42 |
|
#include "math/SquareMatrix3.hpp" |
43 |
|
#include "nonbonded/NonBondedInteraction.hpp" |
44 |
|
#include "brains/SnapshotManager.hpp" |
45 |
+ |
#include "brains/PairList.hpp" |
46 |
|
|
47 |
|
using namespace std; |
48 |
|
namespace OpenMD { |
55 |
|
void ForceMatrixDecomposition::distributeInitialData() { |
56 |
|
snap_ = sman_->getCurrentSnapshot(); |
57 |
|
storageLayout_ = sman_->getStorageLayout(); |
58 |
+ |
ff_ = info_->getForceField(); |
59 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
58 |
– |
nGroups_ = snap_->getNumberOfCutoffGroups(); |
60 |
|
|
61 |
+ |
nGroups_ = info_->getNLocalCutoffGroups(); |
62 |
+ |
cerr << "in dId, nGroups = " << nGroups_ << "\n"; |
63 |
+ |
// gather the information for atomtype IDs (atids): |
64 |
+ |
identsLocal = info_->getIdentArray(); |
65 |
+ |
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
66 |
+ |
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
67 |
+ |
vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
68 |
+ |
vector<RealType> massFactorsLocal = info_->getMassFactors(); |
69 |
+ |
PairList excludes = info_->getExcludedInteractions(); |
70 |
+ |
PairList oneTwo = info_->getOneTwoInteractions(); |
71 |
+ |
PairList oneThree = info_->getOneThreeInteractions(); |
72 |
+ |
PairList oneFour = info_->getOneFourInteractions(); |
73 |
+ |
|
74 |
|
#ifdef IS_MPI |
75 |
|
|
76 |
|
AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
77 |
|
AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
78 |
|
AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
79 |
|
AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
80 |
+ |
AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
81 |
|
|
82 |
|
AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
83 |
|
AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
84 |
|
AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
85 |
|
AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
86 |
+ |
AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
87 |
|
|
88 |
|
cgCommIntRow = new Communicator<Row,int>(nGroups_); |
89 |
|
cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
104 |
|
cgRowData.setStorageLayout(DataStorage::dslPosition); |
105 |
|
cgColData.resize(nGroupsInCol_); |
106 |
|
cgColData.setStorageLayout(DataStorage::dslPosition); |
107 |
+ |
|
108 |
+ |
identsRow.resize(nAtomsInRow_); |
109 |
+ |
identsCol.resize(nAtomsInCol_); |
110 |
|
|
92 |
– |
vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES, |
93 |
– |
vector<RealType> (nAtomsInRow_, 0.0)); |
94 |
– |
vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES, |
95 |
– |
vector<RealType> (nAtomsInCol_, 0.0)); |
96 |
– |
|
97 |
– |
|
98 |
– |
vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0); |
99 |
– |
|
100 |
– |
// gather the information for atomtype IDs (atids): |
101 |
– |
vector<int> identsLocal = info_->getIdentArray(); |
102 |
– |
identsRow.reserve(nAtomsInRow_); |
103 |
– |
identsCol.reserve(nAtomsInCol_); |
104 |
– |
|
111 |
|
AtomCommIntRow->gather(identsLocal, identsRow); |
112 |
|
AtomCommIntColumn->gather(identsLocal, identsCol); |
113 |
|
|
108 |
– |
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
114 |
|
AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
115 |
|
AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
116 |
|
|
112 |
– |
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
117 |
|
cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
118 |
|
cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
119 |
|
|
120 |
< |
// still need: |
121 |
< |
// topoDist |
122 |
< |
// exclude |
120 |
> |
AtomCommRealRow->gather(massFactorsLocal, massFactorsRow); |
121 |
> |
AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol); |
122 |
> |
|
123 |
> |
groupListRow_.clear(); |
124 |
> |
groupListRow_.resize(nGroupsInRow_); |
125 |
> |
for (int i = 0; i < nGroupsInRow_; i++) { |
126 |
> |
int gid = cgRowToGlobal[i]; |
127 |
> |
for (int j = 0; j < nAtomsInRow_; j++) { |
128 |
> |
int aid = AtomRowToGlobal[j]; |
129 |
> |
if (globalGroupMembership[aid] == gid) |
130 |
> |
groupListRow_[i].push_back(j); |
131 |
> |
} |
132 |
> |
} |
133 |
> |
|
134 |
> |
groupListCol_.clear(); |
135 |
> |
groupListCol_.resize(nGroupsInCol_); |
136 |
> |
for (int i = 0; i < nGroupsInCol_; i++) { |
137 |
> |
int gid = cgColToGlobal[i]; |
138 |
> |
for (int j = 0; j < nAtomsInCol_; j++) { |
139 |
> |
int aid = AtomColToGlobal[j]; |
140 |
> |
if (globalGroupMembership[aid] == gid) |
141 |
> |
groupListCol_[i].push_back(j); |
142 |
> |
} |
143 |
> |
} |
144 |
> |
|
145 |
> |
skipsForAtom.clear(); |
146 |
> |
skipsForAtom.resize(nAtomsInRow_); |
147 |
> |
toposForAtom.clear(); |
148 |
> |
toposForAtom.resize(nAtomsInRow_); |
149 |
> |
topoDist.clear(); |
150 |
> |
topoDist.resize(nAtomsInRow_); |
151 |
> |
for (int i = 0; i < nAtomsInRow_; i++) { |
152 |
> |
int iglob = AtomRowToGlobal[i]; |
153 |
> |
|
154 |
> |
for (int j = 0; j < nAtomsInCol_; j++) { |
155 |
> |
int jglob = AtomColToGlobal[j]; |
156 |
> |
|
157 |
> |
if (excludes.hasPair(iglob, jglob)) |
158 |
> |
skipsForAtom[i].push_back(j); |
159 |
> |
|
160 |
> |
if (oneTwo.hasPair(iglob, jglob)) { |
161 |
> |
toposForAtom[i].push_back(j); |
162 |
> |
topoDist[i].push_back(1); |
163 |
> |
} else { |
164 |
> |
if (oneThree.hasPair(iglob, jglob)) { |
165 |
> |
toposForAtom[i].push_back(j); |
166 |
> |
topoDist[i].push_back(2); |
167 |
> |
} else { |
168 |
> |
if (oneFour.hasPair(iglob, jglob)) { |
169 |
> |
toposForAtom[i].push_back(j); |
170 |
> |
topoDist[i].push_back(3); |
171 |
> |
} |
172 |
> |
} |
173 |
> |
} |
174 |
> |
} |
175 |
> |
} |
176 |
> |
|
177 |
|
#endif |
178 |
+ |
|
179 |
+ |
groupList_.clear(); |
180 |
+ |
groupList_.resize(nGroups_); |
181 |
+ |
for (int i = 0; i < nGroups_; i++) { |
182 |
+ |
int gid = cgLocalToGlobal[i]; |
183 |
+ |
for (int j = 0; j < nLocal_; j++) { |
184 |
+ |
int aid = AtomLocalToGlobal[j]; |
185 |
+ |
if (globalGroupMembership[aid] == gid) { |
186 |
+ |
groupList_[i].push_back(j); |
187 |
+ |
} |
188 |
+ |
} |
189 |
+ |
} |
190 |
+ |
|
191 |
+ |
skipsForAtom.clear(); |
192 |
+ |
skipsForAtom.resize(nLocal_); |
193 |
+ |
toposForAtom.clear(); |
194 |
+ |
toposForAtom.resize(nLocal_); |
195 |
+ |
topoDist.clear(); |
196 |
+ |
topoDist.resize(nLocal_); |
197 |
+ |
|
198 |
+ |
for (int i = 0; i < nLocal_; i++) { |
199 |
+ |
int iglob = AtomLocalToGlobal[i]; |
200 |
+ |
|
201 |
+ |
for (int j = 0; j < nLocal_; j++) { |
202 |
+ |
int jglob = AtomLocalToGlobal[j]; |
203 |
+ |
|
204 |
+ |
if (excludes.hasPair(iglob, jglob)) |
205 |
+ |
skipsForAtom[i].push_back(j); |
206 |
+ |
|
207 |
+ |
if (oneTwo.hasPair(iglob, jglob)) { |
208 |
+ |
toposForAtom[i].push_back(j); |
209 |
+ |
topoDist[i].push_back(1); |
210 |
+ |
} else { |
211 |
+ |
if (oneThree.hasPair(iglob, jglob)) { |
212 |
+ |
toposForAtom[i].push_back(j); |
213 |
+ |
topoDist[i].push_back(2); |
214 |
+ |
} else { |
215 |
+ |
if (oneFour.hasPair(iglob, jglob)) { |
216 |
+ |
toposForAtom[i].push_back(j); |
217 |
+ |
topoDist[i].push_back(3); |
218 |
+ |
} |
219 |
+ |
} |
220 |
+ |
} |
221 |
+ |
} |
222 |
+ |
} |
223 |
+ |
|
224 |
+ |
createGtypeCutoffMap(); |
225 |
|
} |
226 |
+ |
|
227 |
+ |
void ForceMatrixDecomposition::createGtypeCutoffMap() { |
228 |
+ |
|
229 |
+ |
RealType tol = 1e-6; |
230 |
+ |
RealType rc; |
231 |
+ |
int atid; |
232 |
+ |
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
233 |
+ |
vector<RealType> atypeCutoff; |
234 |
+ |
atypeCutoff.resize( atypes.size() ); |
235 |
+ |
|
236 |
+ |
for (set<AtomType*>::iterator at = atypes.begin(); |
237 |
+ |
at != atypes.end(); ++at){ |
238 |
+ |
rc = interactionMan_->getSuggestedCutoffRadius(*at); |
239 |
+ |
atid = (*at)->getIdent(); |
240 |
+ |
atypeCutoff[atid] = rc; |
241 |
+ |
} |
242 |
+ |
|
243 |
+ |
vector<RealType> gTypeCutoffs; |
244 |
+ |
|
245 |
+ |
// first we do a single loop over the cutoff groups to find the |
246 |
+ |
// largest cutoff for any atypes present in this group. |
247 |
+ |
#ifdef IS_MPI |
248 |
+ |
vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); |
249 |
+ |
groupRowToGtype.resize(nGroupsInRow_); |
250 |
+ |
for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { |
251 |
+ |
vector<int> atomListRow = getAtomsInGroupRow(cg1); |
252 |
+ |
for (vector<int>::iterator ia = atomListRow.begin(); |
253 |
+ |
ia != atomListRow.end(); ++ia) { |
254 |
+ |
int atom1 = (*ia); |
255 |
+ |
atid = identsRow[atom1]; |
256 |
+ |
if (atypeCutoff[atid] > groupCutoffRow[cg1]) { |
257 |
+ |
groupCutoffRow[cg1] = atypeCutoff[atid]; |
258 |
+ |
} |
259 |
+ |
} |
260 |
+ |
|
261 |
+ |
bool gTypeFound = false; |
262 |
+ |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
263 |
+ |
if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { |
264 |
+ |
groupRowToGtype[cg1] = gt; |
265 |
+ |
gTypeFound = true; |
266 |
+ |
} |
267 |
+ |
} |
268 |
+ |
if (!gTypeFound) { |
269 |
+ |
gTypeCutoffs.push_back( groupCutoffRow[cg1] ); |
270 |
+ |
groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; |
271 |
+ |
} |
272 |
+ |
|
273 |
+ |
} |
274 |
+ |
vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); |
275 |
+ |
groupColToGtype.resize(nGroupsInCol_); |
276 |
+ |
for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { |
277 |
+ |
vector<int> atomListCol = getAtomsInGroupColumn(cg2); |
278 |
+ |
for (vector<int>::iterator jb = atomListCol.begin(); |
279 |
+ |
jb != atomListCol.end(); ++jb) { |
280 |
+ |
int atom2 = (*jb); |
281 |
+ |
atid = identsCol[atom2]; |
282 |
+ |
if (atypeCutoff[atid] > groupCutoffCol[cg2]) { |
283 |
+ |
groupCutoffCol[cg2] = atypeCutoff[atid]; |
284 |
+ |
} |
285 |
+ |
} |
286 |
+ |
bool gTypeFound = false; |
287 |
+ |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
288 |
+ |
if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { |
289 |
+ |
groupColToGtype[cg2] = gt; |
290 |
+ |
gTypeFound = true; |
291 |
+ |
} |
292 |
+ |
} |
293 |
+ |
if (!gTypeFound) { |
294 |
+ |
gTypeCutoffs.push_back( groupCutoffCol[cg2] ); |
295 |
+ |
groupColToGtype[cg2] = gTypeCutoffs.size() - 1; |
296 |
+ |
} |
297 |
+ |
} |
298 |
+ |
#else |
299 |
+ |
|
300 |
+ |
vector<RealType> groupCutoff(nGroups_, 0.0); |
301 |
+ |
groupToGtype.resize(nGroups_); |
302 |
+ |
|
303 |
+ |
cerr << "nGroups = " << nGroups_ << "\n"; |
304 |
+ |
for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
305 |
+ |
|
306 |
+ |
groupCutoff[cg1] = 0.0; |
307 |
+ |
vector<int> atomList = getAtomsInGroupRow(cg1); |
308 |
+ |
|
309 |
+ |
for (vector<int>::iterator ia = atomList.begin(); |
310 |
+ |
ia != atomList.end(); ++ia) { |
311 |
+ |
int atom1 = (*ia); |
312 |
+ |
atid = identsLocal[atom1]; |
313 |
+ |
if (atypeCutoff[atid] > groupCutoff[cg1]) { |
314 |
+ |
groupCutoff[cg1] = atypeCutoff[atid]; |
315 |
+ |
} |
316 |
+ |
} |
317 |
+ |
|
318 |
+ |
bool gTypeFound = false; |
319 |
+ |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
320 |
+ |
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
321 |
+ |
groupToGtype[cg1] = gt; |
322 |
+ |
gTypeFound = true; |
323 |
+ |
} |
324 |
+ |
} |
325 |
+ |
if (!gTypeFound) { |
326 |
+ |
gTypeCutoffs.push_back( groupCutoff[cg1] ); |
327 |
+ |
groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
328 |
+ |
} |
329 |
+ |
} |
330 |
+ |
#endif |
331 |
+ |
|
332 |
+ |
cerr << "gTypeCutoffs.size() = " << gTypeCutoffs.size() << "\n"; |
333 |
+ |
// Now we find the maximum group cutoff value present in the simulation |
334 |
+ |
|
335 |
+ |
RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); |
336 |
+ |
|
337 |
+ |
#ifdef IS_MPI |
338 |
+ |
MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); |
339 |
+ |
#endif |
340 |
+ |
|
341 |
+ |
RealType tradRcut = groupMax; |
342 |
+ |
|
343 |
+ |
for (int i = 0; i < gTypeCutoffs.size(); i++) { |
344 |
+ |
for (int j = 0; j < gTypeCutoffs.size(); j++) { |
345 |
+ |
RealType thisRcut; |
346 |
+ |
switch(cutoffPolicy_) { |
347 |
+ |
case TRADITIONAL: |
348 |
+ |
thisRcut = tradRcut; |
349 |
+ |
break; |
350 |
+ |
case MIX: |
351 |
+ |
thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); |
352 |
+ |
break; |
353 |
+ |
case MAX: |
354 |
+ |
thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); |
355 |
+ |
break; |
356 |
+ |
default: |
357 |
+ |
sprintf(painCave.errMsg, |
358 |
+ |
"ForceMatrixDecomposition::createGtypeCutoffMap " |
359 |
+ |
"hit an unknown cutoff policy!\n"); |
360 |
+ |
painCave.severity = OPENMD_ERROR; |
361 |
+ |
painCave.isFatal = 1; |
362 |
+ |
simError(); |
363 |
+ |
break; |
364 |
+ |
} |
365 |
+ |
|
366 |
+ |
pair<int,int> key = make_pair(i,j); |
367 |
+ |
gTypeCutoffMap[key].first = thisRcut; |
368 |
+ |
|
369 |
+ |
if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
370 |
+ |
|
371 |
+ |
gTypeCutoffMap[key].second = thisRcut*thisRcut; |
372 |
+ |
|
373 |
+ |
gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
374 |
+ |
|
375 |
+ |
// sanity check |
376 |
+ |
|
377 |
+ |
if (userChoseCutoff_) { |
378 |
+ |
if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
379 |
+ |
sprintf(painCave.errMsg, |
380 |
+ |
"ForceMatrixDecomposition::createGtypeCutoffMap " |
381 |
+ |
"user-specified rCut does not match computed group Cutoff\n"); |
382 |
+ |
painCave.severity = OPENMD_ERROR; |
383 |
+ |
painCave.isFatal = 1; |
384 |
+ |
simError(); |
385 |
+ |
} |
386 |
+ |
} |
387 |
+ |
} |
388 |
+ |
} |
389 |
+ |
} |
390 |
+ |
|
391 |
+ |
|
392 |
+ |
groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
393 |
+ |
int i, j; |
394 |
+ |
#ifdef IS_MPI |
395 |
+ |
i = groupRowToGtype[cg1]; |
396 |
+ |
j = groupColToGtype[cg2]; |
397 |
+ |
#else |
398 |
+ |
i = groupToGtype[cg1]; |
399 |
+ |
j = groupToGtype[cg2]; |
400 |
+ |
#endif |
401 |
+ |
return gTypeCutoffMap[make_pair(i,j)]; |
402 |
+ |
} |
403 |
+ |
|
404 |
+ |
int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
405 |
+ |
for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
406 |
+ |
if (toposForAtom[atom1][j] == atom2) |
407 |
+ |
return topoDist[atom1][j]; |
408 |
+ |
} |
409 |
+ |
return 0; |
410 |
+ |
} |
411 |
+ |
|
412 |
+ |
void ForceMatrixDecomposition::zeroWorkArrays() { |
413 |
+ |
|
414 |
+ |
for (int j = 0; j < N_INTERACTION_FAMILIES; j++) { |
415 |
+ |
longRangePot_[j] = 0.0; |
416 |
+ |
} |
417 |
+ |
|
418 |
+ |
#ifdef IS_MPI |
419 |
+ |
if (storageLayout_ & DataStorage::dslForce) { |
420 |
+ |
fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); |
421 |
+ |
fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); |
422 |
+ |
} |
423 |
+ |
|
424 |
+ |
if (storageLayout_ & DataStorage::dslTorque) { |
425 |
+ |
fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); |
426 |
+ |
fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); |
427 |
+ |
} |
428 |
+ |
|
429 |
+ |
fill(pot_row.begin(), pot_row.end(), |
430 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
431 |
+ |
|
432 |
+ |
fill(pot_col.begin(), pot_col.end(), |
433 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
434 |
+ |
|
435 |
+ |
pot_local = Vector<RealType, N_INTERACTION_FAMILIES>(0.0); |
436 |
+ |
|
437 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
438 |
+ |
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); |
439 |
+ |
fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); |
440 |
+ |
} |
441 |
+ |
|
442 |
+ |
if (storageLayout_ & DataStorage::dslDensity) { |
443 |
+ |
fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); |
444 |
+ |
fill(atomColData.density.begin(), atomColData.density.end(), 0.0); |
445 |
+ |
} |
446 |
+ |
|
447 |
+ |
if (storageLayout_ & DataStorage::dslFunctional) { |
448 |
+ |
fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); |
449 |
+ |
fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); |
450 |
+ |
} |
451 |
+ |
|
452 |
+ |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
453 |
+ |
fill(atomRowData.functionalDerivative.begin(), |
454 |
+ |
atomRowData.functionalDerivative.end(), 0.0); |
455 |
+ |
fill(atomColData.functionalDerivative.begin(), |
456 |
+ |
atomColData.functionalDerivative.end(), 0.0); |
457 |
+ |
} |
458 |
+ |
|
459 |
+ |
#else |
460 |
+ |
|
461 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
462 |
+ |
fill(snap_->atomData.particlePot.begin(), |
463 |
+ |
snap_->atomData.particlePot.end(), 0.0); |
464 |
+ |
} |
465 |
+ |
|
466 |
+ |
if (storageLayout_ & DataStorage::dslDensity) { |
467 |
+ |
fill(snap_->atomData.density.begin(), |
468 |
+ |
snap_->atomData.density.end(), 0.0); |
469 |
+ |
} |
470 |
+ |
if (storageLayout_ & DataStorage::dslFunctional) { |
471 |
+ |
fill(snap_->atomData.functional.begin(), |
472 |
+ |
snap_->atomData.functional.end(), 0.0); |
473 |
+ |
} |
474 |
+ |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
475 |
+ |
fill(snap_->atomData.functionalDerivative.begin(), |
476 |
+ |
snap_->atomData.functionalDerivative.end(), 0.0); |
477 |
+ |
} |
478 |
+ |
#endif |
479 |
|
|
480 |
+ |
} |
481 |
|
|
482 |
|
|
483 |
|
void ForceMatrixDecomposition::distributeData() { |
515 |
|
#endif |
516 |
|
} |
517 |
|
|
518 |
+ |
/* collects information obtained during the pre-pair loop onto local |
519 |
+ |
* data structures. |
520 |
+ |
*/ |
521 |
|
void ForceMatrixDecomposition::collectIntermediateData() { |
522 |
|
snap_ = sman_->getCurrentSnapshot(); |
523 |
|
storageLayout_ = sman_->getStorageLayout(); |
529 |
|
snap_->atomData.density); |
530 |
|
|
531 |
|
int n = snap_->atomData.density.size(); |
532 |
< |
std::vector<RealType> rho_tmp(n, 0.0); |
532 |
> |
vector<RealType> rho_tmp(n, 0.0); |
533 |
|
AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
534 |
|
for (int i = 0; i < n; i++) |
535 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
536 |
|
} |
537 |
|
#endif |
538 |
|
} |
539 |
< |
|
539 |
> |
|
540 |
> |
/* |
541 |
> |
* redistributes information obtained during the pre-pair loop out to |
542 |
> |
* row and column-indexed data structures |
543 |
> |
*/ |
544 |
|
void ForceMatrixDecomposition::distributeIntermediateData() { |
545 |
|
snap_ = sman_->getCurrentSnapshot(); |
546 |
|
storageLayout_ = sman_->getStorageLayout(); |
598 |
|
|
599 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
600 |
|
|
601 |
< |
vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES, |
602 |
< |
vector<RealType> (nLocal_, 0.0)); |
601 |
> |
vector<potVec> pot_temp(nLocal_, |
602 |
> |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
603 |
> |
|
604 |
> |
// scatter/gather pot_row into the members of my column |
605 |
> |
|
606 |
> |
AtomCommPotRow->scatter(pot_row, pot_temp); |
607 |
> |
|
608 |
> |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
609 |
> |
pot_local += pot_temp[ii]; |
610 |
|
|
611 |
< |
for (int i = 0; i < N_INTERACTION_FAMILIES; i++) { |
612 |
< |
AtomCommRealRow->scatter(pot_row[i], pot_temp[i]); |
613 |
< |
for (int ii = 0; ii < pot_temp[i].size(); ii++ ) { |
614 |
< |
pot_local[i] += pot_temp[i][ii]; |
615 |
< |
} |
616 |
< |
} |
611 |
> |
fill(pot_temp.begin(), pot_temp.end(), |
612 |
> |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
613 |
> |
|
614 |
> |
AtomCommPotColumn->scatter(pot_col, pot_temp); |
615 |
> |
|
616 |
> |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
617 |
> |
pot_local += pot_temp[ii]; |
618 |
> |
|
619 |
|
#endif |
620 |
|
} |
621 |
|
|
622 |
+ |
int ForceMatrixDecomposition::getNAtomsInRow() { |
623 |
+ |
#ifdef IS_MPI |
624 |
+ |
return nAtomsInRow_; |
625 |
+ |
#else |
626 |
+ |
return nLocal_; |
627 |
+ |
#endif |
628 |
+ |
} |
629 |
+ |
|
630 |
+ |
/** |
631 |
+ |
* returns the list of atoms belonging to this group. |
632 |
+ |
*/ |
633 |
+ |
vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
634 |
+ |
#ifdef IS_MPI |
635 |
+ |
return groupListRow_[cg1]; |
636 |
+ |
#else |
637 |
+ |
return groupList_[cg1]; |
638 |
+ |
#endif |
639 |
+ |
} |
640 |
+ |
|
641 |
+ |
vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
642 |
+ |
#ifdef IS_MPI |
643 |
+ |
return groupListCol_[cg2]; |
644 |
+ |
#else |
645 |
+ |
return groupList_[cg2]; |
646 |
+ |
#endif |
647 |
+ |
} |
648 |
|
|
649 |
|
Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ |
650 |
|
Vector3d d; |
686 |
|
snap_->wrapVector(d); |
687 |
|
return d; |
688 |
|
} |
689 |
+ |
|
690 |
+ |
RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
691 |
+ |
#ifdef IS_MPI |
692 |
+ |
return massFactorsRow[atom1]; |
693 |
+ |
#else |
694 |
+ |
return massFactorsLocal[atom1]; |
695 |
+ |
#endif |
696 |
+ |
} |
697 |
+ |
|
698 |
+ |
RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
699 |
+ |
#ifdef IS_MPI |
700 |
+ |
return massFactorsCol[atom2]; |
701 |
+ |
#else |
702 |
+ |
return massFactorsLocal[atom2]; |
703 |
+ |
#endif |
704 |
+ |
|
705 |
+ |
} |
706 |
|
|
707 |
|
Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ |
708 |
|
Vector3d d; |
717 |
|
return d; |
718 |
|
} |
719 |
|
|
720 |
+ |
vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) { |
721 |
+ |
return skipsForAtom[atom1]; |
722 |
+ |
} |
723 |
+ |
|
724 |
+ |
/** |
725 |
+ |
* There are a number of reasons to skip a pair or a |
726 |
+ |
* particle. Mostly we do this to exclude atoms who are involved in |
727 |
+ |
* short range interactions (bonds, bends, torsions), but we also |
728 |
+ |
* need to exclude some overcounted interactions that result from |
729 |
+ |
* the parallel decomposition. |
730 |
+ |
*/ |
731 |
+ |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
732 |
+ |
int unique_id_1, unique_id_2; |
733 |
+ |
|
734 |
+ |
#ifdef IS_MPI |
735 |
+ |
// in MPI, we have to look up the unique IDs for each atom |
736 |
+ |
unique_id_1 = AtomRowToGlobal[atom1]; |
737 |
+ |
unique_id_2 = AtomColToGlobal[atom2]; |
738 |
+ |
|
739 |
+ |
// this situation should only arise in MPI simulations |
740 |
+ |
if (unique_id_1 == unique_id_2) return true; |
741 |
+ |
|
742 |
+ |
// this prevents us from doing the pair on multiple processors |
743 |
+ |
if (unique_id_1 < unique_id_2) { |
744 |
+ |
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
745 |
+ |
} else { |
746 |
+ |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
747 |
+ |
} |
748 |
+ |
#else |
749 |
+ |
// in the normal loop, the atom numbers are unique |
750 |
+ |
unique_id_1 = atom1; |
751 |
+ |
unique_id_2 = atom2; |
752 |
+ |
#endif |
753 |
+ |
|
754 |
+ |
for (vector<int>::iterator i = skipsForAtom[atom1].begin(); |
755 |
+ |
i != skipsForAtom[atom1].end(); ++i) { |
756 |
+ |
if ( (*i) == unique_id_2 ) return true; |
757 |
+ |
} |
758 |
+ |
|
759 |
+ |
} |
760 |
+ |
|
761 |
+ |
|
762 |
|
void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ |
763 |
|
#ifdef IS_MPI |
764 |
|
atomRowData.force[atom1] += fg; |
780 |
|
InteractionData idat; |
781 |
|
|
782 |
|
#ifdef IS_MPI |
783 |
+ |
|
784 |
+ |
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
785 |
+ |
ff_->getAtomType(identsCol[atom2]) ); |
786 |
+ |
|
787 |
+ |
|
788 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
789 |
|
idat.A1 = &(atomRowData.aMat[atom1]); |
790 |
|
idat.A2 = &(atomColData.aMat[atom2]); |
805 |
|
idat.rho2 = &(atomColData.density[atom2]); |
806 |
|
} |
807 |
|
|
808 |
+ |
if (storageLayout_ & DataStorage::dslFunctional) { |
809 |
+ |
idat.frho1 = &(atomRowData.functional[atom1]); |
810 |
+ |
idat.frho2 = &(atomColData.functional[atom2]); |
811 |
+ |
} |
812 |
+ |
|
813 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
814 |
|
idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); |
815 |
|
idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); |
816 |
|
} |
817 |
+ |
|
818 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
819 |
+ |
idat.particlePot1 = &(atomRowData.particlePot[atom1]); |
820 |
+ |
idat.particlePot2 = &(atomColData.particlePot[atom2]); |
821 |
+ |
} |
822 |
+ |
|
823 |
|
#else |
824 |
+ |
|
825 |
+ |
idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), |
826 |
+ |
ff_->getAtomType(identsLocal[atom2]) ); |
827 |
+ |
|
828 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
829 |
|
idat.A1 = &(snap_->atomData.aMat[atom1]); |
830 |
|
idat.A2 = &(snap_->atomData.aMat[atom2]); |
845 |
|
idat.rho2 = &(snap_->atomData.density[atom2]); |
846 |
|
} |
847 |
|
|
848 |
+ |
if (storageLayout_ & DataStorage::dslFunctional) { |
849 |
+ |
idat.frho1 = &(snap_->atomData.functional[atom1]); |
850 |
+ |
idat.frho2 = &(snap_->atomData.functional[atom2]); |
851 |
+ |
} |
852 |
+ |
|
853 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
854 |
|
idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); |
855 |
|
idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); |
856 |
|
} |
857 |
+ |
|
858 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
859 |
+ |
idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); |
860 |
+ |
idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
861 |
+ |
} |
862 |
+ |
|
863 |
|
#endif |
864 |
|
return idat; |
865 |
|
} |
866 |
|
|
867 |
+ |
|
868 |
+ |
void ForceMatrixDecomposition::unpackInteractionData(InteractionData idat, int atom1, int atom2) { |
869 |
+ |
#ifdef IS_MPI |
870 |
+ |
pot_row[atom1] += 0.5 * *(idat.pot); |
871 |
+ |
pot_col[atom2] += 0.5 * *(idat.pot); |
872 |
+ |
|
873 |
+ |
atomRowData.force[atom1] += *(idat.f1); |
874 |
+ |
atomColData.force[atom2] -= *(idat.f1); |
875 |
+ |
#else |
876 |
+ |
longRangePot_ += *(idat.pot); |
877 |
+ |
|
878 |
+ |
snap_->atomData.force[atom1] += *(idat.f1); |
879 |
+ |
snap_->atomData.force[atom2] -= *(idat.f1); |
880 |
+ |
#endif |
881 |
+ |
|
882 |
+ |
} |
883 |
+ |
|
884 |
+ |
|
885 |
|
InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ |
886 |
|
|
887 |
|
InteractionData idat; |
888 |
|
#ifdef IS_MPI |
889 |
+ |
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
890 |
+ |
ff_->getAtomType(identsCol[atom2]) ); |
891 |
+ |
|
892 |
|
if (storageLayout_ & DataStorage::dslElectroFrame) { |
893 |
|
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
894 |
|
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
896 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
897 |
|
idat.t1 = &(atomRowData.torque[atom1]); |
898 |
|
idat.t2 = &(atomColData.torque[atom2]); |
387 |
– |
} |
388 |
– |
if (storageLayout_ & DataStorage::dslForce) { |
389 |
– |
idat.t1 = &(atomRowData.force[atom1]); |
390 |
– |
idat.t2 = &(atomColData.force[atom2]); |
899 |
|
} |
900 |
|
#else |
901 |
+ |
idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), |
902 |
+ |
ff_->getAtomType(identsLocal[atom2]) ); |
903 |
+ |
|
904 |
|
if (storageLayout_ & DataStorage::dslElectroFrame) { |
905 |
|
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
906 |
|
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
909 |
|
idat.t1 = &(snap_->atomData.torque[atom1]); |
910 |
|
idat.t2 = &(snap_->atomData.torque[atom2]); |
911 |
|
} |
912 |
< |
if (storageLayout_ & DataStorage::dslForce) { |
402 |
< |
idat.t1 = &(snap_->atomData.force[atom1]); |
403 |
< |
idat.t2 = &(snap_->atomData.force[atom2]); |
404 |
< |
} |
405 |
< |
#endif |
406 |
< |
|
912 |
> |
#endif |
913 |
|
} |
914 |
|
|
409 |
– |
SelfData ForceMatrixDecomposition::fillSelfData(int atom1) { |
410 |
– |
SelfData sdat; |
411 |
– |
// Still Missing atype, skippedCharge, potVec pot, |
412 |
– |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
413 |
– |
sdat.eFrame = &(snap_->atomData.electroFrame[atom1]); |
414 |
– |
} |
415 |
– |
|
416 |
– |
if (storageLayout_ & DataStorage::dslTorque) { |
417 |
– |
sdat.t = &(snap_->atomData.torque[atom1]); |
418 |
– |
} |
419 |
– |
|
420 |
– |
if (storageLayout_ & DataStorage::dslDensity) { |
421 |
– |
sdat.rho = &(snap_->atomData.density[atom1]); |
422 |
– |
} |
423 |
– |
|
424 |
– |
if (storageLayout_ & DataStorage::dslFunctional) { |
425 |
– |
sdat.frho = &(snap_->atomData.functional[atom1]); |
426 |
– |
} |
427 |
– |
|
428 |
– |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
429 |
– |
sdat.dfrhodrho = &(snap_->atomData.functionalDerivative[atom1]); |
430 |
– |
} |
431 |
– |
|
432 |
– |
return sdat; |
433 |
– |
} |
434 |
– |
|
435 |
– |
|
436 |
– |
|
915 |
|
/* |
916 |
|
* buildNeighborList |
917 |
|
* |
921 |
|
vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
922 |
|
|
923 |
|
vector<pair<int, int> > neighborList; |
924 |
+ |
groupCutoffs cuts; |
925 |
|
#ifdef IS_MPI |
926 |
< |
CellListRow.clear(); |
927 |
< |
CellListCol.clear(); |
926 |
> |
cellListRow_.clear(); |
927 |
> |
cellListCol_.clear(); |
928 |
|
#else |
929 |
< |
CellList.clear(); |
929 |
> |
cellList_.clear(); |
930 |
|
#endif |
931 |
|
|
932 |
< |
// dangerous to not do error checking. |
454 |
< |
RealType skinThickness_ = info_->getSimParams()->getSkinThickness(); |
455 |
< |
RealType rCut_; |
456 |
< |
|
457 |
< |
RealType rList_ = (rCut_ + skinThickness_); |
932 |
> |
RealType rList_ = (largestRcut_ + skinThickness_); |
933 |
|
RealType rl2 = rList_ * rList_; |
934 |
|
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
935 |
|
Mat3x3d Hmat = snap_->getHmat(); |
936 |
|
Vector3d Hx = Hmat.getColumn(0); |
937 |
|
Vector3d Hy = Hmat.getColumn(1); |
938 |
|
Vector3d Hz = Hmat.getColumn(2); |
464 |
– |
Vector3i nCells; |
939 |
|
|
940 |
< |
nCells.x() = (int) ( Hx.length() )/ rList_; |
941 |
< |
nCells.y() = (int) ( Hy.length() )/ rList_; |
942 |
< |
nCells.z() = (int) ( Hz.length() )/ rList_; |
940 |
> |
nCells_.x() = (int) ( Hx.length() )/ rList_; |
941 |
> |
nCells_.y() = (int) ( Hy.length() )/ rList_; |
942 |
> |
nCells_.z() = (int) ( Hz.length() )/ rList_; |
943 |
|
|
944 |
|
Mat3x3d invHmat = snap_->getInvHmat(); |
945 |
|
Vector3d rs, scaled, dr; |
946 |
|
Vector3i whichCell; |
947 |
|
int cellIndex; |
948 |
+ |
int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
949 |
|
|
950 |
|
#ifdef IS_MPI |
951 |
+ |
cellListRow_.resize(nCtot); |
952 |
+ |
cellListCol_.resize(nCtot); |
953 |
+ |
#else |
954 |
+ |
cellList_.resize(nCtot); |
955 |
+ |
#endif |
956 |
+ |
|
957 |
+ |
#ifdef IS_MPI |
958 |
|
for (int i = 0; i < nGroupsInRow_; i++) { |
959 |
|
rs = cgRowData.position[i]; |
960 |
|
// scaled positions relative to the box vectors |
965 |
|
scaled[j] -= roundMe(scaled[j]); |
966 |
|
|
967 |
|
// find xyz-indices of cell that cutoffGroup is in. |
968 |
< |
whichCell.x() = nCells.x() * scaled.x(); |
969 |
< |
whichCell.y() = nCells.y() * scaled.y(); |
970 |
< |
whichCell.z() = nCells.z() * scaled.z(); |
968 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
969 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
970 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
971 |
|
|
972 |
|
// find single index of this cell: |
973 |
< |
cellIndex = Vlinear(whichCell, nCells); |
973 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
974 |
|
// add this cutoff group to the list of groups in this cell; |
975 |
< |
CellListRow[cellIndex].push_back(i); |
975 |
> |
cellListRow_[cellIndex].push_back(i); |
976 |
|
} |
977 |
|
|
978 |
|
for (int i = 0; i < nGroupsInCol_; i++) { |
985 |
|
scaled[j] -= roundMe(scaled[j]); |
986 |
|
|
987 |
|
// find xyz-indices of cell that cutoffGroup is in. |
988 |
< |
whichCell.x() = nCells.x() * scaled.x(); |
989 |
< |
whichCell.y() = nCells.y() * scaled.y(); |
990 |
< |
whichCell.z() = nCells.z() * scaled.z(); |
988 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
989 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
990 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
991 |
|
|
992 |
|
// find single index of this cell: |
993 |
< |
cellIndex = Vlinear(whichCell, nCells); |
993 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
994 |
|
// add this cutoff group to the list of groups in this cell; |
995 |
< |
CellListCol[cellIndex].push_back(i); |
995 |
> |
cellListCol_[cellIndex].push_back(i); |
996 |
|
} |
997 |
|
#else |
998 |
|
for (int i = 0; i < nGroups_; i++) { |
1005 |
|
scaled[j] -= roundMe(scaled[j]); |
1006 |
|
|
1007 |
|
// find xyz-indices of cell that cutoffGroup is in. |
1008 |
< |
whichCell.x() = nCells.x() * scaled.x(); |
1009 |
< |
whichCell.y() = nCells.y() * scaled.y(); |
1010 |
< |
whichCell.z() = nCells.z() * scaled.z(); |
1008 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
1009 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
1010 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
1011 |
|
|
1012 |
|
// find single index of this cell: |
1013 |
< |
cellIndex = Vlinear(whichCell, nCells); |
1013 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1014 |
|
// add this cutoff group to the list of groups in this cell; |
1015 |
< |
CellList[cellIndex].push_back(i); |
1015 |
> |
cellList_[cellIndex].push_back(i); |
1016 |
|
} |
1017 |
|
#endif |
1018 |
|
|
1019 |
< |
|
1020 |
< |
|
1021 |
< |
for (int m1z = 0; m1z < nCells.z(); m1z++) { |
540 |
< |
for (int m1y = 0; m1y < nCells.y(); m1y++) { |
541 |
< |
for (int m1x = 0; m1x < nCells.x(); m1x++) { |
1019 |
> |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1020 |
> |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1021 |
> |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1022 |
|
Vector3i m1v(m1x, m1y, m1z); |
1023 |
< |
int m1 = Vlinear(m1v, nCells); |
544 |
< |
for (int offset = 0; offset < nOffset_; offset++) { |
545 |
< |
Vector3i m2v = m1v + cellOffsets_[offset]; |
1023 |
> |
int m1 = Vlinear(m1v, nCells_); |
1024 |
|
|
1025 |
< |
if (m2v.x() >= nCells.x()) { |
1025 |
> |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1026 |
> |
os != cellOffsets_.end(); ++os) { |
1027 |
> |
|
1028 |
> |
Vector3i m2v = m1v + (*os); |
1029 |
> |
|
1030 |
> |
if (m2v.x() >= nCells_.x()) { |
1031 |
|
m2v.x() = 0; |
1032 |
|
} else if (m2v.x() < 0) { |
1033 |
< |
m2v.x() = nCells.x() - 1; |
1033 |
> |
m2v.x() = nCells_.x() - 1; |
1034 |
|
} |
1035 |
< |
|
1036 |
< |
if (m2v.y() >= nCells.y()) { |
1035 |
> |
|
1036 |
> |
if (m2v.y() >= nCells_.y()) { |
1037 |
|
m2v.y() = 0; |
1038 |
|
} else if (m2v.y() < 0) { |
1039 |
< |
m2v.y() = nCells.y() - 1; |
1039 |
> |
m2v.y() = nCells_.y() - 1; |
1040 |
|
} |
1041 |
< |
|
1042 |
< |
if (m2v.z() >= nCells.z()) { |
1041 |
> |
|
1042 |
> |
if (m2v.z() >= nCells_.z()) { |
1043 |
|
m2v.z() = 0; |
1044 |
|
} else if (m2v.z() < 0) { |
1045 |
< |
m2v.z() = nCells.z() - 1; |
1045 |
> |
m2v.z() = nCells_.z() - 1; |
1046 |
|
} |
1047 |
+ |
|
1048 |
+ |
int m2 = Vlinear (m2v, nCells_); |
1049 |
|
|
565 |
– |
int m2 = Vlinear (m2v, nCells); |
566 |
– |
|
1050 |
|
#ifdef IS_MPI |
1051 |
< |
for (vector<int>::iterator j1 = CellListRow[m1].begin(); |
1052 |
< |
j1 != CellListRow[m1].end(); ++j1) { |
1053 |
< |
for (vector<int>::iterator j2 = CellListCol[m2].begin(); |
1054 |
< |
j2 != CellListCol[m2].end(); ++j2) { |
1051 |
> |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1052 |
> |
j1 != cellListRow_[m1].end(); ++j1) { |
1053 |
> |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1054 |
> |
j2 != cellListCol_[m2].end(); ++j2) { |
1055 |
|
|
1056 |
|
// Always do this if we're in different cells or if |
1057 |
|
// we're in the same cell and the global index of the |
1060 |
|
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1061 |
|
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1062 |
|
snap_->wrapVector(dr); |
1063 |
< |
if (dr.lengthSquare() < rl2) { |
1063 |
> |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1064 |
> |
if (dr.lengthSquare() < cuts.third) { |
1065 |
|
neighborList.push_back(make_pair((*j1), (*j2))); |
1066 |
|
} |
1067 |
|
} |
1068 |
|
} |
1069 |
|
} |
1070 |
|
#else |
1071 |
< |
for (vector<int>::iterator j1 = CellList[m1].begin(); |
1072 |
< |
j1 != CellList[m1].end(); ++j1) { |
1073 |
< |
for (vector<int>::iterator j2 = CellList[m2].begin(); |
1074 |
< |
j2 != CellList[m2].end(); ++j2) { |
1071 |
> |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1072 |
> |
j1 != cellList_[m1].end(); ++j1) { |
1073 |
> |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1074 |
> |
j2 != cellList_[m2].end(); ++j2) { |
1075 |
|
|
1076 |
|
// Always do this if we're in different cells or if |
1077 |
|
// we're in the same cell and the global index of the |
1080 |
|
if (m2 != m1 || (*j2) < (*j1)) { |
1081 |
|
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1082 |
|
snap_->wrapVector(dr); |
1083 |
< |
if (dr.lengthSquare() < rl2) { |
1083 |
> |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1084 |
> |
if (dr.lengthSquare() < cuts.third) { |
1085 |
|
neighborList.push_back(make_pair((*j1), (*j2))); |
1086 |
|
} |
1087 |
|
} |
1092 |
|
} |
1093 |
|
} |
1094 |
|
} |
1095 |
+ |
|
1096 |
+ |
// save the local cutoff group positions for the check that is |
1097 |
+ |
// done on each loop: |
1098 |
+ |
saved_CG_positions_.clear(); |
1099 |
+ |
for (int i = 0; i < nGroups_; i++) |
1100 |
+ |
saved_CG_positions_.push_back(snap_->cgData.position[i]); |
1101 |
+ |
|
1102 |
|
return neighborList; |
1103 |
|
} |
1104 |
|
} //end namespace OpenMD |