42 |
|
#include "math/SquareMatrix3.hpp" |
43 |
|
#include "nonbonded/NonBondedInteraction.hpp" |
44 |
|
#include "brains/SnapshotManager.hpp" |
45 |
+ |
#include "brains/PairList.hpp" |
46 |
|
|
47 |
|
using namespace std; |
48 |
|
namespace OpenMD { |
55 |
|
void ForceMatrixDecomposition::distributeInitialData() { |
56 |
|
snap_ = sman_->getCurrentSnapshot(); |
57 |
|
storageLayout_ = sman_->getStorageLayout(); |
58 |
+ |
ff_ = info_->getForceField(); |
59 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
60 |
< |
nGroups_ = snap_->getNumberOfCutoffGroups(); |
60 |
> |
|
61 |
> |
nGroups_ = info_->getNLocalCutoffGroups(); |
62 |
> |
// gather the information for atomtype IDs (atids): |
63 |
> |
idents = info_->getIdentArray(); |
64 |
> |
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
65 |
> |
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
66 |
> |
vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
67 |
|
|
68 |
+ |
massFactors = info_->getMassFactors(); |
69 |
+ |
|
70 |
+ |
PairList* excludes = info_->getExcludedInteractions(); |
71 |
+ |
PairList* oneTwo = info_->getOneTwoInteractions(); |
72 |
+ |
PairList* oneThree = info_->getOneThreeInteractions(); |
73 |
+ |
PairList* oneFour = info_->getOneFourInteractions(); |
74 |
+ |
|
75 |
|
#ifdef IS_MPI |
76 |
|
|
77 |
|
AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
78 |
|
AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
79 |
|
AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
80 |
|
AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
81 |
+ |
AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
82 |
|
|
83 |
|
AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
84 |
|
AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
85 |
|
AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
86 |
|
AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
87 |
+ |
AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
88 |
|
|
89 |
|
cgCommIntRow = new Communicator<Row,int>(nGroups_); |
90 |
|
cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
105 |
|
cgRowData.setStorageLayout(DataStorage::dslPosition); |
106 |
|
cgColData.resize(nGroupsInCol_); |
107 |
|
cgColData.setStorageLayout(DataStorage::dslPosition); |
108 |
+ |
|
109 |
+ |
identsRow.resize(nAtomsInRow_); |
110 |
+ |
identsCol.resize(nAtomsInCol_); |
111 |
|
|
112 |
< |
vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES, |
113 |
< |
vector<RealType> (nAtomsInRow_, 0.0)); |
94 |
< |
vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES, |
95 |
< |
vector<RealType> (nAtomsInCol_, 0.0)); |
96 |
< |
|
97 |
< |
|
98 |
< |
vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0); |
112 |
> |
AtomCommIntRow->gather(idents, identsRow); |
113 |
> |
AtomCommIntColumn->gather(idents, identsCol); |
114 |
|
|
115 |
< |
// gather the information for atomtype IDs (atids): |
116 |
< |
vector<int> identsLocal = info_->getIdentArray(); |
117 |
< |
identsRow.reserve(nAtomsInRow_); |
118 |
< |
identsCol.reserve(nAtomsInCol_); |
119 |
< |
|
120 |
< |
AtomCommIntRow->gather(identsLocal, identsRow); |
121 |
< |
AtomCommIntColumn->gather(identsLocal, identsCol); |
122 |
< |
|
123 |
< |
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
115 |
> |
// allocate memory for the parallel objects |
116 |
> |
AtomRowToGlobal.resize(nAtomsInRow_); |
117 |
> |
AtomColToGlobal.resize(nAtomsInCol_); |
118 |
> |
cgRowToGlobal.resize(nGroupsInRow_); |
119 |
> |
cgColToGlobal.resize(nGroupsInCol_); |
120 |
> |
massFactorsRow.resize(nAtomsInRow_); |
121 |
> |
massFactorsCol.resize(nAtomsInCol_); |
122 |
> |
pot_row.resize(nAtomsInRow_); |
123 |
> |
pot_col.resize(nAtomsInCol_); |
124 |
> |
|
125 |
|
AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
126 |
|
AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
127 |
|
|
112 |
– |
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
128 |
|
cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
129 |
|
cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
130 |
|
|
131 |
< |
// still need: |
132 |
< |
// topoDist |
133 |
< |
// exclude |
131 |
> |
AtomCommRealRow->gather(massFactors, massFactorsRow); |
132 |
> |
AtomCommRealColumn->gather(massFactors, massFactorsCol); |
133 |
> |
|
134 |
> |
groupListRow_.clear(); |
135 |
> |
groupListRow_.resize(nGroupsInRow_); |
136 |
> |
for (int i = 0; i < nGroupsInRow_; i++) { |
137 |
> |
int gid = cgRowToGlobal[i]; |
138 |
> |
for (int j = 0; j < nAtomsInRow_; j++) { |
139 |
> |
int aid = AtomRowToGlobal[j]; |
140 |
> |
if (globalGroupMembership[aid] == gid) |
141 |
> |
groupListRow_[i].push_back(j); |
142 |
> |
} |
143 |
> |
} |
144 |
> |
|
145 |
> |
groupListCol_.clear(); |
146 |
> |
groupListCol_.resize(nGroupsInCol_); |
147 |
> |
for (int i = 0; i < nGroupsInCol_; i++) { |
148 |
> |
int gid = cgColToGlobal[i]; |
149 |
> |
for (int j = 0; j < nAtomsInCol_; j++) { |
150 |
> |
int aid = AtomColToGlobal[j]; |
151 |
> |
if (globalGroupMembership[aid] == gid) |
152 |
> |
groupListCol_[i].push_back(j); |
153 |
> |
} |
154 |
> |
} |
155 |
> |
|
156 |
> |
excludesForAtom.clear(); |
157 |
> |
excludesForAtom.resize(nAtomsInRow_); |
158 |
> |
toposForAtom.clear(); |
159 |
> |
toposForAtom.resize(nAtomsInRow_); |
160 |
> |
topoDist.clear(); |
161 |
> |
topoDist.resize(nAtomsInRow_); |
162 |
> |
for (int i = 0; i < nAtomsInRow_; i++) { |
163 |
> |
int iglob = AtomRowToGlobal[i]; |
164 |
> |
|
165 |
> |
for (int j = 0; j < nAtomsInCol_; j++) { |
166 |
> |
int jglob = AtomColToGlobal[j]; |
167 |
> |
|
168 |
> |
if (excludes->hasPair(iglob, jglob)) |
169 |
> |
excludesForAtom[i].push_back(j); |
170 |
> |
|
171 |
> |
if (oneTwo->hasPair(iglob, jglob)) { |
172 |
> |
toposForAtom[i].push_back(j); |
173 |
> |
topoDist[i].push_back(1); |
174 |
> |
} else { |
175 |
> |
if (oneThree->hasPair(iglob, jglob)) { |
176 |
> |
toposForAtom[i].push_back(j); |
177 |
> |
topoDist[i].push_back(2); |
178 |
> |
} else { |
179 |
> |
if (oneFour->hasPair(iglob, jglob)) { |
180 |
> |
toposForAtom[i].push_back(j); |
181 |
> |
topoDist[i].push_back(3); |
182 |
> |
} |
183 |
> |
} |
184 |
> |
} |
185 |
> |
} |
186 |
> |
} |
187 |
> |
|
188 |
> |
#endif |
189 |
> |
|
190 |
> |
groupList_.clear(); |
191 |
> |
groupList_.resize(nGroups_); |
192 |
> |
for (int i = 0; i < nGroups_; i++) { |
193 |
> |
int gid = cgLocalToGlobal[i]; |
194 |
> |
for (int j = 0; j < nLocal_; j++) { |
195 |
> |
int aid = AtomLocalToGlobal[j]; |
196 |
> |
if (globalGroupMembership[aid] == gid) { |
197 |
> |
groupList_[i].push_back(j); |
198 |
> |
} |
199 |
> |
} |
200 |
> |
} |
201 |
> |
|
202 |
> |
excludesForAtom.clear(); |
203 |
> |
excludesForAtom.resize(nLocal_); |
204 |
> |
toposForAtom.clear(); |
205 |
> |
toposForAtom.resize(nLocal_); |
206 |
> |
topoDist.clear(); |
207 |
> |
topoDist.resize(nLocal_); |
208 |
> |
|
209 |
> |
for (int i = 0; i < nLocal_; i++) { |
210 |
> |
int iglob = AtomLocalToGlobal[i]; |
211 |
> |
|
212 |
> |
for (int j = 0; j < nLocal_; j++) { |
213 |
> |
int jglob = AtomLocalToGlobal[j]; |
214 |
> |
|
215 |
> |
if (excludes->hasPair(iglob, jglob)) |
216 |
> |
excludesForAtom[i].push_back(j); |
217 |
> |
|
218 |
> |
if (oneTwo->hasPair(iglob, jglob)) { |
219 |
> |
toposForAtom[i].push_back(j); |
220 |
> |
topoDist[i].push_back(1); |
221 |
> |
} else { |
222 |
> |
if (oneThree->hasPair(iglob, jglob)) { |
223 |
> |
toposForAtom[i].push_back(j); |
224 |
> |
topoDist[i].push_back(2); |
225 |
> |
} else { |
226 |
> |
if (oneFour->hasPair(iglob, jglob)) { |
227 |
> |
toposForAtom[i].push_back(j); |
228 |
> |
topoDist[i].push_back(3); |
229 |
> |
} |
230 |
> |
} |
231 |
> |
} |
232 |
> |
} |
233 |
> |
} |
234 |
> |
|
235 |
> |
createGtypeCutoffMap(); |
236 |
> |
|
237 |
> |
} |
238 |
> |
|
239 |
> |
void ForceMatrixDecomposition::createGtypeCutoffMap() { |
240 |
> |
|
241 |
> |
RealType tol = 1e-6; |
242 |
> |
RealType rc; |
243 |
> |
int atid; |
244 |
> |
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
245 |
> |
map<int, RealType> atypeCutoff; |
246 |
> |
|
247 |
> |
for (set<AtomType*>::iterator at = atypes.begin(); |
248 |
> |
at != atypes.end(); ++at){ |
249 |
> |
atid = (*at)->getIdent(); |
250 |
> |
if (userChoseCutoff_) |
251 |
> |
atypeCutoff[atid] = userCutoff_; |
252 |
> |
else |
253 |
> |
atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
254 |
> |
} |
255 |
> |
|
256 |
> |
vector<RealType> gTypeCutoffs; |
257 |
> |
// first we do a single loop over the cutoff groups to find the |
258 |
> |
// largest cutoff for any atypes present in this group. |
259 |
> |
#ifdef IS_MPI |
260 |
> |
vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); |
261 |
> |
groupRowToGtype.resize(nGroupsInRow_); |
262 |
> |
for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { |
263 |
> |
vector<int> atomListRow = getAtomsInGroupRow(cg1); |
264 |
> |
for (vector<int>::iterator ia = atomListRow.begin(); |
265 |
> |
ia != atomListRow.end(); ++ia) { |
266 |
> |
int atom1 = (*ia); |
267 |
> |
atid = identsRow[atom1]; |
268 |
> |
if (atypeCutoff[atid] > groupCutoffRow[cg1]) { |
269 |
> |
groupCutoffRow[cg1] = atypeCutoff[atid]; |
270 |
> |
} |
271 |
> |
} |
272 |
> |
|
273 |
> |
bool gTypeFound = false; |
274 |
> |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
275 |
> |
if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { |
276 |
> |
groupRowToGtype[cg1] = gt; |
277 |
> |
gTypeFound = true; |
278 |
> |
} |
279 |
> |
} |
280 |
> |
if (!gTypeFound) { |
281 |
> |
gTypeCutoffs.push_back( groupCutoffRow[cg1] ); |
282 |
> |
groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; |
283 |
> |
} |
284 |
> |
|
285 |
> |
} |
286 |
> |
vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); |
287 |
> |
groupColToGtype.resize(nGroupsInCol_); |
288 |
> |
for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { |
289 |
> |
vector<int> atomListCol = getAtomsInGroupColumn(cg2); |
290 |
> |
for (vector<int>::iterator jb = atomListCol.begin(); |
291 |
> |
jb != atomListCol.end(); ++jb) { |
292 |
> |
int atom2 = (*jb); |
293 |
> |
atid = identsCol[atom2]; |
294 |
> |
if (atypeCutoff[atid] > groupCutoffCol[cg2]) { |
295 |
> |
groupCutoffCol[cg2] = atypeCutoff[atid]; |
296 |
> |
} |
297 |
> |
} |
298 |
> |
bool gTypeFound = false; |
299 |
> |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
300 |
> |
if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { |
301 |
> |
groupColToGtype[cg2] = gt; |
302 |
> |
gTypeFound = true; |
303 |
> |
} |
304 |
> |
} |
305 |
> |
if (!gTypeFound) { |
306 |
> |
gTypeCutoffs.push_back( groupCutoffCol[cg2] ); |
307 |
> |
groupColToGtype[cg2] = gTypeCutoffs.size() - 1; |
308 |
> |
} |
309 |
> |
} |
310 |
> |
#else |
311 |
> |
|
312 |
> |
vector<RealType> groupCutoff(nGroups_, 0.0); |
313 |
> |
groupToGtype.resize(nGroups_); |
314 |
> |
for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
315 |
> |
|
316 |
> |
groupCutoff[cg1] = 0.0; |
317 |
> |
vector<int> atomList = getAtomsInGroupRow(cg1); |
318 |
> |
|
319 |
> |
for (vector<int>::iterator ia = atomList.begin(); |
320 |
> |
ia != atomList.end(); ++ia) { |
321 |
> |
int atom1 = (*ia); |
322 |
> |
atid = idents[atom1]; |
323 |
> |
if (atypeCutoff[atid] > groupCutoff[cg1]) { |
324 |
> |
groupCutoff[cg1] = atypeCutoff[atid]; |
325 |
> |
} |
326 |
> |
} |
327 |
> |
|
328 |
> |
bool gTypeFound = false; |
329 |
> |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
330 |
> |
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
331 |
> |
groupToGtype[cg1] = gt; |
332 |
> |
gTypeFound = true; |
333 |
> |
} |
334 |
> |
} |
335 |
> |
if (!gTypeFound) { |
336 |
> |
gTypeCutoffs.push_back( groupCutoff[cg1] ); |
337 |
> |
groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
338 |
> |
} |
339 |
> |
} |
340 |
|
#endif |
341 |
+ |
|
342 |
+ |
// Now we find the maximum group cutoff value present in the simulation |
343 |
+ |
|
344 |
+ |
RealType groupMax = *max_element(gTypeCutoffs.begin(), |
345 |
+ |
gTypeCutoffs.end()); |
346 |
+ |
|
347 |
+ |
#ifdef IS_MPI |
348 |
+ |
MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, |
349 |
+ |
MPI::MAX); |
350 |
+ |
#endif |
351 |
+ |
|
352 |
+ |
RealType tradRcut = groupMax; |
353 |
+ |
|
354 |
+ |
for (int i = 0; i < gTypeCutoffs.size(); i++) { |
355 |
+ |
for (int j = 0; j < gTypeCutoffs.size(); j++) { |
356 |
+ |
RealType thisRcut; |
357 |
+ |
switch(cutoffPolicy_) { |
358 |
+ |
case TRADITIONAL: |
359 |
+ |
thisRcut = tradRcut; |
360 |
+ |
break; |
361 |
+ |
case MIX: |
362 |
+ |
thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); |
363 |
+ |
break; |
364 |
+ |
case MAX: |
365 |
+ |
thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); |
366 |
+ |
break; |
367 |
+ |
default: |
368 |
+ |
sprintf(painCave.errMsg, |
369 |
+ |
"ForceMatrixDecomposition::createGtypeCutoffMap " |
370 |
+ |
"hit an unknown cutoff policy!\n"); |
371 |
+ |
painCave.severity = OPENMD_ERROR; |
372 |
+ |
painCave.isFatal = 1; |
373 |
+ |
simError(); |
374 |
+ |
break; |
375 |
+ |
} |
376 |
+ |
|
377 |
+ |
pair<int,int> key = make_pair(i,j); |
378 |
+ |
gTypeCutoffMap[key].first = thisRcut; |
379 |
+ |
|
380 |
+ |
if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
381 |
+ |
|
382 |
+ |
gTypeCutoffMap[key].second = thisRcut*thisRcut; |
383 |
+ |
|
384 |
+ |
gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
385 |
+ |
|
386 |
+ |
// sanity check |
387 |
+ |
|
388 |
+ |
if (userChoseCutoff_) { |
389 |
+ |
if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
390 |
+ |
sprintf(painCave.errMsg, |
391 |
+ |
"ForceMatrixDecomposition::createGtypeCutoffMap " |
392 |
+ |
"user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
393 |
+ |
painCave.severity = OPENMD_ERROR; |
394 |
+ |
painCave.isFatal = 1; |
395 |
+ |
simError(); |
396 |
+ |
} |
397 |
+ |
} |
398 |
+ |
} |
399 |
+ |
} |
400 |
|
} |
401 |
+ |
|
402 |
+ |
|
403 |
+ |
groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
404 |
+ |
int i, j; |
405 |
+ |
#ifdef IS_MPI |
406 |
+ |
i = groupRowToGtype[cg1]; |
407 |
+ |
j = groupColToGtype[cg2]; |
408 |
+ |
#else |
409 |
+ |
i = groupToGtype[cg1]; |
410 |
+ |
j = groupToGtype[cg2]; |
411 |
+ |
#endif |
412 |
+ |
return gTypeCutoffMap[make_pair(i,j)]; |
413 |
+ |
} |
414 |
+ |
|
415 |
+ |
int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
416 |
+ |
for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
417 |
+ |
if (toposForAtom[atom1][j] == atom2) |
418 |
+ |
return topoDist[atom1][j]; |
419 |
+ |
} |
420 |
+ |
return 0; |
421 |
+ |
} |
422 |
+ |
|
423 |
+ |
void ForceMatrixDecomposition::zeroWorkArrays() { |
424 |
+ |
pairwisePot = 0.0; |
425 |
+ |
embeddingPot = 0.0; |
426 |
+ |
|
427 |
+ |
#ifdef IS_MPI |
428 |
+ |
if (storageLayout_ & DataStorage::dslForce) { |
429 |
+ |
fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); |
430 |
+ |
fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); |
431 |
+ |
} |
432 |
+ |
|
433 |
+ |
if (storageLayout_ & DataStorage::dslTorque) { |
434 |
+ |
fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); |
435 |
+ |
fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); |
436 |
+ |
} |
437 |
|
|
438 |
+ |
fill(pot_row.begin(), pot_row.end(), |
439 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
440 |
|
|
441 |
+ |
fill(pot_col.begin(), pot_col.end(), |
442 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
443 |
|
|
444 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
445 |
+ |
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
446 |
+ |
0.0); |
447 |
+ |
fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), |
448 |
+ |
0.0); |
449 |
+ |
} |
450 |
+ |
|
451 |
+ |
if (storageLayout_ & DataStorage::dslDensity) { |
452 |
+ |
fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); |
453 |
+ |
fill(atomColData.density.begin(), atomColData.density.end(), 0.0); |
454 |
+ |
} |
455 |
+ |
|
456 |
+ |
if (storageLayout_ & DataStorage::dslFunctional) { |
457 |
+ |
fill(atomRowData.functional.begin(), atomRowData.functional.end(), |
458 |
+ |
0.0); |
459 |
+ |
fill(atomColData.functional.begin(), atomColData.functional.end(), |
460 |
+ |
0.0); |
461 |
+ |
} |
462 |
+ |
|
463 |
+ |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
464 |
+ |
fill(atomRowData.functionalDerivative.begin(), |
465 |
+ |
atomRowData.functionalDerivative.end(), 0.0); |
466 |
+ |
fill(atomColData.functionalDerivative.begin(), |
467 |
+ |
atomColData.functionalDerivative.end(), 0.0); |
468 |
+ |
} |
469 |
+ |
|
470 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
471 |
+ |
fill(atomRowData.skippedCharge.begin(), |
472 |
+ |
atomRowData.skippedCharge.end(), 0.0); |
473 |
+ |
fill(atomColData.skippedCharge.begin(), |
474 |
+ |
atomColData.skippedCharge.end(), 0.0); |
475 |
+ |
} |
476 |
+ |
|
477 |
+ |
#endif |
478 |
+ |
// even in parallel, we need to zero out the local arrays: |
479 |
+ |
|
480 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
481 |
+ |
fill(snap_->atomData.particlePot.begin(), |
482 |
+ |
snap_->atomData.particlePot.end(), 0.0); |
483 |
+ |
} |
484 |
+ |
|
485 |
+ |
if (storageLayout_ & DataStorage::dslDensity) { |
486 |
+ |
fill(snap_->atomData.density.begin(), |
487 |
+ |
snap_->atomData.density.end(), 0.0); |
488 |
+ |
} |
489 |
+ |
if (storageLayout_ & DataStorage::dslFunctional) { |
490 |
+ |
fill(snap_->atomData.functional.begin(), |
491 |
+ |
snap_->atomData.functional.end(), 0.0); |
492 |
+ |
} |
493 |
+ |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
494 |
+ |
fill(snap_->atomData.functionalDerivative.begin(), |
495 |
+ |
snap_->atomData.functionalDerivative.end(), 0.0); |
496 |
+ |
} |
497 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
498 |
+ |
fill(snap_->atomData.skippedCharge.begin(), |
499 |
+ |
snap_->atomData.skippedCharge.end(), 0.0); |
500 |
+ |
} |
501 |
+ |
|
502 |
+ |
} |
503 |
+ |
|
504 |
+ |
|
505 |
|
void ForceMatrixDecomposition::distributeData() { |
506 |
|
snap_ = sman_->getCurrentSnapshot(); |
507 |
|
storageLayout_ = sman_->getStorageLayout(); |
534 |
|
AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
535 |
|
atomColData.electroFrame); |
536 |
|
} |
537 |
+ |
|
538 |
|
#endif |
539 |
|
} |
540 |
|
|
541 |
+ |
/* collects information obtained during the pre-pair loop onto local |
542 |
+ |
* data structures. |
543 |
+ |
*/ |
544 |
|
void ForceMatrixDecomposition::collectIntermediateData() { |
545 |
|
snap_ = sman_->getCurrentSnapshot(); |
546 |
|
storageLayout_ = sman_->getStorageLayout(); |
552 |
|
snap_->atomData.density); |
553 |
|
|
554 |
|
int n = snap_->atomData.density.size(); |
555 |
< |
std::vector<RealType> rho_tmp(n, 0.0); |
555 |
> |
vector<RealType> rho_tmp(n, 0.0); |
556 |
|
AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
557 |
|
for (int i = 0; i < n; i++) |
558 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
559 |
|
} |
560 |
|
#endif |
561 |
|
} |
562 |
< |
|
562 |
> |
|
563 |
> |
/* |
564 |
> |
* redistributes information obtained during the pre-pair loop out to |
565 |
> |
* row and column-indexed data structures |
566 |
> |
*/ |
567 |
|
void ForceMatrixDecomposition::distributeIntermediateData() { |
568 |
|
snap_ = sman_->getCurrentSnapshot(); |
569 |
|
storageLayout_ = sman_->getStorageLayout(); |
601 |
|
AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
602 |
|
for (int i = 0; i < n; i++) |
603 |
|
snap_->atomData.force[i] += frc_tmp[i]; |
604 |
< |
|
216 |
< |
|
604 |
> |
|
605 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
606 |
|
|
607 |
< |
int nt = snap_->atomData.force.size(); |
607 |
> |
int nt = snap_->atomData.torque.size(); |
608 |
|
vector<Vector3d> trq_tmp(nt, V3Zero); |
609 |
|
|
610 |
|
AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
611 |
< |
for (int i = 0; i < n; i++) { |
611 |
> |
for (int i = 0; i < nt; i++) { |
612 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
613 |
|
trq_tmp[i] = 0.0; |
614 |
|
} |
615 |
|
|
616 |
|
AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
617 |
< |
for (int i = 0; i < n; i++) |
617 |
> |
for (int i = 0; i < nt; i++) |
618 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
619 |
|
} |
620 |
+ |
|
621 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
622 |
+ |
|
623 |
+ |
int ns = snap_->atomData.skippedCharge.size(); |
624 |
+ |
vector<RealType> skch_tmp(ns, 0.0); |
625 |
+ |
|
626 |
+ |
AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
627 |
+ |
for (int i = 0; i < ns; i++) { |
628 |
+ |
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
629 |
+ |
skch_tmp[i] = 0.0; |
630 |
+ |
} |
631 |
+ |
|
632 |
+ |
AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
633 |
+ |
for (int i = 0; i < ns; i++) |
634 |
+ |
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
635 |
+ |
} |
636 |
|
|
637 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
638 |
|
|
639 |
< |
vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES, |
640 |
< |
vector<RealType> (nLocal_, 0.0)); |
639 |
> |
vector<potVec> pot_temp(nLocal_, |
640 |
> |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
641 |
> |
|
642 |
> |
// scatter/gather pot_row into the members of my column |
643 |
> |
|
644 |
> |
AtomCommPotRow->scatter(pot_row, pot_temp); |
645 |
> |
|
646 |
> |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
647 |
> |
pairwisePot += pot_temp[ii]; |
648 |
|
|
649 |
< |
for (int i = 0; i < N_INTERACTION_FAMILIES; i++) { |
650 |
< |
AtomCommRealRow->scatter(pot_row[i], pot_temp[i]); |
651 |
< |
for (int ii = 0; ii < pot_temp[i].size(); ii++ ) { |
652 |
< |
pot_local[i] += pot_temp[i][ii]; |
653 |
< |
} |
654 |
< |
} |
649 |
> |
fill(pot_temp.begin(), pot_temp.end(), |
650 |
> |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
651 |
> |
|
652 |
> |
AtomCommPotColumn->scatter(pot_col, pot_temp); |
653 |
> |
|
654 |
> |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
655 |
> |
pairwisePot += pot_temp[ii]; |
656 |
|
#endif |
657 |
+ |
|
658 |
|
} |
659 |
|
|
660 |
+ |
int ForceMatrixDecomposition::getNAtomsInRow() { |
661 |
+ |
#ifdef IS_MPI |
662 |
+ |
return nAtomsInRow_; |
663 |
+ |
#else |
664 |
+ |
return nLocal_; |
665 |
+ |
#endif |
666 |
+ |
} |
667 |
+ |
|
668 |
+ |
/** |
669 |
+ |
* returns the list of atoms belonging to this group. |
670 |
+ |
*/ |
671 |
+ |
vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
672 |
+ |
#ifdef IS_MPI |
673 |
+ |
return groupListRow_[cg1]; |
674 |
+ |
#else |
675 |
+ |
return groupList_[cg1]; |
676 |
+ |
#endif |
677 |
+ |
} |
678 |
+ |
|
679 |
+ |
vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
680 |
+ |
#ifdef IS_MPI |
681 |
+ |
return groupListCol_[cg2]; |
682 |
+ |
#else |
683 |
+ |
return groupList_[cg2]; |
684 |
+ |
#endif |
685 |
+ |
} |
686 |
|
|
687 |
|
Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ |
688 |
|
Vector3d d; |
724 |
|
snap_->wrapVector(d); |
725 |
|
return d; |
726 |
|
} |
727 |
+ |
|
728 |
+ |
RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
729 |
+ |
#ifdef IS_MPI |
730 |
+ |
return massFactorsRow[atom1]; |
731 |
+ |
#else |
732 |
+ |
return massFactors[atom1]; |
733 |
+ |
#endif |
734 |
+ |
} |
735 |
+ |
|
736 |
+ |
RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
737 |
+ |
#ifdef IS_MPI |
738 |
+ |
return massFactorsCol[atom2]; |
739 |
+ |
#else |
740 |
+ |
return massFactors[atom2]; |
741 |
+ |
#endif |
742 |
+ |
|
743 |
+ |
} |
744 |
|
|
745 |
|
Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ |
746 |
|
Vector3d d; |
755 |
|
return d; |
756 |
|
} |
757 |
|
|
758 |
+ |
vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
759 |
+ |
return excludesForAtom[atom1]; |
760 |
+ |
} |
761 |
+ |
|
762 |
+ |
/** |
763 |
+ |
* We need to exclude some overcounted interactions that result from |
764 |
+ |
* the parallel decomposition. |
765 |
+ |
*/ |
766 |
+ |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
767 |
+ |
int unique_id_1, unique_id_2; |
768 |
+ |
|
769 |
+ |
#ifdef IS_MPI |
770 |
+ |
// in MPI, we have to look up the unique IDs for each atom |
771 |
+ |
unique_id_1 = AtomRowToGlobal[atom1]; |
772 |
+ |
unique_id_2 = AtomColToGlobal[atom2]; |
773 |
+ |
|
774 |
+ |
// this situation should only arise in MPI simulations |
775 |
+ |
if (unique_id_1 == unique_id_2) return true; |
776 |
+ |
|
777 |
+ |
// this prevents us from doing the pair on multiple processors |
778 |
+ |
if (unique_id_1 < unique_id_2) { |
779 |
+ |
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
780 |
+ |
} else { |
781 |
+ |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
782 |
+ |
} |
783 |
+ |
#endif |
784 |
+ |
return false; |
785 |
+ |
} |
786 |
+ |
|
787 |
+ |
/** |
788 |
+ |
* We need to handle the interactions for atoms who are involved in |
789 |
+ |
* the same rigid body as well as some short range interactions |
790 |
+ |
* (bonds, bends, torsions) differently from other interactions. |
791 |
+ |
* We'll still visit the pairwise routines, but with a flag that |
792 |
+ |
* tells those routines to exclude the pair from direct long range |
793 |
+ |
* interactions. Some indirect interactions (notably reaction |
794 |
+ |
* field) must still be handled for these pairs. |
795 |
+ |
*/ |
796 |
+ |
bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
797 |
+ |
int unique_id_2; |
798 |
+ |
|
799 |
+ |
#ifdef IS_MPI |
800 |
+ |
// in MPI, we have to look up the unique IDs for the row atom. |
801 |
+ |
unique_id_2 = AtomColToGlobal[atom2]; |
802 |
+ |
#else |
803 |
+ |
// in the normal loop, the atom numbers are unique |
804 |
+ |
unique_id_2 = atom2; |
805 |
+ |
#endif |
806 |
+ |
|
807 |
+ |
for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
808 |
+ |
i != excludesForAtom[atom1].end(); ++i) { |
809 |
+ |
if ( (*i) == unique_id_2 ) return true; |
810 |
+ |
} |
811 |
+ |
|
812 |
+ |
return false; |
813 |
+ |
} |
814 |
+ |
|
815 |
+ |
|
816 |
|
void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ |
817 |
|
#ifdef IS_MPI |
818 |
|
atomRowData.force[atom1] += fg; |
830 |
|
} |
831 |
|
|
832 |
|
// filling interaction blocks with pointers |
833 |
< |
InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { |
834 |
< |
InteractionData idat; |
833 |
> |
void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
834 |
> |
int atom1, int atom2) { |
835 |
|
|
836 |
+ |
idat.excluded = excludeAtomPair(atom1, atom2); |
837 |
+ |
|
838 |
|
#ifdef IS_MPI |
839 |
+ |
|
840 |
+ |
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
841 |
+ |
ff_->getAtomType(identsCol[atom2]) ); |
842 |
+ |
|
843 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
844 |
|
idat.A1 = &(atomRowData.aMat[atom1]); |
845 |
|
idat.A2 = &(atomColData.aMat[atom2]); |
860 |
|
idat.rho2 = &(atomColData.density[atom2]); |
861 |
|
} |
862 |
|
|
863 |
+ |
if (storageLayout_ & DataStorage::dslFunctional) { |
864 |
+ |
idat.frho1 = &(atomRowData.functional[atom1]); |
865 |
+ |
idat.frho2 = &(atomColData.functional[atom2]); |
866 |
+ |
} |
867 |
+ |
|
868 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
869 |
|
idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); |
870 |
|
idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); |
871 |
|
} |
872 |
+ |
|
873 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
874 |
+ |
idat.particlePot1 = &(atomRowData.particlePot[atom1]); |
875 |
+ |
idat.particlePot2 = &(atomColData.particlePot[atom2]); |
876 |
+ |
} |
877 |
+ |
|
878 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
879 |
+ |
idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
880 |
+ |
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
881 |
+ |
} |
882 |
+ |
|
883 |
|
#else |
884 |
+ |
|
885 |
+ |
idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
886 |
+ |
ff_->getAtomType(idents[atom2]) ); |
887 |
+ |
|
888 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
889 |
|
idat.A1 = &(snap_->atomData.aMat[atom1]); |
890 |
|
idat.A2 = &(snap_->atomData.aMat[atom2]); |
900 |
|
idat.t2 = &(snap_->atomData.torque[atom2]); |
901 |
|
} |
902 |
|
|
903 |
< |
if (storageLayout_ & DataStorage::dslDensity) { |
903 |
> |
if (storageLayout_ & DataStorage::dslDensity) { |
904 |
|
idat.rho1 = &(snap_->atomData.density[atom1]); |
905 |
|
idat.rho2 = &(snap_->atomData.density[atom2]); |
906 |
|
} |
907 |
|
|
908 |
+ |
if (storageLayout_ & DataStorage::dslFunctional) { |
909 |
+ |
idat.frho1 = &(snap_->atomData.functional[atom1]); |
910 |
+ |
idat.frho2 = &(snap_->atomData.functional[atom2]); |
911 |
+ |
} |
912 |
+ |
|
913 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
914 |
|
idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); |
915 |
|
idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); |
916 |
|
} |
917 |
< |
#endif |
918 |
< |
return idat; |
917 |
> |
|
918 |
> |
if (storageLayout_ & DataStorage::dslParticlePot) { |
919 |
> |
idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); |
920 |
> |
idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
921 |
> |
} |
922 |
> |
|
923 |
> |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
924 |
> |
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
925 |
> |
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
926 |
> |
} |
927 |
> |
#endif |
928 |
|
} |
929 |
|
|
930 |
< |
InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ |
931 |
< |
|
378 |
< |
InteractionData idat; |
930 |
> |
|
931 |
> |
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
932 |
|
#ifdef IS_MPI |
933 |
< |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
934 |
< |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
935 |
< |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
936 |
< |
} |
937 |
< |
if (storageLayout_ & DataStorage::dslTorque) { |
385 |
< |
idat.t1 = &(atomRowData.torque[atom1]); |
386 |
< |
idat.t2 = &(atomColData.torque[atom2]); |
387 |
< |
} |
388 |
< |
if (storageLayout_ & DataStorage::dslForce) { |
389 |
< |
idat.t1 = &(atomRowData.force[atom1]); |
390 |
< |
idat.t2 = &(atomColData.force[atom2]); |
391 |
< |
} |
933 |
> |
pot_row[atom1] += 0.5 * *(idat.pot); |
934 |
> |
pot_col[atom2] += 0.5 * *(idat.pot); |
935 |
> |
|
936 |
> |
atomRowData.force[atom1] += *(idat.f1); |
937 |
> |
atomColData.force[atom2] -= *(idat.f1); |
938 |
|
#else |
939 |
< |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
940 |
< |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
941 |
< |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
942 |
< |
} |
397 |
< |
if (storageLayout_ & DataStorage::dslTorque) { |
398 |
< |
idat.t1 = &(snap_->atomData.torque[atom1]); |
399 |
< |
idat.t2 = &(snap_->atomData.torque[atom2]); |
400 |
< |
} |
401 |
< |
if (storageLayout_ & DataStorage::dslForce) { |
402 |
< |
idat.t1 = &(snap_->atomData.force[atom1]); |
403 |
< |
idat.t2 = &(snap_->atomData.force[atom2]); |
404 |
< |
} |
939 |
> |
pairwisePot += *(idat.pot); |
940 |
> |
|
941 |
> |
snap_->atomData.force[atom1] += *(idat.f1); |
942 |
> |
snap_->atomData.force[atom2] -= *(idat.f1); |
943 |
|
#endif |
944 |
|
|
945 |
|
} |
946 |
|
|
409 |
– |
|
410 |
– |
|
411 |
– |
|
947 |
|
/* |
948 |
|
* buildNeighborList |
949 |
|
* |
953 |
|
vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
954 |
|
|
955 |
|
vector<pair<int, int> > neighborList; |
956 |
+ |
groupCutoffs cuts; |
957 |
+ |
bool doAllPairs = false; |
958 |
+ |
|
959 |
|
#ifdef IS_MPI |
960 |
|
cellListRow_.clear(); |
961 |
|
cellListCol_.clear(); |
963 |
|
cellList_.clear(); |
964 |
|
#endif |
965 |
|
|
966 |
< |
// dangerous to not do error checking. |
429 |
< |
RealType rCut_; |
430 |
< |
|
431 |
< |
RealType rList_ = (rCut_ + skinThickness_); |
966 |
> |
RealType rList_ = (largestRcut_ + skinThickness_); |
967 |
|
RealType rl2 = rList_ * rList_; |
968 |
|
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
969 |
|
Mat3x3d Hmat = snap_->getHmat(); |
975 |
|
nCells_.y() = (int) ( Hy.length() )/ rList_; |
976 |
|
nCells_.z() = (int) ( Hz.length() )/ rList_; |
977 |
|
|
978 |
+ |
// handle small boxes where the cell offsets can end up repeating cells |
979 |
+ |
|
980 |
+ |
if (nCells_.x() < 3) doAllPairs = true; |
981 |
+ |
if (nCells_.y() < 3) doAllPairs = true; |
982 |
+ |
if (nCells_.z() < 3) doAllPairs = true; |
983 |
+ |
|
984 |
|
Mat3x3d invHmat = snap_->getInvHmat(); |
985 |
|
Vector3d rs, scaled, dr; |
986 |
|
Vector3i whichCell; |
987 |
|
int cellIndex; |
988 |
+ |
int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
989 |
|
|
990 |
|
#ifdef IS_MPI |
991 |
< |
for (int i = 0; i < nGroupsInRow_; i++) { |
992 |
< |
rs = cgRowData.position[i]; |
993 |
< |
// scaled positions relative to the box vectors |
994 |
< |
scaled = invHmat * rs; |
995 |
< |
// wrap the vector back into the unit box by subtracting integer box |
454 |
< |
// numbers |
455 |
< |
for (int j = 0; j < 3; j++) |
456 |
< |
scaled[j] -= roundMe(scaled[j]); |
457 |
< |
|
458 |
< |
// find xyz-indices of cell that cutoffGroup is in. |
459 |
< |
whichCell.x() = nCells_.x() * scaled.x(); |
460 |
< |
whichCell.y() = nCells_.y() * scaled.y(); |
461 |
< |
whichCell.z() = nCells_.z() * scaled.z(); |
991 |
> |
cellListRow_.resize(nCtot); |
992 |
> |
cellListCol_.resize(nCtot); |
993 |
> |
#else |
994 |
> |
cellList_.resize(nCtot); |
995 |
> |
#endif |
996 |
|
|
997 |
< |
// find single index of this cell: |
998 |
< |
cellIndex = Vlinear(whichCell, nCells_); |
465 |
< |
// add this cutoff group to the list of groups in this cell; |
466 |
< |
cellListRow_[cellIndex].push_back(i); |
467 |
< |
} |
997 |
> |
if (!doAllPairs) { |
998 |
> |
#ifdef IS_MPI |
999 |
|
|
1000 |
< |
for (int i = 0; i < nGroupsInCol_; i++) { |
1001 |
< |
rs = cgColData.position[i]; |
1002 |
< |
// scaled positions relative to the box vectors |
1003 |
< |
scaled = invHmat * rs; |
1004 |
< |
// wrap the vector back into the unit box by subtracting integer box |
1005 |
< |
// numbers |
1006 |
< |
for (int j = 0; j < 3; j++) |
1007 |
< |
scaled[j] -= roundMe(scaled[j]); |
1008 |
< |
|
1009 |
< |
// find xyz-indices of cell that cutoffGroup is in. |
1010 |
< |
whichCell.x() = nCells_.x() * scaled.x(); |
1011 |
< |
whichCell.y() = nCells_.y() * scaled.y(); |
1012 |
< |
whichCell.z() = nCells_.z() * scaled.z(); |
1013 |
< |
|
1014 |
< |
// find single index of this cell: |
1015 |
< |
cellIndex = Vlinear(whichCell, nCells_); |
1016 |
< |
// add this cutoff group to the list of groups in this cell; |
1017 |
< |
cellListCol_[cellIndex].push_back(i); |
1018 |
< |
} |
1000 |
> |
for (int i = 0; i < nGroupsInRow_; i++) { |
1001 |
> |
rs = cgRowData.position[i]; |
1002 |
> |
|
1003 |
> |
// scaled positions relative to the box vectors |
1004 |
> |
scaled = invHmat * rs; |
1005 |
> |
|
1006 |
> |
// wrap the vector back into the unit box by subtracting integer box |
1007 |
> |
// numbers |
1008 |
> |
for (int j = 0; j < 3; j++) { |
1009 |
> |
scaled[j] -= roundMe(scaled[j]); |
1010 |
> |
scaled[j] += 0.5; |
1011 |
> |
} |
1012 |
> |
|
1013 |
> |
// find xyz-indices of cell that cutoffGroup is in. |
1014 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
1015 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
1016 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
1017 |
> |
|
1018 |
> |
// find single index of this cell: |
1019 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1020 |
> |
|
1021 |
> |
// add this cutoff group to the list of groups in this cell; |
1022 |
> |
cellListRow_[cellIndex].push_back(i); |
1023 |
> |
} |
1024 |
> |
|
1025 |
> |
for (int i = 0; i < nGroupsInCol_; i++) { |
1026 |
> |
rs = cgColData.position[i]; |
1027 |
> |
|
1028 |
> |
// scaled positions relative to the box vectors |
1029 |
> |
scaled = invHmat * rs; |
1030 |
> |
|
1031 |
> |
// wrap the vector back into the unit box by subtracting integer box |
1032 |
> |
// numbers |
1033 |
> |
for (int j = 0; j < 3; j++) { |
1034 |
> |
scaled[j] -= roundMe(scaled[j]); |
1035 |
> |
scaled[j] += 0.5; |
1036 |
> |
} |
1037 |
> |
|
1038 |
> |
// find xyz-indices of cell that cutoffGroup is in. |
1039 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
1040 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
1041 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
1042 |
> |
|
1043 |
> |
// find single index of this cell: |
1044 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1045 |
> |
|
1046 |
> |
// add this cutoff group to the list of groups in this cell; |
1047 |
> |
cellListCol_[cellIndex].push_back(i); |
1048 |
> |
} |
1049 |
|
#else |
1050 |
< |
for (int i = 0; i < nGroups_; i++) { |
1051 |
< |
rs = snap_->cgData.position[i]; |
1052 |
< |
// scaled positions relative to the box vectors |
1053 |
< |
scaled = invHmat * rs; |
1054 |
< |
// wrap the vector back into the unit box by subtracting integer box |
1055 |
< |
// numbers |
1056 |
< |
for (int j = 0; j < 3; j++) |
1057 |
< |
scaled[j] -= roundMe(scaled[j]); |
1058 |
< |
|
1059 |
< |
// find xyz-indices of cell that cutoffGroup is in. |
1060 |
< |
whichCell.x() = nCells_.x() * scaled.x(); |
1061 |
< |
whichCell.y() = nCells_.y() * scaled.y(); |
1062 |
< |
whichCell.z() = nCells_.z() * scaled.z(); |
1063 |
< |
|
1064 |
< |
// find single index of this cell: |
1065 |
< |
cellIndex = Vlinear(whichCell, nCells_); |
1066 |
< |
// add this cutoff group to the list of groups in this cell; |
1067 |
< |
cellList_[cellIndex].push_back(i); |
1068 |
< |
} |
1050 |
> |
for (int i = 0; i < nGroups_; i++) { |
1051 |
> |
rs = snap_->cgData.position[i]; |
1052 |
> |
|
1053 |
> |
// scaled positions relative to the box vectors |
1054 |
> |
scaled = invHmat * rs; |
1055 |
> |
|
1056 |
> |
// wrap the vector back into the unit box by subtracting integer box |
1057 |
> |
// numbers |
1058 |
> |
for (int j = 0; j < 3; j++) { |
1059 |
> |
scaled[j] -= roundMe(scaled[j]); |
1060 |
> |
scaled[j] += 0.5; |
1061 |
> |
} |
1062 |
> |
|
1063 |
> |
// find xyz-indices of cell that cutoffGroup is in. |
1064 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
1065 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
1066 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
1067 |
> |
|
1068 |
> |
// find single index of this cell: |
1069 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1070 |
> |
|
1071 |
> |
// add this cutoff group to the list of groups in this cell; |
1072 |
> |
cellList_[cellIndex].push_back(i); |
1073 |
> |
} |
1074 |
|
#endif |
1075 |
|
|
1076 |
< |
|
1077 |
< |
|
1078 |
< |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1079 |
< |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1080 |
< |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
515 |
< |
Vector3i m1v(m1x, m1y, m1z); |
516 |
< |
int m1 = Vlinear(m1v, nCells_); |
517 |
< |
|
518 |
< |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
519 |
< |
os != cellOffsets_.end(); ++os) { |
1076 |
> |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1077 |
> |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1078 |
> |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1079 |
> |
Vector3i m1v(m1x, m1y, m1z); |
1080 |
> |
int m1 = Vlinear(m1v, nCells_); |
1081 |
|
|
1082 |
< |
Vector3i m2v = m1v + (*os); |
1083 |
< |
|
1084 |
< |
if (m2v.x() >= nCells_.x()) { |
1085 |
< |
m2v.x() = 0; |
1086 |
< |
} else if (m2v.x() < 0) { |
1087 |
< |
m2v.x() = nCells_.x() - 1; |
1088 |
< |
} |
1089 |
< |
|
1090 |
< |
if (m2v.y() >= nCells_.y()) { |
1091 |
< |
m2v.y() = 0; |
1092 |
< |
} else if (m2v.y() < 0) { |
1093 |
< |
m2v.y() = nCells_.y() - 1; |
1094 |
< |
} |
1095 |
< |
|
1096 |
< |
if (m2v.z() >= nCells_.z()) { |
1097 |
< |
m2v.z() = 0; |
1098 |
< |
} else if (m2v.z() < 0) { |
1099 |
< |
m2v.z() = nCells_.z() - 1; |
1100 |
< |
} |
1101 |
< |
|
1102 |
< |
int m2 = Vlinear (m2v, nCells_); |
1103 |
< |
|
1082 |
> |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1083 |
> |
os != cellOffsets_.end(); ++os) { |
1084 |
> |
|
1085 |
> |
Vector3i m2v = m1v + (*os); |
1086 |
> |
|
1087 |
> |
if (m2v.x() >= nCells_.x()) { |
1088 |
> |
m2v.x() = 0; |
1089 |
> |
} else if (m2v.x() < 0) { |
1090 |
> |
m2v.x() = nCells_.x() - 1; |
1091 |
> |
} |
1092 |
> |
|
1093 |
> |
if (m2v.y() >= nCells_.y()) { |
1094 |
> |
m2v.y() = 0; |
1095 |
> |
} else if (m2v.y() < 0) { |
1096 |
> |
m2v.y() = nCells_.y() - 1; |
1097 |
> |
} |
1098 |
> |
|
1099 |
> |
if (m2v.z() >= nCells_.z()) { |
1100 |
> |
m2v.z() = 0; |
1101 |
> |
} else if (m2v.z() < 0) { |
1102 |
> |
m2v.z() = nCells_.z() - 1; |
1103 |
> |
} |
1104 |
> |
|
1105 |
> |
int m2 = Vlinear (m2v, nCells_); |
1106 |
> |
|
1107 |
|
#ifdef IS_MPI |
1108 |
< |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1109 |
< |
j1 != cellListRow_[m1].end(); ++j1) { |
1110 |
< |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1111 |
< |
j2 != cellListCol_[m2].end(); ++j2) { |
1112 |
< |
|
1113 |
< |
// Always do this if we're in different cells or if |
1114 |
< |
// we're in the same cell and the global index of the |
1115 |
< |
// j2 cutoff group is less than the j1 cutoff group |
1116 |
< |
|
1117 |
< |
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1118 |
< |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1119 |
< |
snap_->wrapVector(dr); |
1120 |
< |
if (dr.lengthSquare() < rl2) { |
1121 |
< |
neighborList.push_back(make_pair((*j1), (*j2))); |
1108 |
> |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1109 |
> |
j1 != cellListRow_[m1].end(); ++j1) { |
1110 |
> |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1111 |
> |
j2 != cellListCol_[m2].end(); ++j2) { |
1112 |
> |
|
1113 |
> |
// Always do this if we're in different cells or if |
1114 |
> |
// we're in the same cell and the global index of the |
1115 |
> |
// j2 cutoff group is less than the j1 cutoff group |
1116 |
> |
|
1117 |
> |
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1118 |
> |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1119 |
> |
snap_->wrapVector(dr); |
1120 |
> |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1121 |
> |
if (dr.lengthSquare() < cuts.third) { |
1122 |
> |
neighborList.push_back(make_pair((*j1), (*j2))); |
1123 |
> |
} |
1124 |
|
} |
1125 |
|
} |
1126 |
|
} |
561 |
– |
} |
1127 |
|
#else |
1128 |
< |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1129 |
< |
j1 != cellList_[m1].end(); ++j1) { |
1130 |
< |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1131 |
< |
j2 != cellList_[m2].end(); ++j2) { |
1132 |
< |
|
1133 |
< |
// Always do this if we're in different cells or if |
1134 |
< |
// we're in the same cell and the global index of the |
1135 |
< |
// j2 cutoff group is less than the j1 cutoff group |
1136 |
< |
|
1137 |
< |
if (m2 != m1 || (*j2) < (*j1)) { |
1138 |
< |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1139 |
< |
snap_->wrapVector(dr); |
1140 |
< |
if (dr.lengthSquare() < rl2) { |
1141 |
< |
neighborList.push_back(make_pair((*j1), (*j2))); |
1128 |
> |
|
1129 |
> |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1130 |
> |
j1 != cellList_[m1].end(); ++j1) { |
1131 |
> |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1132 |
> |
j2 != cellList_[m2].end(); ++j2) { |
1133 |
> |
|
1134 |
> |
// Always do this if we're in different cells or if |
1135 |
> |
// we're in the same cell and the global index of the |
1136 |
> |
// j2 cutoff group is less than the j1 cutoff group |
1137 |
> |
|
1138 |
> |
if (m2 != m1 || (*j2) < (*j1)) { |
1139 |
> |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1140 |
> |
snap_->wrapVector(dr); |
1141 |
> |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1142 |
> |
if (dr.lengthSquare() < cuts.third) { |
1143 |
> |
neighborList.push_back(make_pair((*j1), (*j2))); |
1144 |
> |
} |
1145 |
|
} |
1146 |
|
} |
1147 |
|
} |
580 |
– |
} |
1148 |
|
#endif |
1149 |
+ |
} |
1150 |
|
} |
1151 |
|
} |
1152 |
|
} |
1153 |
+ |
} else { |
1154 |
+ |
// branch to do all cutoff group pairs |
1155 |
+ |
#ifdef IS_MPI |
1156 |
+ |
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1157 |
+ |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1158 |
+ |
dr = cgColData.position[j2] - cgRowData.position[j1]; |
1159 |
+ |
snap_->wrapVector(dr); |
1160 |
+ |
cuts = getGroupCutoffs( j1, j2 ); |
1161 |
+ |
if (dr.lengthSquare() < cuts.third) { |
1162 |
+ |
neighborList.push_back(make_pair(j1, j2)); |
1163 |
+ |
} |
1164 |
+ |
} |
1165 |
+ |
} |
1166 |
+ |
#else |
1167 |
+ |
for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1168 |
+ |
for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1169 |
+ |
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1170 |
+ |
snap_->wrapVector(dr); |
1171 |
+ |
cuts = getGroupCutoffs( j1, j2 ); |
1172 |
+ |
if (dr.lengthSquare() < cuts.third) { |
1173 |
+ |
neighborList.push_back(make_pair(j1, j2)); |
1174 |
+ |
} |
1175 |
+ |
} |
1176 |
+ |
} |
1177 |
+ |
#endif |
1178 |
|
} |
1179 |
< |
|
1179 |
> |
|
1180 |
|
// save the local cutoff group positions for the check that is |
1181 |
|
// done on each loop: |
1182 |
|
saved_CG_positions_.clear(); |
1183 |
|
for (int i = 0; i < nGroups_; i++) |
1184 |
|
saved_CG_positions_.push_back(snap_->cgData.position[i]); |
1185 |
< |
|
1185 |
> |
|
1186 |
|
return neighborList; |
1187 |
|
} |
1188 |
|
} //end namespace OpenMD |