47 |
|
using namespace std; |
48 |
|
namespace OpenMD { |
49 |
|
|
50 |
+ |
ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
51 |
+ |
|
52 |
+ |
// In a parallel computation, row and colum scans must visit all |
53 |
+ |
// surrounding cells (not just the 14 upper triangular blocks that |
54 |
+ |
// are used when the processor can see all pairs) |
55 |
+ |
#ifdef IS_MPI |
56 |
+ |
cellOffsets_.clear(); |
57 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
58 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
59 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
60 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
61 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
62 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
63 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
64 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
65 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
66 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
67 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
68 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
69 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
70 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
71 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
72 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
73 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
74 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
75 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
76 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
77 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
78 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
79 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
80 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
81 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
82 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
83 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
84 |
+ |
#endif |
85 |
+ |
} |
86 |
+ |
|
87 |
+ |
|
88 |
|
/** |
89 |
|
* distributeInitialData is essentially a copy of the older fortran |
90 |
|
* SimulationSetup |
91 |
|
*/ |
54 |
– |
|
92 |
|
void ForceMatrixDecomposition::distributeInitialData() { |
93 |
|
snap_ = sman_->getCurrentSnapshot(); |
94 |
|
storageLayout_ = sman_->getStorageLayout(); |
95 |
|
ff_ = info_->getForceField(); |
96 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
97 |
< |
|
97 |
> |
|
98 |
|
nGroups_ = info_->getNLocalCutoffGroups(); |
62 |
– |
cerr << "in dId, nGroups = " << nGroups_ << "\n"; |
99 |
|
// gather the information for atomtype IDs (atids): |
100 |
< |
identsLocal = info_->getIdentArray(); |
100 |
> |
idents = info_->getIdentArray(); |
101 |
|
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
102 |
|
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
103 |
|
vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
104 |
+ |
|
105 |
|
massFactors = info_->getMassFactors(); |
69 |
– |
PairList excludes = info_->getExcludedInteractions(); |
70 |
– |
PairList oneTwo = info_->getOneTwoInteractions(); |
71 |
– |
PairList oneThree = info_->getOneThreeInteractions(); |
72 |
– |
PairList oneFour = info_->getOneFourInteractions(); |
106 |
|
|
107 |
+ |
PairList* excludes = info_->getExcludedInteractions(); |
108 |
+ |
PairList* oneTwo = info_->getOneTwoInteractions(); |
109 |
+ |
PairList* oneThree = info_->getOneThreeInteractions(); |
110 |
+ |
PairList* oneFour = info_->getOneFourInteractions(); |
111 |
+ |
|
112 |
|
#ifdef IS_MPI |
113 |
|
|
114 |
< |
AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
115 |
< |
AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
78 |
< |
AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
79 |
< |
AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
80 |
< |
AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
114 |
> |
MPI::Intracomm row = rowComm.getComm(); |
115 |
> |
MPI::Intracomm col = colComm.getComm(); |
116 |
|
|
117 |
< |
AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
118 |
< |
AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
119 |
< |
AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
120 |
< |
AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
121 |
< |
AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
117 |
> |
AtomPlanIntRow = new Plan<int>(row, nLocal_); |
118 |
> |
AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
119 |
> |
AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
120 |
> |
AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
121 |
> |
AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
122 |
|
|
123 |
< |
cgCommIntRow = new Communicator<Row,int>(nGroups_); |
124 |
< |
cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
125 |
< |
cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
126 |
< |
cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
123 |
> |
AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
124 |
> |
AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
125 |
> |
AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
126 |
> |
AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
127 |
> |
AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
128 |
|
|
129 |
< |
nAtomsInRow_ = AtomCommIntRow->getSize(); |
130 |
< |
nAtomsInCol_ = AtomCommIntColumn->getSize(); |
131 |
< |
nGroupsInRow_ = cgCommIntRow->getSize(); |
132 |
< |
nGroupsInCol_ = cgCommIntColumn->getSize(); |
129 |
> |
cgPlanIntRow = new Plan<int>(row, nGroups_); |
130 |
> |
cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
131 |
> |
cgPlanIntColumn = new Plan<int>(col, nGroups_); |
132 |
> |
cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
133 |
|
|
134 |
+ |
nAtomsInRow_ = AtomPlanIntRow->getSize(); |
135 |
+ |
nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
136 |
+ |
nGroupsInRow_ = cgPlanIntRow->getSize(); |
137 |
+ |
nGroupsInCol_ = cgPlanIntColumn->getSize(); |
138 |
+ |
|
139 |
|
// Modify the data storage objects with the correct layouts and sizes: |
140 |
|
atomRowData.resize(nAtomsInRow_); |
141 |
|
atomRowData.setStorageLayout(storageLayout_); |
149 |
|
identsRow.resize(nAtomsInRow_); |
150 |
|
identsCol.resize(nAtomsInCol_); |
151 |
|
|
152 |
< |
AtomCommIntRow->gather(identsLocal, identsRow); |
153 |
< |
AtomCommIntColumn->gather(identsLocal, identsCol); |
152 |
> |
AtomPlanIntRow->gather(idents, identsRow); |
153 |
> |
AtomPlanIntColumn->gather(idents, identsCol); |
154 |
|
|
155 |
< |
AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
156 |
< |
AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
157 |
< |
|
117 |
< |
cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
118 |
< |
cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
155 |
> |
// allocate memory for the parallel objects |
156 |
> |
atypesRow.resize(nAtomsInRow_); |
157 |
> |
atypesCol.resize(nAtomsInCol_); |
158 |
|
|
159 |
< |
AtomCommRealRow->gather(massFactors, massFactorsRow); |
160 |
< |
AtomCommRealColumn->gather(massFactors, massFactorsCol); |
159 |
> |
for (int i = 0; i < nAtomsInRow_; i++) |
160 |
> |
atypesRow[i] = ff_->getAtomType(identsRow[i]); |
161 |
> |
for (int i = 0; i < nAtomsInCol_; i++) |
162 |
> |
atypesCol[i] = ff_->getAtomType(identsCol[i]); |
163 |
> |
|
164 |
> |
pot_row.resize(nAtomsInRow_); |
165 |
> |
pot_col.resize(nAtomsInCol_); |
166 |
|
|
167 |
+ |
AtomRowToGlobal.resize(nAtomsInRow_); |
168 |
+ |
AtomColToGlobal.resize(nAtomsInCol_); |
169 |
+ |
AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
170 |
+ |
AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
171 |
+ |
|
172 |
+ |
cgRowToGlobal.resize(nGroupsInRow_); |
173 |
+ |
cgColToGlobal.resize(nGroupsInCol_); |
174 |
+ |
cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
175 |
+ |
cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
176 |
+ |
|
177 |
+ |
massFactorsRow.resize(nAtomsInRow_); |
178 |
+ |
massFactorsCol.resize(nAtomsInCol_); |
179 |
+ |
AtomPlanRealRow->gather(massFactors, massFactorsRow); |
180 |
+ |
AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
181 |
+ |
|
182 |
|
groupListRow_.clear(); |
183 |
|
groupListRow_.resize(nGroupsInRow_); |
184 |
|
for (int i = 0; i < nGroupsInRow_; i++) { |
201 |
|
} |
202 |
|
} |
203 |
|
|
204 |
< |
skipsForAtom.clear(); |
205 |
< |
skipsForAtom.resize(nAtomsInRow_); |
204 |
> |
excludesForAtom.clear(); |
205 |
> |
excludesForAtom.resize(nAtomsInRow_); |
206 |
|
toposForAtom.clear(); |
207 |
|
toposForAtom.resize(nAtomsInRow_); |
208 |
|
topoDist.clear(); |
213 |
|
for (int j = 0; j < nAtomsInCol_; j++) { |
214 |
|
int jglob = AtomColToGlobal[j]; |
215 |
|
|
216 |
< |
if (excludes.hasPair(iglob, jglob)) |
217 |
< |
skipsForAtom[i].push_back(j); |
216 |
> |
if (excludes->hasPair(iglob, jglob)) |
217 |
> |
excludesForAtom[i].push_back(j); |
218 |
|
|
219 |
< |
if (oneTwo.hasPair(iglob, jglob)) { |
219 |
> |
if (oneTwo->hasPair(iglob, jglob)) { |
220 |
|
toposForAtom[i].push_back(j); |
221 |
|
topoDist[i].push_back(1); |
222 |
|
} else { |
223 |
< |
if (oneThree.hasPair(iglob, jglob)) { |
223 |
> |
if (oneThree->hasPair(iglob, jglob)) { |
224 |
|
toposForAtom[i].push_back(j); |
225 |
|
topoDist[i].push_back(2); |
226 |
|
} else { |
227 |
< |
if (oneFour.hasPair(iglob, jglob)) { |
227 |
> |
if (oneFour->hasPair(iglob, jglob)) { |
228 |
|
toposForAtom[i].push_back(j); |
229 |
|
topoDist[i].push_back(3); |
230 |
|
} |
233 |
|
} |
234 |
|
} |
235 |
|
|
236 |
< |
#endif |
237 |
< |
|
238 |
< |
groupList_.clear(); |
180 |
< |
groupList_.resize(nGroups_); |
181 |
< |
for (int i = 0; i < nGroups_; i++) { |
182 |
< |
int gid = cgLocalToGlobal[i]; |
183 |
< |
for (int j = 0; j < nLocal_; j++) { |
184 |
< |
int aid = AtomLocalToGlobal[j]; |
185 |
< |
if (globalGroupMembership[aid] == gid) { |
186 |
< |
groupList_[i].push_back(j); |
187 |
< |
} |
188 |
< |
} |
189 |
< |
} |
190 |
< |
|
191 |
< |
skipsForAtom.clear(); |
192 |
< |
skipsForAtom.resize(nLocal_); |
236 |
> |
#else |
237 |
> |
excludesForAtom.clear(); |
238 |
> |
excludesForAtom.resize(nLocal_); |
239 |
|
toposForAtom.clear(); |
240 |
|
toposForAtom.resize(nLocal_); |
241 |
|
topoDist.clear(); |
247 |
|
for (int j = 0; j < nLocal_; j++) { |
248 |
|
int jglob = AtomLocalToGlobal[j]; |
249 |
|
|
250 |
< |
if (excludes.hasPair(iglob, jglob)) |
251 |
< |
skipsForAtom[i].push_back(j); |
250 |
> |
if (excludes->hasPair(iglob, jglob)) |
251 |
> |
excludesForAtom[i].push_back(j); |
252 |
|
|
253 |
< |
if (oneTwo.hasPair(iglob, jglob)) { |
253 |
> |
if (oneTwo->hasPair(iglob, jglob)) { |
254 |
|
toposForAtom[i].push_back(j); |
255 |
|
topoDist[i].push_back(1); |
256 |
|
} else { |
257 |
< |
if (oneThree.hasPair(iglob, jglob)) { |
257 |
> |
if (oneThree->hasPair(iglob, jglob)) { |
258 |
|
toposForAtom[i].push_back(j); |
259 |
|
topoDist[i].push_back(2); |
260 |
|
} else { |
261 |
< |
if (oneFour.hasPair(iglob, jglob)) { |
261 |
> |
if (oneFour->hasPair(iglob, jglob)) { |
262 |
|
toposForAtom[i].push_back(j); |
263 |
|
topoDist[i].push_back(3); |
264 |
|
} |
266 |
|
} |
267 |
|
} |
268 |
|
} |
269 |
< |
|
269 |
> |
#endif |
270 |
> |
|
271 |
> |
// allocate memory for the parallel objects |
272 |
> |
atypesLocal.resize(nLocal_); |
273 |
> |
|
274 |
> |
for (int i = 0; i < nLocal_; i++) |
275 |
> |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
276 |
> |
|
277 |
> |
groupList_.clear(); |
278 |
> |
groupList_.resize(nGroups_); |
279 |
> |
for (int i = 0; i < nGroups_; i++) { |
280 |
> |
int gid = cgLocalToGlobal[i]; |
281 |
> |
for (int j = 0; j < nLocal_; j++) { |
282 |
> |
int aid = AtomLocalToGlobal[j]; |
283 |
> |
if (globalGroupMembership[aid] == gid) { |
284 |
> |
groupList_[i].push_back(j); |
285 |
> |
} |
286 |
> |
} |
287 |
> |
} |
288 |
> |
|
289 |
> |
|
290 |
|
createGtypeCutoffMap(); |
291 |
+ |
|
292 |
|
} |
293 |
|
|
294 |
|
void ForceMatrixDecomposition::createGtypeCutoffMap() { |
295 |
< |
|
295 |
> |
|
296 |
|
RealType tol = 1e-6; |
297 |
+ |
largestRcut_ = 0.0; |
298 |
|
RealType rc; |
299 |
|
int atid; |
300 |
|
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
301 |
< |
vector<RealType> atypeCutoff; |
302 |
< |
atypeCutoff.resize( atypes.size() ); |
303 |
< |
|
301 |
> |
|
302 |
> |
map<int, RealType> atypeCutoff; |
303 |
> |
|
304 |
|
for (set<AtomType*>::iterator at = atypes.begin(); |
305 |
|
at != atypes.end(); ++at){ |
238 |
– |
rc = interactionMan_->getSuggestedCutoffRadius(*at); |
306 |
|
atid = (*at)->getIdent(); |
307 |
< |
atypeCutoff[atid] = rc; |
307 |
> |
if (userChoseCutoff_) |
308 |
> |
atypeCutoff[atid] = userCutoff_; |
309 |
> |
else |
310 |
> |
atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
311 |
|
} |
312 |
< |
|
312 |
> |
|
313 |
|
vector<RealType> gTypeCutoffs; |
244 |
– |
|
314 |
|
// first we do a single loop over the cutoff groups to find the |
315 |
|
// largest cutoff for any atypes present in this group. |
316 |
|
#ifdef IS_MPI |
368 |
|
|
369 |
|
vector<RealType> groupCutoff(nGroups_, 0.0); |
370 |
|
groupToGtype.resize(nGroups_); |
302 |
– |
|
303 |
– |
cerr << "nGroups = " << nGroups_ << "\n"; |
371 |
|
for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
305 |
– |
|
372 |
|
groupCutoff[cg1] = 0.0; |
373 |
|
vector<int> atomList = getAtomsInGroupRow(cg1); |
308 |
– |
|
374 |
|
for (vector<int>::iterator ia = atomList.begin(); |
375 |
|
ia != atomList.end(); ++ia) { |
376 |
|
int atom1 = (*ia); |
377 |
< |
atid = identsLocal[atom1]; |
378 |
< |
if (atypeCutoff[atid] > groupCutoff[cg1]) { |
377 |
> |
atid = idents[atom1]; |
378 |
> |
if (atypeCutoff[atid] > groupCutoff[cg1]) |
379 |
|
groupCutoff[cg1] = atypeCutoff[atid]; |
315 |
– |
} |
380 |
|
} |
381 |
< |
|
381 |
> |
|
382 |
|
bool gTypeFound = false; |
383 |
|
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
384 |
|
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
386 |
|
gTypeFound = true; |
387 |
|
} |
388 |
|
} |
389 |
< |
if (!gTypeFound) { |
389 |
> |
if (!gTypeFound) { |
390 |
|
gTypeCutoffs.push_back( groupCutoff[cg1] ); |
391 |
|
groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
392 |
|
} |
393 |
|
} |
394 |
|
#endif |
395 |
|
|
332 |
– |
cerr << "gTypeCutoffs.size() = " << gTypeCutoffs.size() << "\n"; |
396 |
|
// Now we find the maximum group cutoff value present in the simulation |
397 |
|
|
398 |
< |
RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); |
398 |
> |
RealType groupMax = *max_element(gTypeCutoffs.begin(), |
399 |
> |
gTypeCutoffs.end()); |
400 |
|
|
401 |
|
#ifdef IS_MPI |
402 |
< |
MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); |
402 |
> |
MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, |
403 |
> |
MPI::MAX); |
404 |
|
#endif |
405 |
|
|
406 |
|
RealType tradRcut = groupMax; |
430 |
|
|
431 |
|
pair<int,int> key = make_pair(i,j); |
432 |
|
gTypeCutoffMap[key].first = thisRcut; |
368 |
– |
|
433 |
|
if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
370 |
– |
|
434 |
|
gTypeCutoffMap[key].second = thisRcut*thisRcut; |
372 |
– |
|
435 |
|
gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
374 |
– |
|
436 |
|
// sanity check |
437 |
|
|
438 |
|
if (userChoseCutoff_) { |
439 |
|
if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
440 |
|
sprintf(painCave.errMsg, |
441 |
|
"ForceMatrixDecomposition::createGtypeCutoffMap " |
442 |
< |
"user-specified rCut does not match computed group Cutoff\n"); |
442 |
> |
"user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
443 |
|
painCave.severity = OPENMD_ERROR; |
444 |
|
painCave.isFatal = 1; |
445 |
|
simError(); |
471 |
|
} |
472 |
|
|
473 |
|
void ForceMatrixDecomposition::zeroWorkArrays() { |
474 |
+ |
pairwisePot = 0.0; |
475 |
+ |
embeddingPot = 0.0; |
476 |
|
|
414 |
– |
for (int j = 0; j < N_INTERACTION_FAMILIES; j++) { |
415 |
– |
longRangePot_[j] = 0.0; |
416 |
– |
} |
417 |
– |
|
477 |
|
#ifdef IS_MPI |
478 |
|
if (storageLayout_ & DataStorage::dslForce) { |
479 |
|
fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); |
489 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
490 |
|
|
491 |
|
fill(pot_col.begin(), pot_col.end(), |
492 |
< |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
434 |
< |
|
435 |
< |
pot_local = Vector<RealType, N_INTERACTION_FAMILIES>(0.0); |
492 |
> |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
493 |
|
|
494 |
|
if (storageLayout_ & DataStorage::dslParticlePot) { |
495 |
< |
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); |
496 |
< |
fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); |
495 |
> |
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
496 |
> |
0.0); |
497 |
> |
fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), |
498 |
> |
0.0); |
499 |
|
} |
500 |
|
|
501 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
504 |
|
} |
505 |
|
|
506 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
507 |
< |
fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); |
508 |
< |
fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); |
507 |
> |
fill(atomRowData.functional.begin(), atomRowData.functional.end(), |
508 |
> |
0.0); |
509 |
> |
fill(atomColData.functional.begin(), atomColData.functional.end(), |
510 |
> |
0.0); |
511 |
|
} |
512 |
|
|
513 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
517 |
|
atomColData.functionalDerivative.end(), 0.0); |
518 |
|
} |
519 |
|
|
520 |
< |
#else |
521 |
< |
|
520 |
> |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
521 |
> |
fill(atomRowData.skippedCharge.begin(), |
522 |
> |
atomRowData.skippedCharge.end(), 0.0); |
523 |
> |
fill(atomColData.skippedCharge.begin(), |
524 |
> |
atomColData.skippedCharge.end(), 0.0); |
525 |
> |
} |
526 |
> |
|
527 |
> |
#endif |
528 |
> |
// even in parallel, we need to zero out the local arrays: |
529 |
> |
|
530 |
|
if (storageLayout_ & DataStorage::dslParticlePot) { |
531 |
|
fill(snap_->atomData.particlePot.begin(), |
532 |
|
snap_->atomData.particlePot.end(), 0.0); |
544 |
|
fill(snap_->atomData.functionalDerivative.begin(), |
545 |
|
snap_->atomData.functionalDerivative.end(), 0.0); |
546 |
|
} |
547 |
< |
#endif |
547 |
> |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
548 |
> |
fill(snap_->atomData.skippedCharge.begin(), |
549 |
> |
snap_->atomData.skippedCharge.end(), 0.0); |
550 |
> |
} |
551 |
|
|
552 |
|
} |
553 |
|
|
558 |
|
#ifdef IS_MPI |
559 |
|
|
560 |
|
// gather up the atomic positions |
561 |
< |
AtomCommVectorRow->gather(snap_->atomData.position, |
561 |
> |
AtomPlanVectorRow->gather(snap_->atomData.position, |
562 |
|
atomRowData.position); |
563 |
< |
AtomCommVectorColumn->gather(snap_->atomData.position, |
563 |
> |
AtomPlanVectorColumn->gather(snap_->atomData.position, |
564 |
|
atomColData.position); |
565 |
|
|
566 |
|
// gather up the cutoff group positions |
567 |
< |
cgCommVectorRow->gather(snap_->cgData.position, |
567 |
> |
|
568 |
> |
cgPlanVectorRow->gather(snap_->cgData.position, |
569 |
|
cgRowData.position); |
570 |
< |
cgCommVectorColumn->gather(snap_->cgData.position, |
570 |
> |
|
571 |
> |
cgPlanVectorColumn->gather(snap_->cgData.position, |
572 |
|
cgColData.position); |
573 |
+ |
|
574 |
|
|
575 |
|
// if needed, gather the atomic rotation matrices |
576 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
577 |
< |
AtomCommMatrixRow->gather(snap_->atomData.aMat, |
577 |
> |
AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
578 |
|
atomRowData.aMat); |
579 |
< |
AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
579 |
> |
AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
580 |
|
atomColData.aMat); |
581 |
|
} |
582 |
|
|
583 |
|
// if needed, gather the atomic eletrostatic frames |
584 |
|
if (storageLayout_ & DataStorage::dslElectroFrame) { |
585 |
< |
AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
585 |
> |
AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
586 |
|
atomRowData.electroFrame); |
587 |
< |
AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
587 |
> |
AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
588 |
|
atomColData.electroFrame); |
589 |
|
} |
590 |
+ |
|
591 |
|
#endif |
592 |
|
} |
593 |
|
|
601 |
|
|
602 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
603 |
|
|
604 |
< |
AtomCommRealRow->scatter(atomRowData.density, |
604 |
> |
AtomPlanRealRow->scatter(atomRowData.density, |
605 |
|
snap_->atomData.density); |
606 |
|
|
607 |
|
int n = snap_->atomData.density.size(); |
608 |
|
vector<RealType> rho_tmp(n, 0.0); |
609 |
< |
AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
609 |
> |
AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
610 |
|
for (int i = 0; i < n; i++) |
611 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
612 |
|
} |
622 |
|
storageLayout_ = sman_->getStorageLayout(); |
623 |
|
#ifdef IS_MPI |
624 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
625 |
< |
AtomCommRealRow->gather(snap_->atomData.functional, |
625 |
> |
AtomPlanRealRow->gather(snap_->atomData.functional, |
626 |
|
atomRowData.functional); |
627 |
< |
AtomCommRealColumn->gather(snap_->atomData.functional, |
627 |
> |
AtomPlanRealColumn->gather(snap_->atomData.functional, |
628 |
|
atomColData.functional); |
629 |
|
} |
630 |
|
|
631 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
632 |
< |
AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
632 |
> |
AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
633 |
|
atomRowData.functionalDerivative); |
634 |
< |
AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
634 |
> |
AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
635 |
|
atomColData.functionalDerivative); |
636 |
|
} |
637 |
|
#endif |
645 |
|
int n = snap_->atomData.force.size(); |
646 |
|
vector<Vector3d> frc_tmp(n, V3Zero); |
647 |
|
|
648 |
< |
AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
648 |
> |
AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
649 |
|
for (int i = 0; i < n; i++) { |
650 |
|
snap_->atomData.force[i] += frc_tmp[i]; |
651 |
|
frc_tmp[i] = 0.0; |
652 |
|
} |
653 |
|
|
654 |
< |
AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
655 |
< |
for (int i = 0; i < n; i++) |
654 |
> |
AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
655 |
> |
for (int i = 0; i < n; i++) { |
656 |
|
snap_->atomData.force[i] += frc_tmp[i]; |
657 |
< |
|
658 |
< |
|
657 |
> |
} |
658 |
> |
|
659 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
660 |
|
|
661 |
< |
int nt = snap_->atomData.force.size(); |
661 |
> |
int nt = snap_->atomData.torque.size(); |
662 |
|
vector<Vector3d> trq_tmp(nt, V3Zero); |
663 |
|
|
664 |
< |
AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
665 |
< |
for (int i = 0; i < n; i++) { |
664 |
> |
AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
665 |
> |
for (int i = 0; i < nt; i++) { |
666 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
667 |
|
trq_tmp[i] = 0.0; |
668 |
|
} |
669 |
|
|
670 |
< |
AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
671 |
< |
for (int i = 0; i < n; i++) |
670 |
> |
AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
671 |
> |
for (int i = 0; i < nt; i++) |
672 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
673 |
|
} |
674 |
+ |
|
675 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
676 |
+ |
|
677 |
+ |
int ns = snap_->atomData.skippedCharge.size(); |
678 |
+ |
vector<RealType> skch_tmp(ns, 0.0); |
679 |
+ |
|
680 |
+ |
AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
681 |
+ |
for (int i = 0; i < ns; i++) { |
682 |
+ |
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
683 |
+ |
skch_tmp[i] = 0.0; |
684 |
+ |
} |
685 |
+ |
|
686 |
+ |
AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
687 |
+ |
for (int i = 0; i < ns; i++) |
688 |
+ |
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
689 |
+ |
|
690 |
+ |
} |
691 |
|
|
692 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
693 |
|
|
696 |
|
|
697 |
|
// scatter/gather pot_row into the members of my column |
698 |
|
|
699 |
< |
AtomCommPotRow->scatter(pot_row, pot_temp); |
699 |
> |
AtomPlanPotRow->scatter(pot_row, pot_temp); |
700 |
|
|
701 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
702 |
< |
pot_local += pot_temp[ii]; |
702 |
> |
pairwisePot += pot_temp[ii]; |
703 |
|
|
704 |
|
fill(pot_temp.begin(), pot_temp.end(), |
705 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
706 |
|
|
707 |
< |
AtomCommPotColumn->scatter(pot_col, pot_temp); |
707 |
> |
AtomPlanPotColumn->scatter(pot_col, pot_temp); |
708 |
|
|
709 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
710 |
< |
pot_local += pot_temp[ii]; |
710 |
> |
pairwisePot += pot_temp[ii]; |
711 |
|
|
712 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
713 |
+ |
RealType ploc1 = pairwisePot[ii]; |
714 |
+ |
RealType ploc2 = 0.0; |
715 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
716 |
+ |
pairwisePot[ii] = ploc2; |
717 |
+ |
} |
718 |
+ |
|
719 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
720 |
+ |
RealType ploc1 = embeddingPot[ii]; |
721 |
+ |
RealType ploc2 = 0.0; |
722 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
723 |
+ |
embeddingPot[ii] = ploc2; |
724 |
+ |
} |
725 |
+ |
|
726 |
|
#endif |
727 |
+ |
|
728 |
|
} |
729 |
|
|
730 |
|
int ForceMatrixDecomposition::getNAtomsInRow() { |
825 |
|
return d; |
826 |
|
} |
827 |
|
|
828 |
< |
vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) { |
829 |
< |
return skipsForAtom[atom1]; |
828 |
> |
vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
829 |
> |
return excludesForAtom[atom1]; |
830 |
|
} |
831 |
|
|
832 |
|
/** |
833 |
< |
* There are a number of reasons to skip a pair or a |
726 |
< |
* particle. Mostly we do this to exclude atoms who are involved in |
727 |
< |
* short range interactions (bonds, bends, torsions), but we also |
728 |
< |
* need to exclude some overcounted interactions that result from |
833 |
> |
* We need to exclude some overcounted interactions that result from |
834 |
|
* the parallel decomposition. |
835 |
|
*/ |
836 |
|
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
837 |
|
int unique_id_1, unique_id_2; |
838 |
< |
|
838 |
> |
|
839 |
|
#ifdef IS_MPI |
840 |
|
// in MPI, we have to look up the unique IDs for each atom |
841 |
|
unique_id_1 = AtomRowToGlobal[atom1]; |
842 |
|
unique_id_2 = AtomColToGlobal[atom2]; |
843 |
+ |
#else |
844 |
+ |
unique_id_1 = AtomLocalToGlobal[atom1]; |
845 |
+ |
unique_id_2 = AtomLocalToGlobal[atom2]; |
846 |
+ |
#endif |
847 |
|
|
739 |
– |
// this situation should only arise in MPI simulations |
848 |
|
if (unique_id_1 == unique_id_2) return true; |
849 |
< |
|
849 |
> |
|
850 |
> |
#ifdef IS_MPI |
851 |
|
// this prevents us from doing the pair on multiple processors |
852 |
|
if (unique_id_1 < unique_id_2) { |
853 |
|
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
854 |
|
} else { |
855 |
< |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
855 |
> |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
856 |
|
} |
748 |
– |
#else |
749 |
– |
// in the normal loop, the atom numbers are unique |
750 |
– |
unique_id_1 = atom1; |
751 |
– |
unique_id_2 = atom2; |
857 |
|
#endif |
858 |
|
|
859 |
< |
for (vector<int>::iterator i = skipsForAtom[atom1].begin(); |
860 |
< |
i != skipsForAtom[atom1].end(); ++i) { |
756 |
< |
if ( (*i) == unique_id_2 ) return true; |
757 |
< |
} |
859 |
> |
return false; |
860 |
> |
} |
861 |
|
|
862 |
+ |
/** |
863 |
+ |
* We need to handle the interactions for atoms who are involved in |
864 |
+ |
* the same rigid body as well as some short range interactions |
865 |
+ |
* (bonds, bends, torsions) differently from other interactions. |
866 |
+ |
* We'll still visit the pairwise routines, but with a flag that |
867 |
+ |
* tells those routines to exclude the pair from direct long range |
868 |
+ |
* interactions. Some indirect interactions (notably reaction |
869 |
+ |
* field) must still be handled for these pairs. |
870 |
+ |
*/ |
871 |
+ |
bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
872 |
+ |
|
873 |
+ |
// excludesForAtom was constructed to use row/column indices in the MPI |
874 |
+ |
// version, and to use local IDs in the non-MPI version: |
875 |
+ |
|
876 |
+ |
for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
877 |
+ |
i != excludesForAtom[atom1].end(); ++i) { |
878 |
+ |
if ( (*i) == atom2 ) return true; |
879 |
+ |
} |
880 |
+ |
|
881 |
+ |
return false; |
882 |
|
} |
883 |
|
|
884 |
|
|
900 |
|
|
901 |
|
// filling interaction blocks with pointers |
902 |
|
void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
903 |
< |
int atom1, int atom2) { |
903 |
> |
int atom1, int atom2) { |
904 |
> |
|
905 |
> |
idat.excluded = excludeAtomPair(atom1, atom2); |
906 |
> |
|
907 |
|
#ifdef IS_MPI |
908 |
+ |
idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
909 |
+ |
//idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
910 |
+ |
// ff_->getAtomType(identsCol[atom2]) ); |
911 |
|
|
783 |
– |
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
784 |
– |
ff_->getAtomType(identsCol[atom2]) ); |
785 |
– |
|
912 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
913 |
|
idat.A1 = &(atomRowData.aMat[atom1]); |
914 |
|
idat.A2 = &(atomColData.aMat[atom2]); |
944 |
|
idat.particlePot2 = &(atomColData.particlePot[atom2]); |
945 |
|
} |
946 |
|
|
947 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
948 |
+ |
idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
949 |
+ |
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
950 |
+ |
} |
951 |
+ |
|
952 |
|
#else |
953 |
|
|
954 |
< |
idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), |
955 |
< |
ff_->getAtomType(identsLocal[atom2]) ); |
954 |
> |
idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
955 |
> |
//idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
956 |
> |
// ff_->getAtomType(idents[atom2]) ); |
957 |
|
|
958 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
959 |
|
idat.A1 = &(snap_->atomData.aMat[atom1]); |
970 |
|
idat.t2 = &(snap_->atomData.torque[atom2]); |
971 |
|
} |
972 |
|
|
973 |
< |
if (storageLayout_ & DataStorage::dslDensity) { |
973 |
> |
if (storageLayout_ & DataStorage::dslDensity) { |
974 |
|
idat.rho1 = &(snap_->atomData.density[atom1]); |
975 |
|
idat.rho2 = &(snap_->atomData.density[atom2]); |
976 |
|
} |
990 |
|
idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
991 |
|
} |
992 |
|
|
993 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
994 |
+ |
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
995 |
+ |
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
996 |
+ |
} |
997 |
|
#endif |
998 |
|
} |
999 |
|
|
1006 |
|
atomRowData.force[atom1] += *(idat.f1); |
1007 |
|
atomColData.force[atom2] -= *(idat.f1); |
1008 |
|
#else |
1009 |
< |
longRangePot_ += *(idat.pot); |
1010 |
< |
|
1009 |
> |
pairwisePot += *(idat.pot); |
1010 |
> |
|
1011 |
|
snap_->atomData.force[atom1] += *(idat.f1); |
1012 |
|
snap_->atomData.force[atom2] -= *(idat.f1); |
1013 |
|
#endif |
1014 |
< |
|
1014 |
> |
|
1015 |
|
} |
1016 |
|
|
881 |
– |
|
882 |
– |
void ForceMatrixDecomposition::fillSkipData(InteractionData &idat, |
883 |
– |
int atom1, int atom2) { |
884 |
– |
#ifdef IS_MPI |
885 |
– |
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
886 |
– |
ff_->getAtomType(identsCol[atom2]) ); |
887 |
– |
|
888 |
– |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
889 |
– |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
890 |
– |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
891 |
– |
} |
892 |
– |
if (storageLayout_ & DataStorage::dslTorque) { |
893 |
– |
idat.t1 = &(atomRowData.torque[atom1]); |
894 |
– |
idat.t2 = &(atomColData.torque[atom2]); |
895 |
– |
} |
896 |
– |
#else |
897 |
– |
idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), |
898 |
– |
ff_->getAtomType(identsLocal[atom2]) ); |
899 |
– |
|
900 |
– |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
901 |
– |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
902 |
– |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
903 |
– |
} |
904 |
– |
if (storageLayout_ & DataStorage::dslTorque) { |
905 |
– |
idat.t1 = &(snap_->atomData.torque[atom1]); |
906 |
– |
idat.t2 = &(snap_->atomData.torque[atom2]); |
907 |
– |
} |
908 |
– |
#endif |
909 |
– |
} |
910 |
– |
|
1017 |
|
/* |
1018 |
|
* buildNeighborList |
1019 |
|
* |
1024 |
|
|
1025 |
|
vector<pair<int, int> > neighborList; |
1026 |
|
groupCutoffs cuts; |
1027 |
+ |
bool doAllPairs = false; |
1028 |
+ |
|
1029 |
|
#ifdef IS_MPI |
1030 |
|
cellListRow_.clear(); |
1031 |
|
cellListCol_.clear(); |
1045 |
|
nCells_.y() = (int) ( Hy.length() )/ rList_; |
1046 |
|
nCells_.z() = (int) ( Hz.length() )/ rList_; |
1047 |
|
|
1048 |
+ |
// handle small boxes where the cell offsets can end up repeating cells |
1049 |
+ |
|
1050 |
+ |
if (nCells_.x() < 3) doAllPairs = true; |
1051 |
+ |
if (nCells_.y() < 3) doAllPairs = true; |
1052 |
+ |
if (nCells_.z() < 3) doAllPairs = true; |
1053 |
+ |
|
1054 |
|
Mat3x3d invHmat = snap_->getInvHmat(); |
1055 |
|
Vector3d rs, scaled, dr; |
1056 |
|
Vector3i whichCell; |
1064 |
|
cellList_.resize(nCtot); |
1065 |
|
#endif |
1066 |
|
|
1067 |
+ |
if (!doAllPairs) { |
1068 |
|
#ifdef IS_MPI |
954 |
– |
for (int i = 0; i < nGroupsInRow_; i++) { |
955 |
– |
rs = cgRowData.position[i]; |
1069 |
|
|
1070 |
< |
// scaled positions relative to the box vectors |
1071 |
< |
scaled = invHmat * rs; |
1072 |
< |
|
1073 |
< |
// wrap the vector back into the unit box by subtracting integer box |
1074 |
< |
// numbers |
1075 |
< |
for (int j = 0; j < 3; j++) { |
1076 |
< |
scaled[j] -= roundMe(scaled[j]); |
1077 |
< |
scaled[j] += 0.5; |
1070 |
> |
for (int i = 0; i < nGroupsInRow_; i++) { |
1071 |
> |
rs = cgRowData.position[i]; |
1072 |
> |
|
1073 |
> |
// scaled positions relative to the box vectors |
1074 |
> |
scaled = invHmat * rs; |
1075 |
> |
|
1076 |
> |
// wrap the vector back into the unit box by subtracting integer box |
1077 |
> |
// numbers |
1078 |
> |
for (int j = 0; j < 3; j++) { |
1079 |
> |
scaled[j] -= roundMe(scaled[j]); |
1080 |
> |
scaled[j] += 0.5; |
1081 |
> |
} |
1082 |
> |
|
1083 |
> |
// find xyz-indices of cell that cutoffGroup is in. |
1084 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
1085 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
1086 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
1087 |
> |
|
1088 |
> |
// find single index of this cell: |
1089 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1090 |
> |
|
1091 |
> |
// add this cutoff group to the list of groups in this cell; |
1092 |
> |
cellListRow_[cellIndex].push_back(i); |
1093 |
|
} |
1094 |
< |
|
1095 |
< |
// find xyz-indices of cell that cutoffGroup is in. |
1096 |
< |
whichCell.x() = nCells_.x() * scaled.x(); |
1097 |
< |
whichCell.y() = nCells_.y() * scaled.y(); |
1098 |
< |
whichCell.z() = nCells_.z() * scaled.z(); |
1099 |
< |
|
1100 |
< |
// find single index of this cell: |
1101 |
< |
cellIndex = Vlinear(whichCell, nCells_); |
1102 |
< |
|
1103 |
< |
// add this cutoff group to the list of groups in this cell; |
1104 |
< |
cellListRow_[cellIndex].push_back(i); |
1105 |
< |
} |
1106 |
< |
|
1107 |
< |
for (int i = 0; i < nGroupsInCol_; i++) { |
1108 |
< |
rs = cgColData.position[i]; |
1109 |
< |
|
1110 |
< |
// scaled positions relative to the box vectors |
1111 |
< |
scaled = invHmat * rs; |
1112 |
< |
|
1113 |
< |
// wrap the vector back into the unit box by subtracting integer box |
1114 |
< |
// numbers |
1115 |
< |
for (int j = 0; j < 3; j++) { |
1116 |
< |
scaled[j] -= roundMe(scaled[j]); |
989 |
< |
scaled[j] += 0.5; |
1094 |
> |
for (int i = 0; i < nGroupsInCol_; i++) { |
1095 |
> |
rs = cgColData.position[i]; |
1096 |
> |
|
1097 |
> |
// scaled positions relative to the box vectors |
1098 |
> |
scaled = invHmat * rs; |
1099 |
> |
|
1100 |
> |
// wrap the vector back into the unit box by subtracting integer box |
1101 |
> |
// numbers |
1102 |
> |
for (int j = 0; j < 3; j++) { |
1103 |
> |
scaled[j] -= roundMe(scaled[j]); |
1104 |
> |
scaled[j] += 0.5; |
1105 |
> |
} |
1106 |
> |
|
1107 |
> |
// find xyz-indices of cell that cutoffGroup is in. |
1108 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
1109 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
1110 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
1111 |
> |
|
1112 |
> |
// find single index of this cell: |
1113 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1114 |
> |
|
1115 |
> |
// add this cutoff group to the list of groups in this cell; |
1116 |
> |
cellListCol_[cellIndex].push_back(i); |
1117 |
|
} |
1118 |
< |
|
992 |
< |
// find xyz-indices of cell that cutoffGroup is in. |
993 |
< |
whichCell.x() = nCells_.x() * scaled.x(); |
994 |
< |
whichCell.y() = nCells_.y() * scaled.y(); |
995 |
< |
whichCell.z() = nCells_.z() * scaled.z(); |
996 |
< |
|
997 |
< |
// find single index of this cell: |
998 |
< |
cellIndex = Vlinear(whichCell, nCells_); |
999 |
< |
|
1000 |
< |
// add this cutoff group to the list of groups in this cell; |
1001 |
< |
cellListCol_[cellIndex].push_back(i); |
1002 |
< |
} |
1118 |
> |
|
1119 |
|
#else |
1120 |
< |
for (int i = 0; i < nGroups_; i++) { |
1121 |
< |
rs = snap_->cgData.position[i]; |
1122 |
< |
|
1123 |
< |
// scaled positions relative to the box vectors |
1124 |
< |
scaled = invHmat * rs; |
1125 |
< |
|
1126 |
< |
// wrap the vector back into the unit box by subtracting integer box |
1127 |
< |
// numbers |
1128 |
< |
for (int j = 0; j < 3; j++) { |
1129 |
< |
scaled[j] -= roundMe(scaled[j]); |
1130 |
< |
scaled[j] += 0.5; |
1120 |
> |
for (int i = 0; i < nGroups_; i++) { |
1121 |
> |
rs = snap_->cgData.position[i]; |
1122 |
> |
|
1123 |
> |
// scaled positions relative to the box vectors |
1124 |
> |
scaled = invHmat * rs; |
1125 |
> |
|
1126 |
> |
// wrap the vector back into the unit box by subtracting integer box |
1127 |
> |
// numbers |
1128 |
> |
for (int j = 0; j < 3; j++) { |
1129 |
> |
scaled[j] -= roundMe(scaled[j]); |
1130 |
> |
scaled[j] += 0.5; |
1131 |
> |
} |
1132 |
> |
|
1133 |
> |
// find xyz-indices of cell that cutoffGroup is in. |
1134 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
1135 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
1136 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
1137 |
> |
|
1138 |
> |
// find single index of this cell: |
1139 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1140 |
> |
|
1141 |
> |
// add this cutoff group to the list of groups in this cell; |
1142 |
> |
cellList_[cellIndex].push_back(i); |
1143 |
|
} |
1144 |
|
|
1017 |
– |
// find xyz-indices of cell that cutoffGroup is in. |
1018 |
– |
whichCell.x() = nCells_.x() * scaled.x(); |
1019 |
– |
whichCell.y() = nCells_.y() * scaled.y(); |
1020 |
– |
whichCell.z() = nCells_.z() * scaled.z(); |
1021 |
– |
|
1022 |
– |
// find single index of this cell: |
1023 |
– |
cellIndex = Vlinear(whichCell, nCells_); |
1024 |
– |
|
1025 |
– |
// add this cutoff group to the list of groups in this cell; |
1026 |
– |
cellList_[cellIndex].push_back(i); |
1027 |
– |
} |
1145 |
|
#endif |
1146 |
|
|
1147 |
< |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1148 |
< |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1149 |
< |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1150 |
< |
Vector3i m1v(m1x, m1y, m1z); |
1151 |
< |
int m1 = Vlinear(m1v, nCells_); |
1035 |
< |
|
1036 |
< |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1037 |
< |
os != cellOffsets_.end(); ++os) { |
1147 |
> |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1148 |
> |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1149 |
> |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1150 |
> |
Vector3i m1v(m1x, m1y, m1z); |
1151 |
> |
int m1 = Vlinear(m1v, nCells_); |
1152 |
|
|
1153 |
< |
Vector3i m2v = m1v + (*os); |
1154 |
< |
|
1155 |
< |
if (m2v.x() >= nCells_.x()) { |
1156 |
< |
m2v.x() = 0; |
1157 |
< |
} else if (m2v.x() < 0) { |
1044 |
< |
m2v.x() = nCells_.x() - 1; |
1045 |
< |
} |
1046 |
< |
|
1047 |
< |
if (m2v.y() >= nCells_.y()) { |
1048 |
< |
m2v.y() = 0; |
1049 |
< |
} else if (m2v.y() < 0) { |
1050 |
< |
m2v.y() = nCells_.y() - 1; |
1051 |
< |
} |
1052 |
< |
|
1053 |
< |
if (m2v.z() >= nCells_.z()) { |
1054 |
< |
m2v.z() = 0; |
1055 |
< |
} else if (m2v.z() < 0) { |
1056 |
< |
m2v.z() = nCells_.z() - 1; |
1057 |
< |
} |
1058 |
< |
|
1059 |
< |
int m2 = Vlinear (m2v, nCells_); |
1153 |
> |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1154 |
> |
os != cellOffsets_.end(); ++os) { |
1155 |
> |
|
1156 |
> |
Vector3i m2v = m1v + (*os); |
1157 |
> |
|
1158 |
|
|
1159 |
< |
#ifdef IS_MPI |
1160 |
< |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1161 |
< |
j1 != cellListRow_[m1].end(); ++j1) { |
1162 |
< |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1163 |
< |
j2 != cellListCol_[m2].end(); ++j2) { |
1164 |
< |
|
1165 |
< |
// Always do this if we're in different cells or if |
1166 |
< |
// we're in the same cell and the global index of the |
1167 |
< |
// j2 cutoff group is less than the j1 cutoff group |
1159 |
> |
if (m2v.x() >= nCells_.x()) { |
1160 |
> |
m2v.x() = 0; |
1161 |
> |
} else if (m2v.x() < 0) { |
1162 |
> |
m2v.x() = nCells_.x() - 1; |
1163 |
> |
} |
1164 |
> |
|
1165 |
> |
if (m2v.y() >= nCells_.y()) { |
1166 |
> |
m2v.y() = 0; |
1167 |
> |
} else if (m2v.y() < 0) { |
1168 |
> |
m2v.y() = nCells_.y() - 1; |
1169 |
> |
} |
1170 |
> |
|
1171 |
> |
if (m2v.z() >= nCells_.z()) { |
1172 |
> |
m2v.z() = 0; |
1173 |
> |
} else if (m2v.z() < 0) { |
1174 |
> |
m2v.z() = nCells_.z() - 1; |
1175 |
> |
} |
1176 |
|
|
1177 |
< |
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1177 |
> |
int m2 = Vlinear (m2v, nCells_); |
1178 |
> |
|
1179 |
> |
#ifdef IS_MPI |
1180 |
> |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1181 |
> |
j1 != cellListRow_[m1].end(); ++j1) { |
1182 |
> |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1183 |
> |
j2 != cellListCol_[m2].end(); ++j2) { |
1184 |
> |
|
1185 |
> |
// In parallel, we need to visit *all* pairs of row |
1186 |
> |
// & column indicies and will divide labor in the |
1187 |
> |
// force evaluation later. |
1188 |
|
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1189 |
|
snap_->wrapVector(dr); |
1190 |
|
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1191 |
|
if (dr.lengthSquare() < cuts.third) { |
1192 |
|
neighborList.push_back(make_pair((*j1), (*j2))); |
1193 |
< |
} |
1193 |
> |
} |
1194 |
|
} |
1195 |
|
} |
1080 |
– |
} |
1196 |
|
#else |
1197 |
+ |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1198 |
+ |
j1 != cellList_[m1].end(); ++j1) { |
1199 |
+ |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1200 |
+ |
j2 != cellList_[m2].end(); ++j2) { |
1201 |
+ |
|
1202 |
+ |
// Always do this if we're in different cells or if |
1203 |
+ |
// we're in the same cell and the global index of |
1204 |
+ |
// the j2 cutoff group is greater than or equal to |
1205 |
+ |
// the j1 cutoff group. Note that Rappaport's code |
1206 |
+ |
// has a "less than" conditional here, but that |
1207 |
+ |
// deals with atom-by-atom computation. OpenMD |
1208 |
+ |
// allows atoms within a single cutoff group to |
1209 |
+ |
// interact with each other. |
1210 |
|
|
1083 |
– |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1084 |
– |
j1 != cellList_[m1].end(); ++j1) { |
1085 |
– |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1086 |
– |
j2 != cellList_[m2].end(); ++j2) { |
1211 |
|
|
1088 |
– |
// Always do this if we're in different cells or if |
1089 |
– |
// we're in the same cell and the global index of the |
1090 |
– |
// j2 cutoff group is less than the j1 cutoff group |
1212 |
|
|
1213 |
< |
if (m2 != m1 || (*j2) < (*j1)) { |
1214 |
< |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1215 |
< |
snap_->wrapVector(dr); |
1216 |
< |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1217 |
< |
if (dr.lengthSquare() < cuts.third) { |
1218 |
< |
neighborList.push_back(make_pair((*j1), (*j2))); |
1213 |
> |
if (m2 != m1 || (*j2) >= (*j1) ) { |
1214 |
> |
|
1215 |
> |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1216 |
> |
snap_->wrapVector(dr); |
1217 |
> |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1218 |
> |
if (dr.lengthSquare() < cuts.third) { |
1219 |
> |
neighborList.push_back(make_pair((*j1), (*j2))); |
1220 |
> |
} |
1221 |
|
} |
1222 |
|
} |
1223 |
|
} |
1101 |
– |
} |
1224 |
|
#endif |
1225 |
+ |
} |
1226 |
|
} |
1227 |
|
} |
1228 |
|
} |
1229 |
+ |
} else { |
1230 |
+ |
// branch to do all cutoff group pairs |
1231 |
+ |
#ifdef IS_MPI |
1232 |
+ |
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1233 |
+ |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1234 |
+ |
dr = cgColData.position[j2] - cgRowData.position[j1]; |
1235 |
+ |
snap_->wrapVector(dr); |
1236 |
+ |
cuts = getGroupCutoffs( j1, j2 ); |
1237 |
+ |
if (dr.lengthSquare() < cuts.third) { |
1238 |
+ |
neighborList.push_back(make_pair(j1, j2)); |
1239 |
+ |
} |
1240 |
+ |
} |
1241 |
+ |
} |
1242 |
+ |
#else |
1243 |
+ |
// include all groups here. |
1244 |
+ |
for (int j1 = 0; j1 < nGroups_; j1++) { |
1245 |
+ |
// include self group interactions j2 == j1 |
1246 |
+ |
for (int j2 = j1; j2 < nGroups_; j2++) { |
1247 |
+ |
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1248 |
+ |
snap_->wrapVector(dr); |
1249 |
+ |
cuts = getGroupCutoffs( j1, j2 ); |
1250 |
+ |
if (dr.lengthSquare() < cuts.third) { |
1251 |
+ |
neighborList.push_back(make_pair(j1, j2)); |
1252 |
+ |
} |
1253 |
+ |
} |
1254 |
+ |
} |
1255 |
+ |
#endif |
1256 |
|
} |
1257 |
< |
|
1257 |
> |
|
1258 |
|
// save the local cutoff group positions for the check that is |
1259 |
|
// done on each loop: |
1260 |
|
saved_CG_positions_.clear(); |