ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing:
branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 1581 by gezelter, Mon Jun 13 22:13:12 2011 UTC vs.
trunk/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 2064 by gezelter, Tue Mar 3 17:02:20 2015 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42   #include "parallel/ForceMatrixDecomposition.hpp"
43   #include "math/SquareMatrix3.hpp"
# Line 47 | Line 48 | namespace OpenMD {
48   using namespace std;
49   namespace OpenMD {
50  
51 +  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52 +
53 +    // Row and colum scans must visit all surrounding cells
54 +    cellOffsets_.clear();
55 +    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
56 +    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
57 +    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                          
58 +    cellOffsets_.push_back( Vector3i(-1, 0,-1) );
59 +    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
60 +    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
61 +    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
62 +    cellOffsets_.push_back( Vector3i( 0, 1,-1) );      
63 +    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
64 +    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
65 +    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
66 +    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
67 +    cellOffsets_.push_back( Vector3i(-1, 0, 0) );      
68 +    cellOffsets_.push_back( Vector3i( 0, 0, 0) );
69 +    cellOffsets_.push_back( Vector3i( 1, 0, 0) );
70 +    cellOffsets_.push_back( Vector3i(-1, 1, 0) );
71 +    cellOffsets_.push_back( Vector3i( 0, 1, 0) );
72 +    cellOffsets_.push_back( Vector3i( 1, 1, 0) );
73 +    cellOffsets_.push_back( Vector3i(-1,-1, 1) );
74 +    cellOffsets_.push_back( Vector3i( 0,-1, 1) );
75 +    cellOffsets_.push_back( Vector3i( 1,-1, 1) );
76 +    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
77 +    cellOffsets_.push_back( Vector3i( 0, 0, 1) );
78 +    cellOffsets_.push_back( Vector3i( 1, 0, 1) );
79 +    cellOffsets_.push_back( Vector3i(-1, 1, 1) );
80 +    cellOffsets_.push_back( Vector3i( 0, 1, 1) );
81 +    cellOffsets_.push_back( Vector3i( 1, 1, 1) );
82 +  }
83 +
84 +
85    /**
86     * distributeInitialData is essentially a copy of the older fortran
87     * SimulationSetup
88     */
54  
89    void ForceMatrixDecomposition::distributeInitialData() {
90      snap_ = sman_->getCurrentSnapshot();
91      storageLayout_ = sman_->getStorageLayout();
92      ff_ = info_->getForceField();
93      nLocal_ = snap_->getNumberOfAtoms();
94 <
94 >  
95      nGroups_ = info_->getNLocalCutoffGroups();
62    cerr << "in dId, nGroups = " << nGroups_ << "\n";
96      // gather the information for atomtype IDs (atids):
97 <    identsLocal = info_->getIdentArray();
97 >    idents = info_->getIdentArray();
98 >    regions = info_->getRegions();
99      AtomLocalToGlobal = info_->getGlobalAtomIndices();
100      cgLocalToGlobal = info_->getGlobalGroupIndices();
101      vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
102 +
103      massFactors = info_->getMassFactors();
69    PairList excludes = info_->getExcludedInteractions();
70    PairList oneTwo = info_->getOneTwoInteractions();
71    PairList oneThree = info_->getOneThreeInteractions();
72    PairList oneFour = info_->getOneFourInteractions();
104  
105 +    PairList* excludes = info_->getExcludedInteractions();
106 +    PairList* oneTwo = info_->getOneTwoInteractions();
107 +    PairList* oneThree = info_->getOneThreeInteractions();
108 +    PairList* oneFour = info_->getOneFourInteractions();
109 +    
110 +    if (needVelocities_)
111 +      snap_->cgData.setStorageLayout(DataStorage::dslPosition |
112 +                                     DataStorage::dslVelocity);
113 +    else
114 +      snap_->cgData.setStorageLayout(DataStorage::dslPosition);
115 +    
116   #ifdef IS_MPI
117  
118 <    AtomCommIntRow = new Communicator<Row,int>(nLocal_);
119 <    AtomCommRealRow = new Communicator<Row,RealType>(nLocal_);
78 <    AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_);
79 <    AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_);
80 <    AtomCommPotRow = new Communicator<Row,potVec>(nLocal_);
118 >    MPI_Comm row = rowComm.getComm();
119 >    MPI_Comm col = colComm.getComm();
120  
121 <    AtomCommIntColumn = new Communicator<Column,int>(nLocal_);
122 <    AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_);
123 <    AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_);
124 <    AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_);
125 <    AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_);
121 >    AtomPlanIntRow = new Plan<int>(row, nLocal_);
122 >    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
123 >    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
124 >    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
125 >    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
126  
127 <    cgCommIntRow = new Communicator<Row,int>(nGroups_);
128 <    cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_);
129 <    cgCommIntColumn = new Communicator<Column,int>(nGroups_);
130 <    cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_);
127 >    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
128 >    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
129 >    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
130 >    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
131 >    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
132  
133 <    nAtomsInRow_ = AtomCommIntRow->getSize();
134 <    nAtomsInCol_ = AtomCommIntColumn->getSize();
135 <    nGroupsInRow_ = cgCommIntRow->getSize();
136 <    nGroupsInCol_ = cgCommIntColumn->getSize();
133 >    cgPlanIntRow = new Plan<int>(row, nGroups_);
134 >    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
135 >    cgPlanIntColumn = new Plan<int>(col, nGroups_);
136 >    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
137  
138 +    nAtomsInRow_ = AtomPlanIntRow->getSize();
139 +    nAtomsInCol_ = AtomPlanIntColumn->getSize();
140 +    nGroupsInRow_ = cgPlanIntRow->getSize();
141 +    nGroupsInCol_ = cgPlanIntColumn->getSize();
142 +
143      // Modify the data storage objects with the correct layouts and sizes:
144      atomRowData.resize(nAtomsInRow_);
145      atomRowData.setStorageLayout(storageLayout_);
# Line 103 | Line 148 | namespace OpenMD {
148      cgRowData.resize(nGroupsInRow_);
149      cgRowData.setStorageLayout(DataStorage::dslPosition);
150      cgColData.resize(nGroupsInCol_);
151 <    cgColData.setStorageLayout(DataStorage::dslPosition);
152 <        
151 >    if (needVelocities_)
152 >      // we only need column velocities if we need them.
153 >      cgColData.setStorageLayout(DataStorage::dslPosition |
154 >                                 DataStorage::dslVelocity);
155 >    else    
156 >      cgColData.setStorageLayout(DataStorage::dslPosition);
157 >      
158      identsRow.resize(nAtomsInRow_);
159      identsCol.resize(nAtomsInCol_);
160      
161 <    AtomCommIntRow->gather(identsLocal, identsRow);
162 <    AtomCommIntColumn->gather(identsLocal, identsCol);
113 <    
114 <    AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
115 <    AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
116 <    
117 <    cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
118 <    cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
161 >    AtomPlanIntRow->gather(idents, identsRow);
162 >    AtomPlanIntColumn->gather(idents, identsCol);
163  
164 <    AtomCommRealRow->gather(massFactors, massFactorsRow);
165 <    AtomCommRealColumn->gather(massFactors, massFactorsCol);
164 >    regionsRow.resize(nAtomsInRow_);
165 >    regionsCol.resize(nAtomsInCol_);
166 >    
167 >    AtomPlanIntRow->gather(regions, regionsRow);
168 >    AtomPlanIntColumn->gather(regions, regionsCol);
169 >    
170 >    // allocate memory for the parallel objects
171 >    atypesRow.resize(nAtomsInRow_);
172 >    atypesCol.resize(nAtomsInCol_);
173  
174 +    for (int i = 0; i < nAtomsInRow_; i++)
175 +      atypesRow[i] = ff_->getAtomType(identsRow[i]);
176 +    for (int i = 0; i < nAtomsInCol_; i++)
177 +      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
178 +
179 +    pot_row.resize(nAtomsInRow_);
180 +    pot_col.resize(nAtomsInCol_);
181 +
182 +    expot_row.resize(nAtomsInRow_);
183 +    expot_col.resize(nAtomsInCol_);
184 +
185 +    AtomRowToGlobal.resize(nAtomsInRow_);
186 +    AtomColToGlobal.resize(nAtomsInCol_);
187 +    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
188 +    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
189 +
190 +    cgRowToGlobal.resize(nGroupsInRow_);
191 +    cgColToGlobal.resize(nGroupsInCol_);
192 +    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
193 +    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
194 +
195 +    massFactorsRow.resize(nAtomsInRow_);
196 +    massFactorsCol.resize(nAtomsInCol_);
197 +    AtomPlanRealRow->gather(massFactors, massFactorsRow);
198 +    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
199 +
200      groupListRow_.clear();
201      groupListRow_.resize(nGroupsInRow_);
202      for (int i = 0; i < nGroupsInRow_; i++) {
# Line 142 | Line 219 | namespace OpenMD {
219        }      
220      }
221  
222 <    skipsForAtom.clear();
223 <    skipsForAtom.resize(nAtomsInRow_);
222 >    excludesForAtom.clear();
223 >    excludesForAtom.resize(nAtomsInRow_);
224      toposForAtom.clear();
225      toposForAtom.resize(nAtomsInRow_);
226      topoDist.clear();
# Line 154 | Line 231 | namespace OpenMD {
231        for (int j = 0; j < nAtomsInCol_; j++) {
232          int jglob = AtomColToGlobal[j];
233  
234 <        if (excludes.hasPair(iglob, jglob))
235 <          skipsForAtom[i].push_back(j);      
234 >        if (excludes->hasPair(iglob, jglob))
235 >          excludesForAtom[i].push_back(j);      
236          
237 <        if (oneTwo.hasPair(iglob, jglob)) {
237 >        if (oneTwo->hasPair(iglob, jglob)) {
238            toposForAtom[i].push_back(j);
239            topoDist[i].push_back(1);
240          } else {
241 <          if (oneThree.hasPair(iglob, jglob)) {
241 >          if (oneThree->hasPair(iglob, jglob)) {
242              toposForAtom[i].push_back(j);
243              topoDist[i].push_back(2);
244            } else {
245 <            if (oneFour.hasPair(iglob, jglob)) {
245 >            if (oneFour->hasPair(iglob, jglob)) {
246                toposForAtom[i].push_back(j);
247                topoDist[i].push_back(3);
248              }
# Line 174 | Line 251 | namespace OpenMD {
251        }      
252      }
253  
254 < #endif
255 <
256 <    groupList_.clear();
180 <    groupList_.resize(nGroups_);
181 <    for (int i = 0; i < nGroups_; i++) {
182 <      int gid = cgLocalToGlobal[i];
183 <      for (int j = 0; j < nLocal_; j++) {
184 <        int aid = AtomLocalToGlobal[j];
185 <        if (globalGroupMembership[aid] == gid) {
186 <          groupList_[i].push_back(j);
187 <        }
188 <      }      
189 <    }
190 <
191 <    skipsForAtom.clear();
192 <    skipsForAtom.resize(nLocal_);
254 > #else
255 >    excludesForAtom.clear();
256 >    excludesForAtom.resize(nLocal_);
257      toposForAtom.clear();
258      toposForAtom.resize(nLocal_);
259      topoDist.clear();
# Line 201 | Line 265 | namespace OpenMD {
265        for (int j = 0; j < nLocal_; j++) {
266          int jglob = AtomLocalToGlobal[j];
267  
268 <        if (excludes.hasPair(iglob, jglob))
269 <          skipsForAtom[i].push_back(j);              
268 >        if (excludes->hasPair(iglob, jglob))
269 >          excludesForAtom[i].push_back(j);              
270          
271 <        if (oneTwo.hasPair(iglob, jglob)) {
271 >        if (oneTwo->hasPair(iglob, jglob)) {
272            toposForAtom[i].push_back(j);
273            topoDist[i].push_back(1);
274          } else {
275 <          if (oneThree.hasPair(iglob, jglob)) {
275 >          if (oneThree->hasPair(iglob, jglob)) {
276              toposForAtom[i].push_back(j);
277              topoDist[i].push_back(2);
278            } else {
279 <            if (oneFour.hasPair(iglob, jglob)) {
279 >            if (oneFour->hasPair(iglob, jglob)) {
280                toposForAtom[i].push_back(j);
281                topoDist[i].push_back(3);
282              }
# Line 220 | Line 284 | namespace OpenMD {
284          }
285        }      
286      }
287 <    
224 <    createGtypeCutoffMap();
225 <  }
226 <  
227 <  void ForceMatrixDecomposition::createGtypeCutoffMap() {
287 > #endif
288  
289 <    RealType tol = 1e-6;
290 <    RealType rc;
231 <    int atid;
232 <    set<AtomType*> atypes = info_->getSimulatedAtomTypes();
233 <    vector<RealType> atypeCutoff;
234 <    atypeCutoff.resize( atypes.size() );
289 >    // allocate memory for the parallel objects
290 >    atypesLocal.resize(nLocal_);
291  
292 <    for (set<AtomType*>::iterator at = atypes.begin();
293 <         at != atypes.end(); ++at){
238 <      rc = interactionMan_->getSuggestedCutoffRadius(*at);
239 <      atid = (*at)->getIdent();
240 <      atypeCutoff[atid] = rc;
241 <    }
292 >    for (int i = 0; i < nLocal_; i++)
293 >      atypesLocal[i] = ff_->getAtomType(idents[i]);
294  
295 <    vector<RealType> gTypeCutoffs;
296 <
297 <    // first we do a single loop over the cutoff groups to find the
298 <    // largest cutoff for any atypes present in this group.
299 < #ifdef IS_MPI
300 <    vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
301 <    groupRowToGtype.resize(nGroupsInRow_);
302 <    for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
251 <      vector<int> atomListRow = getAtomsInGroupRow(cg1);
252 <      for (vector<int>::iterator ia = atomListRow.begin();
253 <           ia != atomListRow.end(); ++ia) {            
254 <        int atom1 = (*ia);
255 <        atid = identsRow[atom1];
256 <        if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
257 <          groupCutoffRow[cg1] = atypeCutoff[atid];
295 >    groupList_.clear();
296 >    groupList_.resize(nGroups_);
297 >    for (int i = 0; i < nGroups_; i++) {
298 >      int gid = cgLocalToGlobal[i];
299 >      for (int j = 0; j < nLocal_; j++) {
300 >        int aid = AtomLocalToGlobal[j];
301 >        if (globalGroupMembership[aid] == gid) {
302 >          groupList_[i].push_back(j);
303          }
259      }
260
261      bool gTypeFound = false;
262      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
263        if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
264          groupRowToGtype[cg1] = gt;
265          gTypeFound = true;
266        }
267      }
268      if (!gTypeFound) {
269        gTypeCutoffs.push_back( groupCutoffRow[cg1] );
270        groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
271      }
272      
273    }
274    vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
275    groupColToGtype.resize(nGroupsInCol_);
276    for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
277      vector<int> atomListCol = getAtomsInGroupColumn(cg2);
278      for (vector<int>::iterator jb = atomListCol.begin();
279           jb != atomListCol.end(); ++jb) {            
280        int atom2 = (*jb);
281        atid = identsCol[atom2];
282        if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
283          groupCutoffCol[cg2] = atypeCutoff[atid];
284        }
285      }
286      bool gTypeFound = false;
287      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
288        if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
289          groupColToGtype[cg2] = gt;
290          gTypeFound = true;
291        }
292      }
293      if (!gTypeFound) {
294        gTypeCutoffs.push_back( groupCutoffCol[cg2] );
295        groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
296      }
297    }
298 #else
299
300    vector<RealType> groupCutoff(nGroups_, 0.0);
301    groupToGtype.resize(nGroups_);
302
303    cerr << "nGroups = " << nGroups_ << "\n";
304    for (int cg1 = 0; cg1 < nGroups_; cg1++) {
305
306      groupCutoff[cg1] = 0.0;
307      vector<int> atomList = getAtomsInGroupRow(cg1);
308
309      for (vector<int>::iterator ia = atomList.begin();
310           ia != atomList.end(); ++ia) {            
311        int atom1 = (*ia);
312        atid = identsLocal[atom1];
313        if (atypeCutoff[atid] > groupCutoff[cg1]) {
314          groupCutoff[cg1] = atypeCutoff[atid];
315        }
316      }
317
318      bool gTypeFound = false;
319      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
320        if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
321          groupToGtype[cg1] = gt;
322          gTypeFound = true;
323        }
324      }
325      if (!gTypeFound) {
326        gTypeCutoffs.push_back( groupCutoff[cg1] );
327        groupToGtype[cg1] = gTypeCutoffs.size() - 1;
304        }      
305 <    }
330 < #endif
331 <
332 <    cerr << "gTypeCutoffs.size() = " << gTypeCutoffs.size() << "\n";
333 <    // Now we find the maximum group cutoff value present in the simulation
334 <
335 <    RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end());
336 <
337 < #ifdef IS_MPI
338 <    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX);
339 < #endif
340 <    
341 <    RealType tradRcut = groupMax;
342 <
343 <    for (int i = 0; i < gTypeCutoffs.size();  i++) {
344 <      for (int j = 0; j < gTypeCutoffs.size();  j++) {      
345 <        RealType thisRcut;
346 <        switch(cutoffPolicy_) {
347 <        case TRADITIONAL:
348 <          thisRcut = tradRcut;
349 <          break;
350 <        case MIX:
351 <          thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
352 <          break;
353 <        case MAX:
354 <          thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
355 <          break;
356 <        default:
357 <          sprintf(painCave.errMsg,
358 <                  "ForceMatrixDecomposition::createGtypeCutoffMap "
359 <                  "hit an unknown cutoff policy!\n");
360 <          painCave.severity = OPENMD_ERROR;
361 <          painCave.isFatal = 1;
362 <          simError();
363 <          break;
364 <        }
365 <
366 <        pair<int,int> key = make_pair(i,j);
367 <        gTypeCutoffMap[key].first = thisRcut;
368 <
369 <        if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
370 <
371 <        gTypeCutoffMap[key].second = thisRcut*thisRcut;
372 <        
373 <        gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
374 <
375 <        // sanity check
376 <        
377 <        if (userChoseCutoff_) {
378 <          if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
379 <            sprintf(painCave.errMsg,
380 <                    "ForceMatrixDecomposition::createGtypeCutoffMap "
381 <                    "user-specified rCut does not match computed group Cutoff\n");
382 <            painCave.severity = OPENMD_ERROR;
383 <            painCave.isFatal = 1;
384 <            simError();            
385 <          }
386 <        }
387 <      }
388 <    }
305 >    }    
306    }
307 <
391 <
392 <  groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
393 <    int i, j;  
394 < #ifdef IS_MPI
395 <    i = groupRowToGtype[cg1];
396 <    j = groupColToGtype[cg2];
397 < #else
398 <    i = groupToGtype[cg1];
399 <    j = groupToGtype[cg2];
400 < #endif    
401 <    return gTypeCutoffMap[make_pair(i,j)];
402 <  }
403 <
307 >    
308    int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
309 <    for (int j = 0; j < toposForAtom[atom1].size(); j++) {
309 >    for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) {
310        if (toposForAtom[atom1][j] == atom2)
311          return topoDist[atom1][j];
312 <    }
312 >    }                                          
313      return 0;
314    }
315  
316    void ForceMatrixDecomposition::zeroWorkArrays() {
317 +    pairwisePot = 0.0;
318 +    embeddingPot = 0.0;
319 +    excludedPot = 0.0;
320 +    excludedSelfPot = 0.0;
321  
414    for (int j = 0; j < N_INTERACTION_FAMILIES; j++) {
415      longRangePot_[j] = 0.0;
416    }
417
322   #ifdef IS_MPI
323      if (storageLayout_ & DataStorage::dslForce) {
324        fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
# Line 430 | Line 334 | namespace OpenMD {
334           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
335  
336      fill(pot_col.begin(), pot_col.end(),
337 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
338 +
339 +    fill(expot_row.begin(), expot_row.end(),
340           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
434    
435    pot_local = Vector<RealType, N_INTERACTION_FAMILIES>(0.0);
341  
342 +    fill(expot_col.begin(), expot_col.end(),
343 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
344 +
345      if (storageLayout_ & DataStorage::dslParticlePot) {    
346 <      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0);
347 <      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0);
346 >      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
347 >           0.0);
348 >      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
349 >           0.0);
350      }
351  
352      if (storageLayout_ & DataStorage::dslDensity) {      
# Line 445 | Line 355 | namespace OpenMD {
355      }
356  
357      if (storageLayout_ & DataStorage::dslFunctional) {  
358 <      fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0);
359 <      fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0);
358 >      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
359 >           0.0);
360 >      fill(atomColData.functional.begin(), atomColData.functional.end(),
361 >           0.0);
362      }
363  
364      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
# Line 456 | Line 368 | namespace OpenMD {
368             atomColData.functionalDerivative.end(), 0.0);
369      }
370  
371 < #else
372 <    
371 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
372 >      fill(atomRowData.skippedCharge.begin(),
373 >           atomRowData.skippedCharge.end(), 0.0);
374 >      fill(atomColData.skippedCharge.begin(),
375 >           atomColData.skippedCharge.end(), 0.0);
376 >    }
377 >
378 >    if (storageLayout_ & DataStorage::dslFlucQForce) {      
379 >      fill(atomRowData.flucQFrc.begin(),
380 >           atomRowData.flucQFrc.end(), 0.0);
381 >      fill(atomColData.flucQFrc.begin(),
382 >           atomColData.flucQFrc.end(), 0.0);
383 >    }
384 >
385 >    if (storageLayout_ & DataStorage::dslElectricField) {    
386 >      fill(atomRowData.electricField.begin(),
387 >           atomRowData.electricField.end(), V3Zero);
388 >      fill(atomColData.electricField.begin(),
389 >           atomColData.electricField.end(), V3Zero);
390 >    }
391 >
392 >    if (storageLayout_ & DataStorage::dslSitePotential) {    
393 >      fill(atomRowData.sitePotential.begin(),
394 >           atomRowData.sitePotential.end(), 0.0);
395 >      fill(atomColData.sitePotential.begin(),
396 >           atomColData.sitePotential.end(), 0.0);
397 >    }
398 >
399 > #endif
400 >    // even in parallel, we need to zero out the local arrays:
401 >
402      if (storageLayout_ & DataStorage::dslParticlePot) {      
403        fill(snap_->atomData.particlePot.begin(),
404             snap_->atomData.particlePot.end(), 0.0);
# Line 467 | Line 408 | namespace OpenMD {
408        fill(snap_->atomData.density.begin(),
409             snap_->atomData.density.end(), 0.0);
410      }
411 +
412      if (storageLayout_ & DataStorage::dslFunctional) {
413        fill(snap_->atomData.functional.begin(),
414             snap_->atomData.functional.end(), 0.0);
415      }
416 +
417      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
418        fill(snap_->atomData.functionalDerivative.begin(),
419             snap_->atomData.functionalDerivative.end(), 0.0);
420      }
421 < #endif
422 <    
421 >
422 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
423 >      fill(snap_->atomData.skippedCharge.begin(),
424 >           snap_->atomData.skippedCharge.end(), 0.0);
425 >    }
426 >
427 >    if (storageLayout_ & DataStorage::dslElectricField) {      
428 >      fill(snap_->atomData.electricField.begin(),
429 >           snap_->atomData.electricField.end(), V3Zero);
430 >    }
431 >    if (storageLayout_ & DataStorage::dslSitePotential) {      
432 >      fill(snap_->atomData.sitePotential.begin(),
433 >           snap_->atomData.sitePotential.end(), 0.0);
434 >    }
435    }
436  
437  
438    void ForceMatrixDecomposition::distributeData()  {
439 +  
440 + #ifdef IS_MPI
441 +
442      snap_ = sman_->getCurrentSnapshot();
443      storageLayout_ = sman_->getStorageLayout();
486 #ifdef IS_MPI
444      
445 +    bool needsCG = true;
446 +    if(info_->getNCutoffGroups() != info_->getNAtoms())
447 +      needsCG = false;
448 +
449      // gather up the atomic positions
450 <    AtomCommVectorRow->gather(snap_->atomData.position,
450 >    AtomPlanVectorRow->gather(snap_->atomData.position,
451                                atomRowData.position);
452 <    AtomCommVectorColumn->gather(snap_->atomData.position,
452 >    AtomPlanVectorColumn->gather(snap_->atomData.position,
453                                   atomColData.position);
454      
455      // gather up the cutoff group positions
456 <    cgCommVectorRow->gather(snap_->cgData.position,
457 <                            cgRowData.position);
458 <    cgCommVectorColumn->gather(snap_->cgData.position,
459 <                               cgColData.position);
456 >
457 >    if (needsCG) {
458 >      cgPlanVectorRow->gather(snap_->cgData.position,
459 >                              cgRowData.position);
460 >      
461 >      cgPlanVectorColumn->gather(snap_->cgData.position,
462 >                                 cgColData.position);
463 >    }
464 >
465 >
466 >    if (needVelocities_) {
467 >      // gather up the atomic velocities
468 >      AtomPlanVectorColumn->gather(snap_->atomData.velocity,
469 >                                   atomColData.velocity);
470 >
471 >      if (needsCG) {        
472 >        cgPlanVectorColumn->gather(snap_->cgData.velocity,
473 >                                   cgColData.velocity);
474 >      }
475 >    }
476 >
477      
478      // if needed, gather the atomic rotation matrices
479      if (storageLayout_ & DataStorage::dslAmat) {
480 <      AtomCommMatrixRow->gather(snap_->atomData.aMat,
480 >      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
481                                  atomRowData.aMat);
482 <      AtomCommMatrixColumn->gather(snap_->atomData.aMat,
482 >      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
483                                     atomColData.aMat);
484      }
485 <    
486 <    // if needed, gather the atomic eletrostatic frames
487 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
488 <      AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
489 <                                atomRowData.electroFrame);
490 <      AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
491 <                                   atomColData.electroFrame);
485 >
486 >    // if needed, gather the atomic eletrostatic information
487 >    if (storageLayout_ & DataStorage::dslDipole) {
488 >      AtomPlanVectorRow->gather(snap_->atomData.dipole,
489 >                                atomRowData.dipole);
490 >      AtomPlanVectorColumn->gather(snap_->atomData.dipole,
491 >                                   atomColData.dipole);
492      }
493 +
494 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
495 +      AtomPlanMatrixRow->gather(snap_->atomData.quadrupole,
496 +                                atomRowData.quadrupole);
497 +      AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole,
498 +                                   atomColData.quadrupole);
499 +    }
500 +        
501 +    // if needed, gather the atomic fluctuating charge values
502 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {
503 +      AtomPlanRealRow->gather(snap_->atomData.flucQPos,
504 +                              atomRowData.flucQPos);
505 +      AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
506 +                                 atomColData.flucQPos);
507 +    }
508 +
509   #endif      
510    }
511    
# Line 519 | Line 513 | namespace OpenMD {
513     * data structures.
514     */
515    void ForceMatrixDecomposition::collectIntermediateData() {
516 + #ifdef IS_MPI
517 +
518      snap_ = sman_->getCurrentSnapshot();
519      storageLayout_ = sman_->getStorageLayout();
520 < #ifdef IS_MPI
525 <    
520 >
521      if (storageLayout_ & DataStorage::dslDensity) {
522        
523 <      AtomCommRealRow->scatter(atomRowData.density,
523 >      AtomPlanRealRow->scatter(atomRowData.density,
524                                 snap_->atomData.density);
525        
526        int n = snap_->atomData.density.size();
527        vector<RealType> rho_tmp(n, 0.0);
528 <      AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
528 >      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
529        for (int i = 0; i < n; i++)
530          snap_->atomData.density[i] += rho_tmp[i];
531      }
532 +
533 +    // this isn't necessary if we don't have polarizable atoms, but
534 +    // we'll leave it here for now.
535 +    if (storageLayout_ & DataStorage::dslElectricField) {
536 +      
537 +      AtomPlanVectorRow->scatter(atomRowData.electricField,
538 +                                 snap_->atomData.electricField);
539 +      
540 +      int n = snap_->atomData.electricField.size();
541 +      vector<Vector3d> field_tmp(n, V3Zero);
542 +      AtomPlanVectorColumn->scatter(atomColData.electricField,
543 +                                    field_tmp);
544 +      for (int i = 0; i < n; i++)
545 +        snap_->atomData.electricField[i] += field_tmp[i];
546 +    }
547   #endif
548    }
549  
# Line 542 | Line 552 | namespace OpenMD {
552     * row and column-indexed data structures
553     */
554    void ForceMatrixDecomposition::distributeIntermediateData() {
555 + #ifdef IS_MPI
556      snap_ = sman_->getCurrentSnapshot();
557      storageLayout_ = sman_->getStorageLayout();
558 < #ifdef IS_MPI
558 >
559      if (storageLayout_ & DataStorage::dslFunctional) {
560 <      AtomCommRealRow->gather(snap_->atomData.functional,
560 >      AtomPlanRealRow->gather(snap_->atomData.functional,
561                                atomRowData.functional);
562 <      AtomCommRealColumn->gather(snap_->atomData.functional,
562 >      AtomPlanRealColumn->gather(snap_->atomData.functional,
563                                   atomColData.functional);
564      }
565      
566      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
567 <      AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
567 >      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
568                                atomRowData.functionalDerivative);
569 <      AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
569 >      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
570                                   atomColData.functionalDerivative);
571      }
572   #endif
# Line 563 | Line 574 | namespace OpenMD {
574    
575    
576    void ForceMatrixDecomposition::collectData() {
577 + #ifdef IS_MPI
578      snap_ = sman_->getCurrentSnapshot();
579      storageLayout_ = sman_->getStorageLayout();
580 < #ifdef IS_MPI    
580 >
581      int n = snap_->atomData.force.size();
582      vector<Vector3d> frc_tmp(n, V3Zero);
583      
584 <    AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
584 >    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
585      for (int i = 0; i < n; i++) {
586        snap_->atomData.force[i] += frc_tmp[i];
587        frc_tmp[i] = 0.0;
588      }
589      
590 <    AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
591 <    for (int i = 0; i < n; i++)
590 >    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
591 >    for (int i = 0; i < n; i++) {
592        snap_->atomData.force[i] += frc_tmp[i];
593 <    
594 <    
593 >    }
594 >        
595      if (storageLayout_ & DataStorage::dslTorque) {
596  
597 <      int nt = snap_->atomData.force.size();
597 >      int nt = snap_->atomData.torque.size();
598        vector<Vector3d> trq_tmp(nt, V3Zero);
599  
600 <      AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
601 <      for (int i = 0; i < n; i++) {
600 >      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
601 >      for (int i = 0; i < nt; i++) {
602          snap_->atomData.torque[i] += trq_tmp[i];
603          trq_tmp[i] = 0.0;
604        }
605        
606 <      AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
607 <      for (int i = 0; i < n; i++)
606 >      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
607 >      for (int i = 0; i < nt; i++)
608          snap_->atomData.torque[i] += trq_tmp[i];
609      }
610 +
611 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
612 +
613 +      int ns = snap_->atomData.skippedCharge.size();
614 +      vector<RealType> skch_tmp(ns, 0.0);
615 +
616 +      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
617 +      for (int i = 0; i < ns; i++) {
618 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
619 +        skch_tmp[i] = 0.0;
620 +      }
621 +      
622 +      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
623 +      for (int i = 0; i < ns; i++)
624 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
625 +            
626 +    }
627      
628 +    if (storageLayout_ & DataStorage::dslFlucQForce) {
629 +
630 +      int nq = snap_->atomData.flucQFrc.size();
631 +      vector<RealType> fqfrc_tmp(nq, 0.0);
632 +
633 +      AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
634 +      for (int i = 0; i < nq; i++) {
635 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
636 +        fqfrc_tmp[i] = 0.0;
637 +      }
638 +      
639 +      AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
640 +      for (int i = 0; i < nq; i++)
641 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
642 +            
643 +    }
644 +
645 +    if (storageLayout_ & DataStorage::dslElectricField) {
646 +
647 +      int nef = snap_->atomData.electricField.size();
648 +      vector<Vector3d> efield_tmp(nef, V3Zero);
649 +
650 +      AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp);
651 +      for (int i = 0; i < nef; i++) {
652 +        snap_->atomData.electricField[i] += efield_tmp[i];
653 +        efield_tmp[i] = 0.0;
654 +      }
655 +      
656 +      AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp);
657 +      for (int i = 0; i < nef; i++)
658 +        snap_->atomData.electricField[i] += efield_tmp[i];
659 +    }
660 +
661 +    if (storageLayout_ & DataStorage::dslSitePotential) {
662 +
663 +      int nsp = snap_->atomData.sitePotential.size();
664 +      vector<RealType> sp_tmp(nsp, 0.0);
665 +
666 +      AtomPlanRealRow->scatter(atomRowData.sitePotential, sp_tmp);
667 +      for (int i = 0; i < nsp; i++) {
668 +        snap_->atomData.sitePotential[i] += sp_tmp[i];
669 +        sp_tmp[i] = 0.0;
670 +      }
671 +      
672 +      AtomPlanRealColumn->scatter(atomColData.sitePotential, sp_tmp);
673 +      for (int i = 0; i < nsp; i++)
674 +        snap_->atomData.sitePotential[i] += sp_tmp[i];
675 +    }
676 +
677      nLocal_ = snap_->getNumberOfAtoms();
678  
679      vector<potVec> pot_temp(nLocal_,
680                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
681 +    vector<potVec> expot_temp(nLocal_,
682 +                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
683  
684      // scatter/gather pot_row into the members of my column
685            
686 <    AtomCommPotRow->scatter(pot_row, pot_temp);
686 >    AtomPlanPotRow->scatter(pot_row, pot_temp);
687 >    AtomPlanPotRow->scatter(expot_row, expot_temp);
688  
689 <    for (int ii = 0;  ii < pot_temp.size(); ii++ )
690 <      pot_local += pot_temp[ii];
691 <    
689 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
690 >      pairwisePot += pot_temp[ii];
691 >
692 >    for (int ii = 0;  ii < expot_temp.size(); ii++ )
693 >      excludedPot += expot_temp[ii];
694 >        
695 >    if (storageLayout_ & DataStorage::dslParticlePot) {
696 >      // This is the pairwise contribution to the particle pot.  The
697 >      // embedding contribution is added in each of the low level
698 >      // non-bonded routines.  In single processor, this is done in
699 >      // unpackInteractionData, not in collectData.
700 >      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
701 >        for (int i = 0; i < nLocal_; i++) {
702 >          // factor of two is because the total potential terms are divided
703 >          // by 2 in parallel due to row/ column scatter      
704 >          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
705 >        }
706 >      }
707 >    }
708 >
709      fill(pot_temp.begin(), pot_temp.end(),
710           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
711 +    fill(expot_temp.begin(), expot_temp.end(),
712 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
713        
714 <    AtomCommPotColumn->scatter(pot_col, pot_temp);    
714 >    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
715 >    AtomPlanPotColumn->scatter(expot_col, expot_temp);    
716      
717      for (int ii = 0;  ii < pot_temp.size(); ii++ )
718 <      pot_local += pot_temp[ii];
718 >      pairwisePot += pot_temp[ii];    
719 >
720 >    for (int ii = 0;  ii < expot_temp.size(); ii++ )
721 >      excludedPot += expot_temp[ii];    
722 >
723 >    if (storageLayout_ & DataStorage::dslParticlePot) {
724 >      // This is the pairwise contribution to the particle pot.  The
725 >      // embedding contribution is added in each of the low level
726 >      // non-bonded routines.  In single processor, this is done in
727 >      // unpackInteractionData, not in collectData.
728 >      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
729 >        for (int i = 0; i < nLocal_; i++) {
730 >          // factor of two is because the total potential terms are divided
731 >          // by 2 in parallel due to row/ column scatter      
732 >          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
733 >        }
734 >      }
735 >    }
736      
737 +    if (storageLayout_ & DataStorage::dslParticlePot) {
738 +      int npp = snap_->atomData.particlePot.size();
739 +      vector<RealType> ppot_temp(npp, 0.0);
740 +
741 +      // This is the direct or embedding contribution to the particle
742 +      // pot.
743 +      
744 +      AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
745 +      for (int i = 0; i < npp; i++) {
746 +        snap_->atomData.particlePot[i] += ppot_temp[i];
747 +      }
748 +
749 +      fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
750 +      
751 +      AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
752 +      for (int i = 0; i < npp; i++) {
753 +        snap_->atomData.particlePot[i] += ppot_temp[i];
754 +      }
755 +    }
756 +
757 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
758 +      RealType ploc1 = pairwisePot[ii];
759 +      RealType ploc2 = 0.0;
760 +      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
761 +      pairwisePot[ii] = ploc2;
762 +    }
763 +
764 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
765 +      RealType ploc1 = excludedPot[ii];
766 +      RealType ploc2 = 0.0;
767 +      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
768 +      excludedPot[ii] = ploc2;
769 +    }
770 +
771 +    // Here be dragons.
772 +    MPI_Comm col = colComm.getComm();
773 +
774 +    MPI_Allreduce(MPI_IN_PLACE,
775 +                  &snap_->frameData.conductiveHeatFlux[0], 3,
776 +                  MPI_REALTYPE, MPI_SUM, col);
777 +
778 +
779   #endif
780 +
781    }
782  
783 <  int ForceMatrixDecomposition::getNAtomsInRow() {  
783 >  /**
784 >   * Collects information obtained during the post-pair (and embedding
785 >   * functional) loops onto local data structures.
786 >   */
787 >  void ForceMatrixDecomposition::collectSelfData() {
788 >
789   #ifdef IS_MPI
790 +    snap_ = sman_->getCurrentSnapshot();
791 +    storageLayout_ = sman_->getStorageLayout();
792 +
793 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
794 +      RealType ploc1 = embeddingPot[ii];
795 +      RealType ploc2 = 0.0;
796 +      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
797 +      embeddingPot[ii] = ploc2;
798 +    }    
799 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
800 +      RealType ploc1 = excludedSelfPot[ii];
801 +      RealType ploc2 = 0.0;
802 +      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
803 +      excludedSelfPot[ii] = ploc2;
804 +    }    
805 + #endif
806 +    
807 +  }
808 +
809 +  int& ForceMatrixDecomposition::getNAtomsInRow() {  
810 + #ifdef IS_MPI
811      return nAtomsInRow_;
812   #else
813      return nLocal_;
# Line 630 | Line 817 | namespace OpenMD {
817    /**
818     * returns the list of atoms belonging to this group.  
819     */
820 <  vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
820 >  vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
821   #ifdef IS_MPI
822      return groupListRow_[cg1];
823   #else
# Line 638 | Line 825 | namespace OpenMD {
825   #endif
826    }
827  
828 <  vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
828 >  vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
829   #ifdef IS_MPI
830      return groupListCol_[cg2];
831   #else
# Line 646 | Line 833 | namespace OpenMD {
833   #endif
834    }
835    
836 <  Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
836 >  Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1,
837 >                                                         int cg2){
838 >
839      Vector3d d;
651    
840   #ifdef IS_MPI
841      d = cgColData.position[cg2] - cgRowData.position[cg1];
842   #else
843      d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
844   #endif
845      
846 <    snap_->wrapVector(d);
846 >    if (usePeriodicBoundaryConditions_) {
847 >      snap_->wrapVector(d);
848 >    }
849      return d;    
850    }
851  
852 +  Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
853 + #ifdef IS_MPI
854 +    return cgColData.velocity[cg2];
855 + #else
856 +    return snap_->cgData.velocity[cg2];
857 + #endif
858 +  }
859  
860 <  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
860 >  Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
861 > #ifdef IS_MPI
862 >    return atomColData.velocity[atom2];
863 > #else
864 >    return snap_->atomData.velocity[atom2];
865 > #endif
866 >  }
867  
868 +
869 +  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1,
870 +                                                             int cg1) {
871      Vector3d d;
872      
873   #ifdef IS_MPI
# Line 669 | Line 875 | namespace OpenMD {
875   #else
876      d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
877   #endif
878 <
879 <    snap_->wrapVector(d);
878 >    if (usePeriodicBoundaryConditions_) {
879 >      snap_->wrapVector(d);
880 >    }
881      return d;    
882    }
883    
884 <  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
884 >  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2,
885 >                                                                int cg2) {
886      Vector3d d;
887      
888   #ifdef IS_MPI
# Line 682 | Line 890 | namespace OpenMD {
890   #else
891      d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
892   #endif
893 <    
894 <    snap_->wrapVector(d);
893 >    if (usePeriodicBoundaryConditions_) {
894 >      snap_->wrapVector(d);
895 >    }
896      return d;    
897    }
898  
899 <  RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
899 >  RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) {
900   #ifdef IS_MPI
901      return massFactorsRow[atom1];
902   #else
# Line 695 | Line 904 | namespace OpenMD {
904   #endif
905    }
906  
907 <  RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
907 >  RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
908   #ifdef IS_MPI
909      return massFactorsCol[atom2];
910   #else
# Line 704 | Line 913 | namespace OpenMD {
913  
914    }
915      
916 <  Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
916 >  Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1,
917 >                                                          int atom2){
918      Vector3d d;
919      
920   #ifdef IS_MPI
# Line 712 | Line 922 | namespace OpenMD {
922   #else
923      d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
924   #endif
925 <
926 <    snap_->wrapVector(d);
925 >    if (usePeriodicBoundaryConditions_) {
926 >      snap_->wrapVector(d);
927 >    }
928      return d;    
929    }
930  
931 <  vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) {
932 <    return skipsForAtom[atom1];
931 >  vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
932 >    return excludesForAtom[atom1];
933    }
934  
935    /**
936 <   * There are a number of reasons to skip a pair or a
726 <   * particle. Mostly we do this to exclude atoms who are involved in
727 <   * short range interactions (bonds, bends, torsions), but we also
728 <   * need to exclude some overcounted interactions that result from
936 >   * We need to exclude some overcounted interactions that result from
937     * the parallel decomposition.
938     */
939 <  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
939 >  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2,
940 >                                              int cg1, int cg2) {
941      int unique_id_1, unique_id_2;
942 <
942 >        
943   #ifdef IS_MPI
944      // in MPI, we have to look up the unique IDs for each atom
945      unique_id_1 = AtomRowToGlobal[atom1];
946      unique_id_2 = AtomColToGlobal[atom2];
947 +    // group1 = cgRowToGlobal[cg1];
948 +    // group2 = cgColToGlobal[cg2];
949 + #else
950 +    unique_id_1 = AtomLocalToGlobal[atom1];
951 +    unique_id_2 = AtomLocalToGlobal[atom2];
952 +    int group1 = cgLocalToGlobal[cg1];
953 +    int group2 = cgLocalToGlobal[cg2];
954 + #endif  
955  
739    // this situation should only arise in MPI simulations
956      if (unique_id_1 == unique_id_2) return true;
957 <    
957 >
958 > #ifdef IS_MPI
959      // this prevents us from doing the pair on multiple processors
960      if (unique_id_1 < unique_id_2) {
961        if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
962      } else {
963 <      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
963 >      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
964      }
965 < #else
966 <    // in the normal loop, the atom numbers are unique
967 <    unique_id_1 = atom1;
968 <    unique_id_2 = atom2;
965 > #endif    
966 >
967 > #ifndef IS_MPI
968 >    if (group1 == group2) {
969 >      if (unique_id_1 < unique_id_2) return true;
970 >    }
971   #endif
972      
973 <    for (vector<int>::iterator i = skipsForAtom[atom1].begin();
974 <         i != skipsForAtom[atom1].end(); ++i) {
756 <      if ( (*i) == unique_id_2 ) return true;
757 <    }    
973 >    return false;
974 >  }
975  
976 +  /**
977 +   * We need to handle the interactions for atoms who are involved in
978 +   * the same rigid body as well as some short range interactions
979 +   * (bonds, bends, torsions) differently from other interactions.
980 +   * We'll still visit the pairwise routines, but with a flag that
981 +   * tells those routines to exclude the pair from direct long range
982 +   * interactions.  Some indirect interactions (notably reaction
983 +   * field) must still be handled for these pairs.
984 +   */
985 +  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
986 +
987 +    // excludesForAtom was constructed to use row/column indices in the MPI
988 +    // version, and to use local IDs in the non-MPI version:
989 +    
990 +    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
991 +         i != excludesForAtom[atom1].end(); ++i) {
992 +      if ( (*i) == atom2 ) return true;
993 +    }
994 +
995 +    return false;
996    }
997  
998  
# Line 776 | Line 1013 | namespace OpenMD {
1013    }
1014  
1015      // filling interaction blocks with pointers
1016 <  void ForceMatrixDecomposition::fillInteractionData(InteractionData idat,
1017 <                                                     int atom1, int atom2) {    
1016 >  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1017 >                                                     int atom1, int atom2,
1018 >                                                     bool newAtom1) {
1019 >
1020 >    idat.excluded = excludeAtomPair(atom1, atom2);
1021 >
1022 >    if (newAtom1) {
1023 >      
1024   #ifdef IS_MPI
1025 <    
1026 <    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
1027 <                             ff_->getAtomType(identsCol[atom2]) );
1028 <    
1025 >      idat.atid1 = identsRow[atom1];
1026 >      idat.atid2 = identsCol[atom2];
1027 >      
1028 >      if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) {
1029 >        idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]);
1030 >      } else {
1031 >        idat.sameRegion = false;
1032 >      }
1033 >      
1034 >      if (storageLayout_ & DataStorage::dslAmat) {
1035 >        idat.A1 = &(atomRowData.aMat[atom1]);
1036 >        idat.A2 = &(atomColData.aMat[atom2]);
1037 >      }
1038 >      
1039 >      if (storageLayout_ & DataStorage::dslTorque) {
1040 >        idat.t1 = &(atomRowData.torque[atom1]);
1041 >        idat.t2 = &(atomColData.torque[atom2]);
1042 >      }
1043 >      
1044 >      if (storageLayout_ & DataStorage::dslDipole) {
1045 >        idat.dipole1 = &(atomRowData.dipole[atom1]);
1046 >        idat.dipole2 = &(atomColData.dipole[atom2]);
1047 >      }
1048 >      
1049 >      if (storageLayout_ & DataStorage::dslQuadrupole) {
1050 >        idat.quadrupole1 = &(atomRowData.quadrupole[atom1]);
1051 >        idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1052 >      }
1053 >      
1054 >      if (storageLayout_ & DataStorage::dslDensity) {
1055 >        idat.rho1 = &(atomRowData.density[atom1]);
1056 >        idat.rho2 = &(atomColData.density[atom2]);
1057 >      }
1058 >      
1059 >      if (storageLayout_ & DataStorage::dslFunctional) {
1060 >        idat.frho1 = &(atomRowData.functional[atom1]);
1061 >        idat.frho2 = &(atomColData.functional[atom2]);
1062 >      }
1063 >      
1064 >      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1065 >        idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1066 >        idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1067 >      }
1068 >      
1069 >      if (storageLayout_ & DataStorage::dslParticlePot) {
1070 >        idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1071 >        idat.particlePot2 = &(atomColData.particlePot[atom2]);
1072 >      }
1073 >      
1074 >      if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1075 >        idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1076 >        idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1077 >      }
1078 >      
1079 >      if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1080 >        idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1081 >        idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1082 >      }
1083 >      
1084 > #else
1085 >      
1086 >      idat.atid1 = idents[atom1];
1087 >      idat.atid2 = idents[atom2];
1088 >      
1089 >      if (regions[atom1] >= 0 && regions[atom2] >= 0) {
1090 >        idat.sameRegion = (regions[atom1] == regions[atom2]);
1091 >      } else {
1092 >        idat.sameRegion = false;
1093 >      }
1094 >      
1095 >      if (storageLayout_ & DataStorage::dslAmat) {
1096 >        idat.A1 = &(snap_->atomData.aMat[atom1]);
1097 >        idat.A2 = &(snap_->atomData.aMat[atom2]);
1098 >      }
1099 >      
1100 >      if (storageLayout_ & DataStorage::dslTorque) {
1101 >        idat.t1 = &(snap_->atomData.torque[atom1]);
1102 >        idat.t2 = &(snap_->atomData.torque[atom2]);
1103 >      }
1104 >      
1105 >      if (storageLayout_ & DataStorage::dslDipole) {
1106 >        idat.dipole1 = &(snap_->atomData.dipole[atom1]);
1107 >        idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1108 >      }
1109 >      
1110 >      if (storageLayout_ & DataStorage::dslQuadrupole) {
1111 >        idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]);
1112 >        idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1113 >      }
1114 >      
1115 >      if (storageLayout_ & DataStorage::dslDensity) {    
1116 >        idat.rho1 = &(snap_->atomData.density[atom1]);
1117 >        idat.rho2 = &(snap_->atomData.density[atom2]);
1118 >      }
1119 >      
1120 >      if (storageLayout_ & DataStorage::dslFunctional) {
1121 >        idat.frho1 = &(snap_->atomData.functional[atom1]);
1122 >        idat.frho2 = &(snap_->atomData.functional[atom2]);
1123 >      }
1124 >      
1125 >      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1126 >        idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1127 >        idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1128 >      }
1129 >      
1130 >      if (storageLayout_ & DataStorage::dslParticlePot) {
1131 >        idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1132 >        idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1133 >      }
1134 >      
1135 >      if (storageLayout_ & DataStorage::dslSkippedCharge) {
1136 >        idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1137 >        idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1138 >      }
1139 >      
1140 >      if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1141 >        idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1142 >        idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1143 >      }
1144 > #endif
1145 >      
1146 >    } else {
1147 >      // atom1 is not new, so don't bother updating properties of that atom:
1148 > #ifdef IS_MPI
1149 >    idat.atid2 = identsCol[atom2];
1150 >
1151 >    if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) {
1152 >      idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]);
1153 >    } else {
1154 >      idat.sameRegion = false;
1155 >    }
1156 >
1157      if (storageLayout_ & DataStorage::dslAmat) {
787      idat.A1 = &(atomRowData.aMat[atom1]);
1158        idat.A2 = &(atomColData.aMat[atom2]);
1159      }
1160      
791    if (storageLayout_ & DataStorage::dslElectroFrame) {
792      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
793      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
794    }
795
1161      if (storageLayout_ & DataStorage::dslTorque) {
797      idat.t1 = &(atomRowData.torque[atom1]);
1162        idat.t2 = &(atomColData.torque[atom2]);
1163      }
1164  
1165 +    if (storageLayout_ & DataStorage::dslDipole) {
1166 +      idat.dipole2 = &(atomColData.dipole[atom2]);
1167 +    }
1168 +
1169 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1170 +      idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1171 +    }
1172 +
1173      if (storageLayout_ & DataStorage::dslDensity) {
802      idat.rho1 = &(atomRowData.density[atom1]);
1174        idat.rho2 = &(atomColData.density[atom2]);
1175      }
1176  
1177      if (storageLayout_ & DataStorage::dslFunctional) {
807      idat.frho1 = &(atomRowData.functional[atom1]);
1178        idat.frho2 = &(atomColData.functional[atom2]);
1179      }
1180  
1181      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
812      idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1182        idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1183      }
1184  
1185      if (storageLayout_ & DataStorage::dslParticlePot) {
817      idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1186        idat.particlePot2 = &(atomColData.particlePot[atom2]);
1187      }
1188  
1189 < #else
1189 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1190 >      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1191 >    }
1192  
1193 <    idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]),
1194 <                             ff_->getAtomType(identsLocal[atom2]) );
1193 >    if (storageLayout_ & DataStorage::dslFlucQPosition) {
1194 >      idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1195 >    }
1196  
1197 + #else  
1198 +    idat.atid2 = idents[atom2];
1199 +
1200 +    if (regions[atom1] >= 0 && regions[atom2] >= 0) {
1201 +      idat.sameRegion = (regions[atom1] == regions[atom2]);
1202 +    } else {
1203 +      idat.sameRegion = false;
1204 +    }
1205 +
1206      if (storageLayout_ & DataStorage::dslAmat) {
827      idat.A1 = &(snap_->atomData.aMat[atom1]);
1207        idat.A2 = &(snap_->atomData.aMat[atom2]);
1208      }
1209  
831    if (storageLayout_ & DataStorage::dslElectroFrame) {
832      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
833      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
834    }
835
1210      if (storageLayout_ & DataStorage::dslTorque) {
837      idat.t1 = &(snap_->atomData.torque[atom1]);
1211        idat.t2 = &(snap_->atomData.torque[atom2]);
1212      }
1213  
1214 <    if (storageLayout_ & DataStorage::dslDensity) {
1215 <      idat.rho1 = &(snap_->atomData.density[atom1]);
1214 >    if (storageLayout_ & DataStorage::dslDipole) {
1215 >      idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1216 >    }
1217 >
1218 >    if (storageLayout_ & DataStorage::dslQuadrupole) {
1219 >      idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1220 >    }
1221 >
1222 >    if (storageLayout_ & DataStorage::dslDensity) {    
1223        idat.rho2 = &(snap_->atomData.density[atom2]);
1224      }
1225  
1226      if (storageLayout_ & DataStorage::dslFunctional) {
847      idat.frho1 = &(snap_->atomData.functional[atom1]);
1227        idat.frho2 = &(snap_->atomData.functional[atom2]);
1228      }
1229  
1230      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
852      idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1231        idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1232      }
1233  
1234      if (storageLayout_ & DataStorage::dslParticlePot) {
857      idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1235        idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1236      }
1237  
1238 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
1239 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1240 +    }
1241 +
1242 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1243 +      idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1244 +    }
1245 +
1246   #endif
1247 +    }
1248    }
863
1249    
1250 <  void ForceMatrixDecomposition::unpackInteractionData(InteractionData idat, int atom1, int atom2) {    
1250 >  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat,
1251 >                                                       int atom1, int atom2) {  
1252   #ifdef IS_MPI
1253 <    pot_row[atom1] += 0.5 *  *(idat.pot);
1254 <    pot_col[atom2] += 0.5 *  *(idat.pot);
1253 >    pot_row[atom1] += RealType(0.5) *  *(idat.pot);
1254 >    pot_col[atom2] += RealType(0.5) *  *(idat.pot);
1255 >    expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot);
1256 >    expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot);
1257  
1258      atomRowData.force[atom1] += *(idat.f1);
1259      atomColData.force[atom2] -= *(idat.f1);
872 #else
873    longRangePot_ += *(idat.pot);
874    
875    snap_->atomData.force[atom1] += *(idat.f1);
876    snap_->atomData.force[atom2] -= *(idat.f1);
877 #endif
1260  
1261 <  }
1261 >    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1262 >      atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1263 >      atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1264 >    }
1265  
1266 +    if (storageLayout_ & DataStorage::dslElectricField) {              
1267 +      atomRowData.electricField[atom1] += *(idat.eField1);
1268 +      atomColData.electricField[atom2] += *(idat.eField2);
1269 +    }
1270  
1271 <  void ForceMatrixDecomposition::fillSkipData(InteractionData idat,
1272 <                                              int atom1, int atom2) {
1273 < #ifdef IS_MPI
1274 <    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
886 <                             ff_->getAtomType(identsCol[atom2]) );
1271 >    if (storageLayout_ & DataStorage::dslSitePotential) {              
1272 >      atomRowData.sitePotential[atom1] += *(idat.sPot1);
1273 >      atomColData.sitePotential[atom2] += *(idat.sPot2);
1274 >    }
1275  
1276 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
1277 <      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
1278 <      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
1276 > #else
1277 >    pairwisePot += *(idat.pot);
1278 >    excludedPot += *(idat.excludedPot);
1279 >
1280 >    snap_->atomData.force[atom1] += *(idat.f1);
1281 >    snap_->atomData.force[atom2] -= *(idat.f1);
1282 >
1283 >    if (idat.doParticlePot) {
1284 >      // This is the pairwise contribution to the particle pot.  The
1285 >      // embedding contribution is added in each of the low level
1286 >      // non-bonded routines.  In parallel, this calculation is done
1287 >      // in collectData, not in unpackInteractionData.
1288 >      snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1289 >      snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1290      }
1291 <    if (storageLayout_ & DataStorage::dslTorque) {
1292 <      idat.t1 = &(atomRowData.torque[atom1]);
1293 <      idat.t2 = &(atomColData.torque[atom2]);
1291 >    
1292 >    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1293 >      snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1294 >      snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1295      }
896 #else
897    idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]),
898                             ff_->getAtomType(identsLocal[atom2]) );
1296  
1297 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
1298 <      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
1299 <      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
1297 >    if (storageLayout_ & DataStorage::dslElectricField) {              
1298 >      snap_->atomData.electricField[atom1] += *(idat.eField1);
1299 >      snap_->atomData.electricField[atom2] += *(idat.eField2);
1300      }
1301 <    if (storageLayout_ & DataStorage::dslTorque) {
1302 <      idat.t1 = &(snap_->atomData.torque[atom1]);
1303 <      idat.t2 = &(snap_->atomData.torque[atom2]);
1301 >
1302 >    if (storageLayout_ & DataStorage::dslSitePotential) {              
1303 >      snap_->atomData.sitePotential[atom1] += *(idat.sPot1);
1304 >      snap_->atomData.sitePotential[atom2] += *(idat.sPot2);
1305      }
1306 < #endif    
1306 >
1307 > #endif
1308 >    
1309    }
1310  
1311    /*
1312     * buildNeighborList
1313     *
1314 <   * first element of pair is row-indexed CutoffGroup
1315 <   * second element of pair is column-indexed CutoffGroup
1314 >   * Constructs the Verlet neighbor list for a force-matrix
1315 >   * decomposition.  In this case, each processor is responsible for
1316 >   * row-site interactions with column-sites.
1317 >   *
1318 >   * neighborList is returned as a packed array of neighboring
1319 >   * column-ordered CutoffGroups.  The starting position in
1320 >   * neighborList for each row-ordered CutoffGroup is given by the
1321 >   * returned vector point.
1322     */
1323 <  vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1324 <      
1325 <    vector<pair<int, int> > neighborList;
1326 <    groupCutoffs cuts;
1323 >  void ForceMatrixDecomposition::buildNeighborList(vector<int>& neighborList,
1324 >                                                   vector<int>& point) {
1325 >    neighborList.clear();
1326 >    point.clear();
1327 >    int len = 0;
1328 >    
1329 >    bool doAllPairs = false;
1330 >
1331 >    Snapshot* snap_ = sman_->getCurrentSnapshot();
1332 >    Mat3x3d box;
1333 >    Mat3x3d invBox;
1334 >
1335 >    Vector3d rs, scaled, dr;
1336 >    Vector3i whichCell;
1337 >    int cellIndex;
1338 >
1339   #ifdef IS_MPI
1340      cellListRow_.clear();
1341      cellListCol_.clear();
1342 +    point.resize(nGroupsInRow_+1);
1343   #else
1344      cellList_.clear();
1345 +    point.resize(nGroups_+1);
1346   #endif
1347 +    
1348 +    if (!usePeriodicBoundaryConditions_) {
1349 +      box = snap_->getBoundingBox();
1350 +      invBox = snap_->getInvBoundingBox();
1351 +    } else {
1352 +      box = snap_->getHmat();
1353 +      invBox = snap_->getInvHmat();
1354 +    }
1355 +    
1356 +    Vector3d A = box.getColumn(0);
1357 +    Vector3d B = box.getColumn(1);
1358 +    Vector3d C = box.getColumn(2);
1359  
1360 <    RealType rList_ = (largestRcut_ + skinThickness_);
1361 <    RealType rl2 = rList_ * rList_;
1362 <    Snapshot* snap_ = sman_->getCurrentSnapshot();
1363 <    Mat3x3d Hmat = snap_->getHmat();
932 <    Vector3d Hx = Hmat.getColumn(0);
933 <    Vector3d Hy = Hmat.getColumn(1);
934 <    Vector3d Hz = Hmat.getColumn(2);
1360 >    // Required for triclinic cells
1361 >    Vector3d AxB = cross(A, B);
1362 >    Vector3d BxC = cross(B, C);
1363 >    Vector3d CxA = cross(C, A);
1364  
1365 <    nCells_.x() = (int) ( Hx.length() )/ rList_;
1366 <    nCells_.y() = (int) ( Hy.length() )/ rList_;
1367 <    nCells_.z() = (int) ( Hz.length() )/ rList_;
1365 >    // unit vectors perpendicular to the faces of the triclinic cell:
1366 >    AxB.normalize();
1367 >    BxC.normalize();
1368 >    CxA.normalize();
1369  
1370 <    Mat3x3d invHmat = snap_->getInvHmat();
1371 <    Vector3d rs, scaled, dr;
1372 <    Vector3i whichCell;
1373 <    int cellIndex;
1370 >    // A set of perpendicular lengths in triclinic cells:
1371 >    RealType Wa = abs(dot(A, BxC));
1372 >    RealType Wb = abs(dot(B, CxA));
1373 >    RealType Wc = abs(dot(C, AxB));
1374 >    
1375 >    nCells_.x() = int( Wa / rList_ );
1376 >    nCells_.y() = int( Wb / rList_ );
1377 >    nCells_.z() = int( Wc / rList_ );
1378 >    
1379 >    // handle small boxes where the cell offsets can end up repeating cells
1380 >    if (nCells_.x() < 3) doAllPairs = true;
1381 >    if (nCells_.y() < 3) doAllPairs = true;
1382 >    if (nCells_.z() < 3) doAllPairs = true;
1383 >    
1384      int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1385 <
946 <    cerr << "flag1\n";
1385 >    
1386   #ifdef IS_MPI
1387      cellListRow_.resize(nCtot);
1388      cellListCol_.resize(nCtot);
1389   #else
1390      cellList_.resize(nCtot);
1391   #endif
1392 <    cerr << "flag2\n";
1392 >    
1393 >    if (!doAllPairs) {
1394 >      
1395   #ifdef IS_MPI
1396 <    for (int i = 0; i < nGroupsInRow_; i++) {
1397 <      rs = cgRowData.position[i];
1398 <
1399 <      // scaled positions relative to the box vectors
1400 <      scaled = invHmat * rs;
1401 <
1402 <      // wrap the vector back into the unit box by subtracting integer box
1403 <      // numbers
1404 <      for (int j = 0; j < 3; j++) {
1405 <        scaled[j] -= roundMe(scaled[j]);
1406 <        scaled[j] += 0.5;
1396 >      
1397 >      for (int i = 0; i < nGroupsInRow_; i++) {
1398 >        rs = cgRowData.position[i];
1399 >        
1400 >        // scaled positions relative to the box vectors
1401 >        scaled = invBox * rs;
1402 >        
1403 >        // wrap the vector back into the unit box by subtracting integer box
1404 >        // numbers
1405 >        for (int j = 0; j < 3; j++) {
1406 >          scaled[j] -= roundMe(scaled[j]);
1407 >          scaled[j] += 0.5;
1408 >          // Handle the special case when an object is exactly on the
1409 >          // boundary (a scaled coordinate of 1.0 is the same as
1410 >          // scaled coordinate of 0.0)
1411 >          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1412 >        }
1413 >        
1414 >        // find xyz-indices of cell that cutoffGroup is in.
1415 >        whichCell.x() = nCells_.x() * scaled.x();
1416 >        whichCell.y() = nCells_.y() * scaled.y();
1417 >        whichCell.z() = nCells_.z() * scaled.z();
1418 >        
1419 >        // find single index of this cell:
1420 >        cellIndex = Vlinear(whichCell, nCells_);
1421 >        
1422 >        // add this cutoff group to the list of groups in this cell;
1423 >        cellListRow_[cellIndex].push_back(i);
1424        }
1425 <    
1426 <      // find xyz-indices of cell that cutoffGroup is in.
1427 <      whichCell.x() = nCells_.x() * scaled.x();
1428 <      whichCell.y() = nCells_.y() * scaled.y();
1429 <      whichCell.z() = nCells_.z() * scaled.z();
1430 <
1431 <      // find single index of this cell:
1432 <      cellIndex = Vlinear(whichCell, nCells_);
1433 <
1434 <      // add this cutoff group to the list of groups in this cell;
1435 <      cellListRow_[cellIndex].push_back(i);
1436 <    }
1437 <
1438 <    for (int i = 0; i < nGroupsInCol_; i++) {
1439 <      rs = cgColData.position[i];
1440 <
1441 <      // scaled positions relative to the box vectors
1442 <      scaled = invHmat * rs;
1443 <
1444 <      // wrap the vector back into the unit box by subtracting integer box
1445 <      // numbers
1446 <      for (int j = 0; j < 3; j++) {
1447 <        scaled[j] -= roundMe(scaled[j]);
1448 <        scaled[j] += 0.5;
1425 >      for (int i = 0; i < nGroupsInCol_; i++) {
1426 >        rs = cgColData.position[i];
1427 >        
1428 >        // scaled positions relative to the box vectors
1429 >        scaled = invBox * rs;
1430 >        
1431 >        // wrap the vector back into the unit box by subtracting integer box
1432 >        // numbers
1433 >        for (int j = 0; j < 3; j++) {
1434 >          scaled[j] -= roundMe(scaled[j]);
1435 >          scaled[j] += 0.5;
1436 >          // Handle the special case when an object is exactly on the
1437 >          // boundary (a scaled coordinate of 1.0 is the same as
1438 >          // scaled coordinate of 0.0)
1439 >          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1440 >        }
1441 >        
1442 >        // find xyz-indices of cell that cutoffGroup is in.
1443 >        whichCell.x() = nCells_.x() * scaled.x();
1444 >        whichCell.y() = nCells_.y() * scaled.y();
1445 >        whichCell.z() = nCells_.z() * scaled.z();
1446 >        
1447 >        // find single index of this cell:
1448 >        cellIndex = Vlinear(whichCell, nCells_);
1449 >        
1450 >        // add this cutoff group to the list of groups in this cell;
1451 >        cellListCol_[cellIndex].push_back(i);
1452        }
1453 <
993 <      // find xyz-indices of cell that cutoffGroup is in.
994 <      whichCell.x() = nCells_.x() * scaled.x();
995 <      whichCell.y() = nCells_.y() * scaled.y();
996 <      whichCell.z() = nCells_.z() * scaled.z();
997 <
998 <      // find single index of this cell:
999 <      cellIndex = Vlinear(whichCell, nCells_);
1000 <
1001 <      // add this cutoff group to the list of groups in this cell;
1002 <      cellListCol_[cellIndex].push_back(i);
1003 <    }
1453 >            
1454   #else
1455 <    for (int i = 0; i < nGroups_; i++) {
1456 <      rs = snap_->cgData.position[i];
1457 <
1458 <      // scaled positions relative to the box vectors
1459 <      scaled = invHmat * rs;
1460 <
1461 <      // wrap the vector back into the unit box by subtracting integer box
1462 <      // numbers
1463 <      for (int j = 0; j < 3; j++) {
1464 <        scaled[j] -= roundMe(scaled[j]);
1465 <        scaled[j] += 0.5;
1455 >      for (int i = 0; i < nGroups_; i++) {
1456 >        rs = snap_->cgData.position[i];
1457 >        
1458 >        // scaled positions relative to the box vectors
1459 >        scaled = invBox * rs;
1460 >        
1461 >        // wrap the vector back into the unit box by subtracting integer box
1462 >        // numbers
1463 >        for (int j = 0; j < 3; j++) {
1464 >          scaled[j] -= roundMe(scaled[j]);
1465 >          scaled[j] += 0.5;
1466 >          // Handle the special case when an object is exactly on the
1467 >          // boundary (a scaled coordinate of 1.0 is the same as
1468 >          // scaled coordinate of 0.0)
1469 >          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1470 >        }
1471 >        
1472 >        // find xyz-indices of cell that cutoffGroup is in.
1473 >        whichCell.x() = int(nCells_.x() * scaled.x());
1474 >        whichCell.y() = int(nCells_.y() * scaled.y());
1475 >        whichCell.z() = int(nCells_.z() * scaled.z());
1476 >        
1477 >        // find single index of this cell:
1478 >        cellIndex = Vlinear(whichCell, nCells_);
1479 >        
1480 >        // add this cutoff group to the list of groups in this cell;
1481 >        cellList_[cellIndex].push_back(i);
1482        }
1483  
1484 <      // find xyz-indices of cell that cutoffGroup is in.
1019 <      whichCell.x() = nCells_.x() * scaled.x();
1020 <      whichCell.y() = nCells_.y() * scaled.y();
1021 <      whichCell.z() = nCells_.z() * scaled.z();
1484 > #endif
1485  
1486 <      // find single index of this cell:
1487 <      cellIndex = Vlinear(whichCell, nCells_);      
1486 > #ifdef IS_MPI
1487 >      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1488 >        rs = cgRowData.position[j1];
1489 > #else
1490  
1491 <      // add this cutoff group to the list of groups in this cell;
1492 <      cellList_[cellIndex].push_back(i);
1028 <    }
1491 >      for (int j1 = 0; j1 < nGroups_; j1++) {
1492 >        rs = snap_->cgData.position[j1];
1493   #endif
1494 +        point[j1] = len;
1495 +        
1496 +        // scaled positions relative to the box vectors
1497 +        scaled = invBox * rs;
1498 +        
1499 +        // wrap the vector back into the unit box by subtracting integer box
1500 +        // numbers
1501 +        for (int j = 0; j < 3; j++) {
1502 +          scaled[j] -= roundMe(scaled[j]);
1503 +          scaled[j] += 0.5;
1504 +          // Handle the special case when an object is exactly on the
1505 +          // boundary (a scaled coordinate of 1.0 is the same as
1506 +          // scaled coordinate of 0.0)
1507 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1508 +        }
1509 +        
1510 +        // find xyz-indices of cell that cutoffGroup is in.
1511 +        whichCell.x() = nCells_.x() * scaled.x();
1512 +        whichCell.y() = nCells_.y() * scaled.y();
1513 +        whichCell.z() = nCells_.z() * scaled.z();
1514 +        
1515 +        // find single index of this cell:
1516 +        int m1 = Vlinear(whichCell, nCells_);
1517  
1518 <    for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1519 <      for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1520 <        for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1521 <          Vector3i m1v(m1x, m1y, m1z);
1035 <          int m1 = Vlinear(m1v, nCells_);
1518 >        for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1519 >             os != cellOffsets_.end(); ++os) {
1520 >              
1521 >          Vector3i m2v = whichCell + (*os);
1522  
1523 <          for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1524 <               os != cellOffsets_.end(); ++os) {
1523 >          if (m2v.x() >= nCells_.x()) {
1524 >            m2v.x() = 0;          
1525 >          } else if (m2v.x() < 0) {
1526 >            m2v.x() = nCells_.x() - 1;
1527 >          }
1528 >          
1529 >          if (m2v.y() >= nCells_.y()) {
1530 >            m2v.y() = 0;          
1531 >          } else if (m2v.y() < 0) {
1532 >            m2v.y() = nCells_.y() - 1;
1533 >          }
1534 >          
1535 >          if (m2v.z() >= nCells_.z()) {
1536 >            m2v.z() = 0;          
1537 >          } else if (m2v.z() < 0) {
1538 >            m2v.z() = nCells_.z() - 1;
1539 >          }
1540 >          int m2 = Vlinear (m2v, nCells_);                                      
1541 > #ifdef IS_MPI
1542 >          for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1543 >               j2 != cellListCol_[m2].end(); ++j2) {
1544              
1545 <            Vector3i m2v = m1v + (*os);
1546 <            
1547 <            if (m2v.x() >= nCells_.x()) {
1548 <              m2v.x() = 0;          
1549 <            } else if (m2v.x() < 0) {
1550 <              m2v.x() = nCells_.x() - 1;
1545 >            // In parallel, we need to visit *all* pairs of row
1546 >            // & column indicies and will divide labor in the
1547 >            // force evaluation later.
1548 >            dr = cgColData.position[(*j2)] - rs;
1549 >            if (usePeriodicBoundaryConditions_) {
1550 >              snap_->wrapVector(dr);
1551              }
1552 +            if (dr.lengthSquare() < rListSq_) {
1553 +              neighborList.push_back( (*j2) );
1554 +              ++len;
1555 +            }                
1556 +          }        
1557 + #else
1558 +          for (vector<int>::iterator j2 = cellList_[m2].begin();
1559 +               j2 != cellList_[m2].end(); ++j2) {
1560 +          
1561 +            // Always do this if we're in different cells or if
1562 +            // we're in the same cell and the global index of
1563 +            // the j2 cutoff group is greater than or equal to
1564 +            // the j1 cutoff group.  Note that Rappaport's code
1565 +            // has a "less than" conditional here, but that
1566 +            // deals with atom-by-atom computation.  OpenMD
1567 +            // allows atoms within a single cutoff group to
1568 +            // interact with each other.
1569              
1570 <            if (m2v.y() >= nCells_.y()) {
1571 <              m2v.y() = 0;          
1572 <            } else if (m2v.y() < 0) {
1573 <              m2v.y() = nCells_.y() - 1;
1574 <            }
1053 <            
1054 <            if (m2v.z() >= nCells_.z()) {
1055 <              m2v.z() = 0;          
1056 <            } else if (m2v.z() < 0) {
1057 <              m2v.z() = nCells_.z() - 1;
1058 <            }
1059 <            
1060 <            int m2 = Vlinear (m2v, nCells_);
1061 <
1062 < #ifdef IS_MPI
1063 <            for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1064 <                 j1 != cellListRow_[m1].end(); ++j1) {
1065 <              for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1066 <                   j2 != cellListCol_[m2].end(); ++j2) {
1067 <                              
1068 <                // Always do this if we're in different cells or if
1069 <                // we're in the same cell and the global index of the
1070 <                // j2 cutoff group is less than the j1 cutoff group
1071 <
1072 <                if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1073 <                  dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1074 <                  snap_->wrapVector(dr);
1075 <                  cuts = getGroupCutoffs( (*j1), (*j2) );
1076 <                  if (dr.lengthSquare() < cuts.third) {
1077 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1078 <                  }
1079 <                }
1570 >            if ( (*j2) >= j1 ) {
1571 >              
1572 >              dr = snap_->cgData.position[(*j2)] - rs;
1573 >              if (usePeriodicBoundaryConditions_) {
1574 >                snap_->wrapVector(dr);
1575                }
1576 <            }
1577 < #else
1578 <
1084 <            for (vector<int>::iterator j1 = cellList_[m1].begin();
1085 <                 j1 != cellList_[m1].end(); ++j1) {
1086 <              for (vector<int>::iterator j2 = cellList_[m2].begin();
1087 <                   j2 != cellList_[m2].end(); ++j2) {
1088 <
1089 <                // Always do this if we're in different cells or if
1090 <                // we're in the same cell and the global index of the
1091 <                // j2 cutoff group is less than the j1 cutoff group
1092 <
1093 <                if (m2 != m1 || (*j2) < (*j1)) {
1094 <                  dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1095 <                  snap_->wrapVector(dr);
1096 <                  cuts = getGroupCutoffs( (*j1), (*j2) );
1097 <                  if (dr.lengthSquare() < cuts.third) {
1098 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1099 <                  }
1100 <                }
1576 >              if ( dr.lengthSquare() < rListSq_) {
1577 >                neighborList.push_back( (*j2) );
1578 >                ++len;
1579                }
1580              }
1581 +          }                
1582   #endif
1583 +        }
1584 +      }      
1585 +    } else {
1586 +      // branch to do all cutoff group pairs
1587 + #ifdef IS_MPI
1588 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1589 +        point[j1] = len;
1590 +        rs = cgRowData.position[j1];
1591 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {    
1592 +          dr = cgColData.position[j2] - rs;
1593 +          if (usePeriodicBoundaryConditions_) {
1594 +            snap_->wrapVector(dr);
1595            }
1596 +          if (dr.lengthSquare() < rListSq_) {
1597 +            neighborList.push_back( j2 );
1598 +            ++len;
1599 +          }
1600          }
1601 +      }      
1602 + #else
1603 +      // include all groups here.
1604 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1605 +        point[j1] = len;
1606 +        rs = snap_->cgData.position[j1];
1607 +        // include self group interactions j2 == j1
1608 +        for (int j2 = j1; j2 < nGroups_; j2++) {
1609 +          dr = snap_->cgData.position[j2] - rs;
1610 +          if (usePeriodicBoundaryConditions_) {
1611 +            snap_->wrapVector(dr);
1612 +          }
1613 +          if (dr.lengthSquare() < rListSq_) {
1614 +            neighborList.push_back( j2 );
1615 +            ++len;
1616 +          }
1617 +        }    
1618        }
1619 + #endif
1620      }
1621 <    
1621 >
1622 > #ifdef IS_MPI
1623 >    point[nGroupsInRow_] = len;
1624 > #else
1625 >    point[nGroups_] = len;
1626 > #endif
1627 >  
1628      // save the local cutoff group positions for the check that is
1629      // done on each loop:
1630      saved_CG_positions_.clear();
1631 +    saved_CG_positions_.reserve(nGroups_);
1632      for (int i = 0; i < nGroups_; i++)
1633        saved_CG_positions_.push_back(snap_->cgData.position[i]);
1114    
1115    return neighborList;
1634    }
1635   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines