x3d Hmat = snap_->getHmat();
1040 +    Vector3d Hx = Hmat.getColumn(0);
1041 +    Vector3d Hy = Hmat.getColumn(1);
1042 +    Vector3d Hz = Hmat.getColumn(2);
1043 +
1044 +    nCells_.x() = (int) ( Hx.length() )/ rList_;
1045 +    nCells_.y() = (int) ( Hy.length() )/ rList_;
1046 +    nCells_.z() = (int) ( Hz.length() )/ rList_;
1047 +
1048 +    // handle small boxes where the cell offsets can end up repeating cells
1049 +    
1050 +    if (nCells_.x() < 3) doAllPairs = true;
1051 +    if (nCells_.y() < 3) doAllPairs = true;
1052 +    if (nCells_.z() < 3) doAllPairs = true;
1053 +
1054 +    Mat3x3d invHmat = snap_->getInvHmat();
1055 +    Vector3d rs, scaled, dr;
1056 +    Vector3i whichCell;
1057 +    int cellIndex;
1058 +    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1059 +
1060 + #ifdef IS_MPI
1061 +    cellListRow_.resize(nCtot);
1062 +    cellListCol_.resize(nCtot);
1063 + #else
1064 +    cellList_.resize(nCtot);
1065 + #endif
1066 +
1067 +    if (!doAllPairs) {
1068 + #ifdef IS_MPI
1069 +
1070 +      for (int i = 0; i < nGroupsInRow_; i++) {
1071 +        rs = cgRowData.position[i];
1072 +        
1073 +        // scaled positions relative to the box vectors
1074 +        scaled = invHmat * rs;
1075 +        
1076 +        // wrap the vector back into the unit box by subtracting integer box
1077 +        // numbers
1078 +        for (int j = 0; j < 3; j++) {
1079 +          scaled[j] -= roundMe(scaled[j]);
1080 +          scaled[j] += 0.5;
1081 +        }
1082 +        
1083 +        // find xyz-indices of cell that cutoffGroup is in.
1084 +        whichCell.x() = nCells_.x() * scaled.x();
1085 +        whichCell.y() = nCells_.y() * scaled.y();
1086 +        whichCell.z() = nCells_.z() * scaled.z();
1087 +        
1088 +        // find single index of this cell:
1089 +        cellIndex = Vlinear(whichCell, nCells_);
1090 +        
1091 +        // add this cutoff group to the list of groups in this cell;
1092 +        cellListRow_[cellIndex].push_back(i);
1093 +      }
1094 +      for (int i = 0; i < nGroupsInCol_; i++) {
1095 +        rs = cgColData.position[i];
1096 +        
1097 +        // scaled positions relative to the box vectors
1098 +        scaled = invHmat * rs;
1099 +        
1100 +        // wrap the vector back into the unit box by subtracting integer box
1101 +        // numbers
1102 +        for (int j = 0; j < 3; j++) {
1103 +          scaled[j] -= roundMe(scaled[j]);
1104 +          scaled[j] += 0.5;
1105 +        }
1106 +        
1107 +        // find xyz-indices of cell that cutoffGroup is in.
1108 +        whichCell.x() = nCells_.x() * scaled.x();
1109 +        whichCell.y() = nCells_.y() * scaled.y();
1110 +        whichCell.z() = nCells_.z() * scaled.z();
1111 +        
1112 +        // find single index of this cell:
1113 +        cellIndex = Vlinear(whichCell, nCells_);
1114 +        
1115 +        // add this cutoff group to the list of groups in this cell;
1116 +        cellListCol_[cellIndex].push_back(i);
1117 +      }
1118 +    
1119 + #else
1120 +      for (int i = 0; i < nGroups_; i++) {
1121 +        rs = snap_->cgData.position[i];
1122 +        
1123 +        // scaled positions relative to the box vectors
1124 +        scaled = invHmat * rs;
1125 +        
1126 +        // wrap the vector back into the unit box by subtracting integer box
1127 +        // numbers
1128 +        for (int j = 0; j < 3; j++) {
1129 +          scaled[j] -= roundMe(scaled[j]);
1130 +          scaled[j] += 0.5;
1131 +        }
1132 +        
1133 +        // find xyz-indices of cell that cutoffGroup is in.
1134 +        whichCell.x() = nCells_.x() * scaled.x();
1135 +        whichCell.y() = nCells_.y() * scaled.y();
1136 +        whichCell.z() = nCells_.z() * scaled.z();
1137 +        
1138 +        // find single index of this cell:
1139 +        cellIndex = Vlinear(whichCell, nCells_);
1140 +        
1141 +        // add this cutoff group to the list of groups in this cell;
1142 +        cellList_[cellIndex].push_back(i);
1143 +      }
1144 +
1145 + #endif
1146 +
1147 +      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1148 +        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1149 +          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1150 +            Vector3i m1v(m1x, m1y, m1z);
1151 +            int m1 = Vlinear(m1v, nCells_);
1152 +            
1153 +            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1154 +                 os != cellOffsets_.end(); ++os) {
1155 +              
1156 +              Vector3i m2v = m1v + (*os);
1157 +            
1158 +
1159 +              if (m2v.x() >= nCells_.x()) {
1160 +                m2v.x() = 0;          
1161 +              } else if (m2v.x() < 0) {
1162 +                m2v.x() = nCells_.x() - 1;
1163 +              }
1164 +              
1165 +              if (m2v.y() >= nCells_.y()) {
1166 +                m2v.y() = 0;          
1167 +              } else if (m2v.y() < 0) {
1168 +                m2v.y() = nCells_.y() - 1;
1169 +              }
1170 +              
1171 +              if (m2v.z() >= nCells_.z()) {
1172 +                m2v.z() = 0;          
1173 +              } else if (m2v.z() < 0) {
1174 +                m2v.z() = nCells_.z() - 1;
1175 +              }
1176 +
1177 +              int m2 = Vlinear (m2v, nCells_);
1178 +              
1179 + #ifdef IS_MPI
1180 +              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1181 +                   j1 != cellListRow_[m1].end(); ++j1) {
1182 +                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1183 +                     j2 != cellListCol_[m2].end(); ++j2) {
1184 +                  
1185 +                  // In parallel, we need to visit *all* pairs of row
1186 +                  // & column indicies and will divide labor in the
1187 +                  // force evaluation later.
1188 +                  dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1189 +                  snap_->wrapVector(dr);
1190 +                  cuts = getGroupCutoffs( (*j1), (*j2) );
1191 +                  if (dr.lengthSquare() < cuts.third) {
1192 +                    neighborList.push_back(make_pair((*j1), (*j2)));
1193 +                  }                  
1194 +                }
1195 +              }
1196 + #else
1197 +              for (vector<int>::iterator j1 = cellList_[m1].begin();
1198 +                   j1 != cellList_[m1].end(); ++j1) {
1199 +                for (vector<int>::iterator j2 = cellList_[m2].begin();
1200 +                     j2 != cellList_[m2].end(); ++j2) {
1201 +    
1202 +                  // Always do this if we're in different cells or if
1203 +                  // we're in the same cell and the global index of
1204 +                  // the j2 cutoff group is greater than or equal to
1205 +                  // the j1 cutoff group.  Note that Rappaport's code
1206 +                  // has a "less than" conditional here, but that
1207 +                  // deals with atom-by-atom computation.  OpenMD
1208 +                  // allows atoms within a single cutoff group to
1209 +                  // interact with each other.
1210 +
1211 +
1212 +
1213 +                  if (m2 != m1 || (*j2) >= (*j1) ) {
1214 +
1215 +                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1216 +                    snap_->wrapVector(dr);
1217 +                    cuts = getGroupCutoffs( (*j1), (*j2) );
1218 +                    if (dr.lengthSquare() < cuts.third) {
1219 +                      neighborList.push_back(make_pair((*j1), (*j2)));
1220 +                    }
1221 +                  }
1222 +                }
1223 +              }
1224 + #endif
1225 +            }
1226 +          }
1227 +        }
1228 +      }
1229 +    } else {
1230 +      // branch to do all cutoff group pairs
1231 + #ifdef IS_MPI
1232 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1233 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {    
1234 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1235 +          snap_->wrapVector(dr);
1236 +          cuts = getGroupCutoffs( j1, j2 );
1237 +          if (dr.lengthSquare() < cuts.third) {
1238 +            neighborList.push_back(make_pair(j1, j2));
1239 +          }
1240 +        }
1241 +      }      
1242 + #else
1243 +      // include all groups here.
1244 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1245 +        // include self group interactions j2 == j1
1246 +        for (int j2 = j1; j2 < nGroups_; j2++) {
1247 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1248 +          snap_->wrapVector(dr);
1249 +          cuts = getGroupCutoffs( j1, j2 );
1250 +          if (dr.lengthSquare() < cuts.third) {
1251 +            neighborList.push_back(make_pair(j1, j2));
1252 +          }
1253 +        }    
1254 +      }
1255 + #endif
1256 +    }
1257 +      
1258 +    // save the local cutoff group positions for the check that is
1259 +    // done on each loop:
1260 +    saved_CG_positions_.clear();
1261 +    for (int i = 0; i < nGroups_; i++)
1262 +      saved_CG_positions_.push_back(snap_->cgData.position[i]);
1263 +    
1264 +    return neighborList;
1265 +  }
1266   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines