ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents):
Revision 1576 by gezelter, Wed Jun 8 16:05:07 2011 UTC vs.
Revision 1589 by gezelter, Sun Jul 10 16:05:34 2011 UTC

# Line 57 | Line 57 | namespace OpenMD {
57      storageLayout_ = sman_->getStorageLayout();
58      ff_ = info_->getForceField();
59      nLocal_ = snap_->getNumberOfAtoms();
60 <    nGroups_ = snap_->getNumberOfCutoffGroups();
61 <
60 >    
61 >    nGroups_ = info_->getNLocalCutoffGroups();
62      // gather the information for atomtype IDs (atids):
63 <    identsLocal = info_->getIdentArray();
63 >    idents = info_->getIdentArray();
64      AtomLocalToGlobal = info_->getGlobalAtomIndices();
65      cgLocalToGlobal = info_->getGlobalGroupIndices();
66      vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
67    vector<RealType> massFactorsLocal = info_->getMassFactors();
68    PairList excludes = info_->getExcludedInteractions();
69    PairList oneTwo = info_->getOneTwoInteractions();
70    PairList oneThree = info_->getOneThreeInteractions();
71    PairList oneFour = info_->getOneFourInteractions();
67  
68 +    massFactors = info_->getMassFactors();
69 +
70 +    PairList* excludes = info_->getExcludedInteractions();
71 +    PairList* oneTwo = info_->getOneTwoInteractions();
72 +    PairList* oneThree = info_->getOneThreeInteractions();
73 +    PairList* oneFour = info_->getOneFourInteractions();
74 +
75   #ifdef IS_MPI
76  
77      AtomCommIntRow = new Communicator<Row,int>(nLocal_);
# Line 104 | Line 106 | namespace OpenMD {
106      cgColData.resize(nGroupsInCol_);
107      cgColData.setStorageLayout(DataStorage::dslPosition);
108          
109 <    identsRow.reserve(nAtomsInRow_);
110 <    identsCol.reserve(nAtomsInCol_);
109 >    identsRow.resize(nAtomsInRow_);
110 >    identsCol.resize(nAtomsInCol_);
111      
112 <    AtomCommIntRow->gather(identsLocal, identsRow);
113 <    AtomCommIntColumn->gather(identsLocal, identsCol);
112 >    AtomCommIntRow->gather(idents, identsRow);
113 >    AtomCommIntColumn->gather(idents, identsCol);
114      
115 +    // allocate memory for the parallel objects
116 +    AtomRowToGlobal.resize(nAtomsInRow_);
117 +    AtomColToGlobal.resize(nAtomsInCol_);
118 +    cgRowToGlobal.resize(nGroupsInRow_);
119 +    cgColToGlobal.resize(nGroupsInCol_);
120 +    massFactorsRow.resize(nAtomsInRow_);
121 +    massFactorsCol.resize(nAtomsInCol_);
122 +    pot_row.resize(nAtomsInRow_);
123 +    pot_col.resize(nAtomsInCol_);
124 +
125      AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
126      AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
127      
128      cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
129      cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
130  
131 <    AtomCommRealRow->gather(massFactorsLocal, massFactorsRow);
132 <    AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol);
131 >    AtomCommRealRow->gather(massFactors, massFactorsRow);
132 >    AtomCommRealColumn->gather(massFactors, massFactorsCol);
133  
134      groupListRow_.clear();
135 <    groupListRow_.reserve(nGroupsInRow_);
135 >    groupListRow_.resize(nGroupsInRow_);
136      for (int i = 0; i < nGroupsInRow_; i++) {
137        int gid = cgRowToGlobal[i];
138        for (int j = 0; j < nAtomsInRow_; j++) {
# Line 131 | Line 143 | namespace OpenMD {
143      }
144  
145      groupListCol_.clear();
146 <    groupListCol_.reserve(nGroupsInCol_);
146 >    groupListCol_.resize(nGroupsInCol_);
147      for (int i = 0; i < nGroupsInCol_; i++) {
148        int gid = cgColToGlobal[i];
149        for (int j = 0; j < nAtomsInCol_; j++) {
# Line 141 | Line 153 | namespace OpenMD {
153        }      
154      }
155  
156 <    skipsForRowAtom.clear();
157 <    skipsForRowAtom.reserve(nAtomsInRow_);
156 >    excludesForAtom.clear();
157 >    excludesForAtom.resize(nAtomsInRow_);
158 >    toposForAtom.clear();
159 >    toposForAtom.resize(nAtomsInRow_);
160 >    topoDist.clear();
161 >    topoDist.resize(nAtomsInRow_);
162      for (int i = 0; i < nAtomsInRow_; i++) {
163        int iglob = AtomRowToGlobal[i];
148      for (int j = 0; j < nAtomsInCol_; j++) {
149        int jglob = AtomColToGlobal[j];        
150        if (excludes.hasPair(iglob, jglob))
151          skipsForRowAtom[i].push_back(j);      
152      }      
153    }
164  
155    toposForRowAtom.clear();
156    toposForRowAtom.reserve(nAtomsInRow_);
157    for (int i = 0; i < nAtomsInRow_; i++) {
158      int iglob = AtomRowToGlobal[i];
159      int nTopos = 0;
165        for (int j = 0; j < nAtomsInCol_; j++) {
166 <        int jglob = AtomColToGlobal[j];        
167 <        if (oneTwo.hasPair(iglob, jglob)) {
168 <          toposForRowAtom[i].push_back(j);
169 <          topoDistRow[i][nTopos] = 1;
170 <          nTopos++;
171 <        }
172 <        if (oneThree.hasPair(iglob, jglob)) {
173 <          toposForRowAtom[i].push_back(j);
174 <          topoDistRow[i][nTopos] = 2;
175 <          nTopos++;
176 <        }
177 <        if (oneFour.hasPair(iglob, jglob)) {
178 <          toposForRowAtom[i].push_back(j);
179 <          topoDistRow[i][nTopos] = 3;
180 <          nTopos++;
166 >        int jglob = AtomColToGlobal[j];
167 >
168 >        if (excludes->hasPair(iglob, jglob))
169 >          excludesForAtom[i].push_back(j);      
170 >        
171 >        if (oneTwo->hasPair(iglob, jglob)) {
172 >          toposForAtom[i].push_back(j);
173 >          topoDist[i].push_back(1);
174 >        } else {
175 >          if (oneThree->hasPair(iglob, jglob)) {
176 >            toposForAtom[i].push_back(j);
177 >            topoDist[i].push_back(2);
178 >          } else {
179 >            if (oneFour->hasPair(iglob, jglob)) {
180 >              toposForAtom[i].push_back(j);
181 >              topoDist[i].push_back(3);
182 >            }
183 >          }
184          }
185        }      
186      }
# Line 180 | Line 188 | namespace OpenMD {
188   #endif
189  
190      groupList_.clear();
191 <    groupList_.reserve(nGroups_);
191 >    groupList_.resize(nGroups_);
192      for (int i = 0; i < nGroups_; i++) {
193        int gid = cgLocalToGlobal[i];
194        for (int j = 0; j < nLocal_; j++) {
195          int aid = AtomLocalToGlobal[j];
196 <        if (globalGroupMembership[aid] == gid)
196 >        if (globalGroupMembership[aid] == gid) {
197            groupList_[i].push_back(j);
198 +        }
199        }      
200      }
201  
202 <    skipsForLocalAtom.clear();
203 <    skipsForLocalAtom.reserve(nLocal_);
202 >    excludesForAtom.clear();
203 >    excludesForAtom.resize(nLocal_);
204 >    toposForAtom.clear();
205 >    toposForAtom.resize(nLocal_);
206 >    topoDist.clear();
207 >    topoDist.resize(nLocal_);
208  
209      for (int i = 0; i < nLocal_; i++) {
210        int iglob = AtomLocalToGlobal[i];
198      for (int j = 0; j < nLocal_; j++) {
199        int jglob = AtomLocalToGlobal[j];        
200        if (excludes.hasPair(iglob, jglob))
201          skipsForLocalAtom[i].push_back(j);      
202      }      
203    }
211  
205    toposForLocalAtom.clear();
206    toposForLocalAtom.reserve(nLocal_);
207    for (int i = 0; i < nLocal_; i++) {
208      int iglob = AtomLocalToGlobal[i];
209      int nTopos = 0;
212        for (int j = 0; j < nLocal_; j++) {
213 <        int jglob = AtomLocalToGlobal[j];        
214 <        if (oneTwo.hasPair(iglob, jglob)) {
215 <          toposForLocalAtom[i].push_back(j);
216 <          topoDistLocal[i][nTopos] = 1;
217 <          nTopos++;
213 >        int jglob = AtomLocalToGlobal[j];
214 >
215 >        if (excludes->hasPair(iglob, jglob))
216 >          excludesForAtom[i].push_back(j);              
217 >        
218 >        if (oneTwo->hasPair(iglob, jglob)) {
219 >          toposForAtom[i].push_back(j);
220 >          topoDist[i].push_back(1);
221 >        } else {
222 >          if (oneThree->hasPair(iglob, jglob)) {
223 >            toposForAtom[i].push_back(j);
224 >            topoDist[i].push_back(2);
225 >          } else {
226 >            if (oneFour->hasPair(iglob, jglob)) {
227 >              toposForAtom[i].push_back(j);
228 >              topoDist[i].push_back(3);
229 >            }
230 >          }
231          }
217        if (oneThree.hasPair(iglob, jglob)) {
218          toposForLocalAtom[i].push_back(j);
219          topoDistLocal[i][nTopos] = 2;
220          nTopos++;
221        }
222        if (oneFour.hasPair(iglob, jglob)) {
223          toposForLocalAtom[i].push_back(j);
224          topoDistLocal[i][nTopos] = 3;
225          nTopos++;
226        }
232        }      
233 <    }    
233 >    }
234 >    
235 >    createGtypeCutoffMap();
236  
237    }
238    
239    void ForceMatrixDecomposition::createGtypeCutoffMap() {
240 <
240 >    
241      RealType tol = 1e-6;
242      RealType rc;
243      int atid;
244      set<AtomType*> atypes = info_->getSimulatedAtomTypes();
245 <    vector<RealType> atypeCutoff;
246 <    atypeCutoff.reserve( atypes.size() );
247 <
248 <    for (set<AtomType*>::iterator at = atypes.begin(); at != atypes.end(); ++at){
242 <      rc = interactionMan_->getSuggestedCutoffRadius(*at);
245 >    map<int, RealType> atypeCutoff;
246 >      
247 >    for (set<AtomType*>::iterator at = atypes.begin();
248 >         at != atypes.end(); ++at){
249        atid = (*at)->getIdent();
250 <      atypeCutoff[atid] = rc;
250 >      if (userChoseCutoff_)
251 >        atypeCutoff[atid] = userCutoff_;
252 >      else
253 >        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
254      }
255  
256      vector<RealType> gTypeCutoffs;
248
257      // first we do a single loop over the cutoff groups to find the
258      // largest cutoff for any atypes present in this group.
259   #ifdef IS_MPI
260      vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
261 +    groupRowToGtype.resize(nGroupsInRow_);
262      for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
263        vector<int> atomListRow = getAtomsInGroupRow(cg1);
264        for (vector<int>::iterator ia = atomListRow.begin();
# Line 275 | Line 284 | namespace OpenMD {
284        
285      }
286      vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
287 +    groupColToGtype.resize(nGroupsInCol_);
288      for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
289        vector<int> atomListCol = getAtomsInGroupColumn(cg2);
290        for (vector<int>::iterator jb = atomListCol.begin();
# Line 298 | Line 308 | namespace OpenMD {
308        }
309      }
310   #else
311 +
312      vector<RealType> groupCutoff(nGroups_, 0.0);
313 +    groupToGtype.resize(nGroups_);
314      for (int cg1 = 0; cg1 < nGroups_; cg1++) {
315 +
316        groupCutoff[cg1] = 0.0;
317        vector<int> atomList = getAtomsInGroupRow(cg1);
318 +
319        for (vector<int>::iterator ia = atomList.begin();
320             ia != atomList.end(); ++ia) {            
321          int atom1 = (*ia);
322 <        atid = identsLocal[atom1];
322 >        atid = idents[atom1];
323          if (atypeCutoff[atid] > groupCutoff[cg1]) {
324            groupCutoff[cg1] = atypeCutoff[atid];
325          }
# Line 327 | Line 341 | namespace OpenMD {
341  
342      // Now we find the maximum group cutoff value present in the simulation
343  
344 <    vector<RealType>::iterator groupMaxLoc = max_element(gTypeCutoffs.begin(), gTypeCutoffs.end());
331 <    RealType groupMax = *groupMaxLoc;
344 >    RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end());
345  
346   #ifdef IS_MPI
347      MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX);
# Line 337 | Line 350 | namespace OpenMD {
350      RealType tradRcut = groupMax;
351  
352      for (int i = 0; i < gTypeCutoffs.size();  i++) {
353 <      for (int j = 0; j < gTypeCutoffs.size();  j++) {
341 <        
353 >      for (int j = 0; j < gTypeCutoffs.size();  j++) {      
354          RealType thisRcut;
355          switch(cutoffPolicy_) {
356          case TRADITIONAL:
357            thisRcut = tradRcut;
358 +          break;
359          case MIX:
360            thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
361 +          break;
362          case MAX:
363            thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
364 +          break;
365          default:
366            sprintf(painCave.errMsg,
367                    "ForceMatrixDecomposition::createGtypeCutoffMap "
368                    "hit an unknown cutoff policy!\n");
369            painCave.severity = OPENMD_ERROR;
370            painCave.isFatal = 1;
371 <          simError();              
371 >          simError();
372 >          break;
373          }
374  
375          pair<int,int> key = make_pair(i,j);
# Line 371 | Line 387 | namespace OpenMD {
387            if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
388              sprintf(painCave.errMsg,
389                      "ForceMatrixDecomposition::createGtypeCutoffMap "
390 <                    "user-specified rCut does not match computed group Cutoff\n");
390 >                    "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
391              painCave.severity = OPENMD_ERROR;
392              painCave.isFatal = 1;
393              simError();            
# Line 383 | Line 399 | namespace OpenMD {
399  
400  
401    groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
402 <    int i, j;
387 <
402 >    int i, j;  
403   #ifdef IS_MPI
404      i = groupRowToGtype[cg1];
405      j = groupColToGtype[cg2];
406   #else
407      i = groupToGtype[cg1];
408      j = groupToGtype[cg2];
409 < #endif
395 <    
409 > #endif    
410      return gTypeCutoffMap[make_pair(i,j)];
411    }
412  
413 +  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
414 +    for (int j = 0; j < toposForAtom[atom1].size(); j++) {
415 +      if (toposForAtom[atom1][j] == atom2)
416 +        return topoDist[atom1][j];
417 +    }
418 +    return 0;
419 +  }
420  
421    void ForceMatrixDecomposition::zeroWorkArrays() {
422 +    pairwisePot = 0.0;
423 +    embeddingPot = 0.0;
424  
402    for (int j = 0; j < N_INTERACTION_FAMILIES; j++) {
403      longRangePot_[j] = 0.0;
404    }
405
425   #ifdef IS_MPI
426      if (storageLayout_ & DataStorage::dslForce) {
427        fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
# Line 418 | Line 437 | namespace OpenMD {
437           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
438  
439      fill(pot_col.begin(), pot_col.end(),
440 <         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
422 <    
423 <    pot_local = Vector<RealType, N_INTERACTION_FAMILIES>(0.0);
440 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
441  
442      if (storageLayout_ & DataStorage::dslParticlePot) {    
443        fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0);
# Line 444 | Line 461 | namespace OpenMD {
461             atomColData.functionalDerivative.end(), 0.0);
462      }
463  
464 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
465 +      fill(atomRowData.skippedCharge.begin(),
466 +           atomRowData.skippedCharge.end(), 0.0);
467 +      fill(atomColData.skippedCharge.begin(),
468 +           atomColData.skippedCharge.end(), 0.0);
469 +    }
470 +
471   #else
472      
473      if (storageLayout_ & DataStorage::dslParticlePot) {      
# Line 463 | Line 487 | namespace OpenMD {
487        fill(snap_->atomData.functionalDerivative.begin(),
488             snap_->atomData.functionalDerivative.end(), 0.0);
489      }
490 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
491 +      fill(snap_->atomData.skippedCharge.begin(),
492 +           snap_->atomData.skippedCharge.end(), 0.0);
493 +    }
494   #endif
495      
496    }
# Line 570 | Line 598 | namespace OpenMD {
598      
599      if (storageLayout_ & DataStorage::dslTorque) {
600  
601 <      int nt = snap_->atomData.force.size();
601 >      int nt = snap_->atomData.torque.size();
602        vector<Vector3d> trq_tmp(nt, V3Zero);
603  
604        AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
605 <      for (int i = 0; i < n; i++) {
605 >      for (int i = 0; i < nt; i++) {
606          snap_->atomData.torque[i] += trq_tmp[i];
607          trq_tmp[i] = 0.0;
608        }
609        
610        AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
611 <      for (int i = 0; i < n; i++)
611 >      for (int i = 0; i < nt; i++)
612          snap_->atomData.torque[i] += trq_tmp[i];
613      }
614 +
615 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
616 +
617 +      int ns = snap_->atomData.skippedCharge.size();
618 +      vector<RealType> skch_tmp(ns, 0.0);
619 +
620 +      AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
621 +      for (int i = 0; i < ns; i++) {
622 +        snap_->atomData.skippedCharge[i] = skch_tmp[i];
623 +        skch_tmp[i] = 0.0;
624 +      }
625 +      
626 +      AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
627 +      for (int i = 0; i < ns; i++)
628 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
629 +    }
630      
631      nLocal_ = snap_->getNumberOfAtoms();
632  
# Line 594 | Line 638 | namespace OpenMD {
638      AtomCommPotRow->scatter(pot_row, pot_temp);
639  
640      for (int ii = 0;  ii < pot_temp.size(); ii++ )
641 <      pot_local += pot_temp[ii];
641 >      pairwisePot += pot_temp[ii];
642      
643      fill(pot_temp.begin(), pot_temp.end(),
644           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
# Line 602 | Line 646 | namespace OpenMD {
646      AtomCommPotColumn->scatter(pot_col, pot_temp);    
647      
648      for (int ii = 0;  ii < pot_temp.size(); ii++ )
649 <      pot_local += pot_temp[ii];
606 <    
649 >      pairwisePot += pot_temp[ii];    
650   #endif
651 +
652    }
653  
654    int ForceMatrixDecomposition::getNAtomsInRow() {  
# Line 679 | Line 723 | namespace OpenMD {
723   #ifdef IS_MPI
724      return massFactorsRow[atom1];
725   #else
726 <    return massFactorsLocal[atom1];
726 >    return massFactors[atom1];
727   #endif
728    }
729  
# Line 687 | Line 731 | namespace OpenMD {
731   #ifdef IS_MPI
732      return massFactorsCol[atom2];
733   #else
734 <    return massFactorsLocal[atom2];
734 >    return massFactors[atom2];
735   #endif
736  
737    }
# Line 705 | Line 749 | namespace OpenMD {
749      return d;    
750    }
751  
752 <  vector<int> ForceMatrixDecomposition::getSkipsForRowAtom(int atom1) {
753 < #ifdef IS_MPI
710 <    return skipsForRowAtom[atom1];
711 < #else
712 <    return skipsForLocalAtom[atom1];
713 < #endif
752 >  vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
753 >    return excludesForAtom[atom1];
754    }
755  
756    /**
757 <   * There are a number of reasons to skip a pair or a
718 <   * particle. Mostly we do this to exclude atoms who are involved in
719 <   * short range interactions (bonds, bends, torsions), but we also
720 <   * need to exclude some overcounted interactions that result from
757 >   * We need to exclude some overcounted interactions that result from
758     * the parallel decomposition.
759     */
760    bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
# Line 737 | Line 774 | namespace OpenMD {
774      } else {
775        if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
776      }
740 #else
741    // in the normal loop, the atom numbers are unique
742    unique_id_1 = atom1;
743    unique_id_2 = atom2;
777   #endif
778 <    
746 < #ifdef IS_MPI
747 <    for (vector<int>::iterator i = skipsForRowAtom[atom1].begin();
748 <         i != skipsForRowAtom[atom1].end(); ++i) {
749 <      if ( (*i) == unique_id_2 ) return true;
750 <    }    
751 < #else
752 <    for (vector<int>::iterator i = skipsForLocalAtom[atom1].begin();
753 <         i != skipsForLocalAtom[atom1].end(); ++i) {
754 <      if ( (*i) == unique_id_2 ) return true;
755 <    }    
756 < #endif
778 >    return false;
779    }
780  
781 <  int ForceMatrixDecomposition::getTopoDistance(int atom1, int atom2) {
781 >  /**
782 >   * We need to handle the interactions for atoms who are involved in
783 >   * the same rigid body as well as some short range interactions
784 >   * (bonds, bends, torsions) differently from other interactions.
785 >   * We'll still visit the pairwise routines, but with a flag that
786 >   * tells those routines to exclude the pair from direct long range
787 >   * interactions.  Some indirect interactions (notably reaction
788 >   * field) must still be handled for these pairs.
789 >   */
790 >  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
791 >    int unique_id_2;
792      
793   #ifdef IS_MPI
794 <    for (int i = 0; i < toposForRowAtom[atom1].size(); i++) {
795 <      if ( toposForRowAtom[atom1][i] == atom2 ) return topoDistRow[atom1][i];
764 <    }
794 >    // in MPI, we have to look up the unique IDs for the row atom.
795 >    unique_id_2 = AtomColToGlobal[atom2];
796   #else
797 <    for (int i = 0; i < toposForLocalAtom[atom1].size(); i++) {
798 <      if ( toposForLocalAtom[atom1][i] == atom2 ) return topoDistLocal[atom1][i];
768 <    }
797 >    // in the normal loop, the atom numbers are unique
798 >    unique_id_2 = atom2;
799   #endif
800 +    
801 +    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
802 +         i != excludesForAtom[atom1].end(); ++i) {
803 +      if ( (*i) == unique_id_2 ) return true;
804 +    }
805  
806 <    // zero is default for unconnected (i.e. normal) pair interactions
772 <    return 0;
806 >    return false;
807    }
808  
809 +
810    void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
811   #ifdef IS_MPI
812      atomRowData.force[atom1] += fg;
# Line 789 | Line 824 | namespace OpenMD {
824    }
825  
826      // filling interaction blocks with pointers
827 <  InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) {    
828 <    InteractionData idat;
827 >  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
828 >                                                     int atom1, int atom2) {
829  
830 +    idat.excluded = excludeAtomPair(atom1, atom2);
831 +  
832   #ifdef IS_MPI
833      
834      idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
835                               ff_->getAtomType(identsCol[atom2]) );
799
836      
837      if (storageLayout_ & DataStorage::dslAmat) {
838        idat.A1 = &(atomRowData.aMat[atom1]);
# Line 833 | Line 869 | namespace OpenMD {
869        idat.particlePot2 = &(atomColData.particlePot[atom2]);
870      }
871  
872 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
873 +      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
874 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
875 +    }
876 +
877   #else
878  
879 <    idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]),
880 <                             ff_->getAtomType(identsLocal[atom2]) );
879 >    idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
880 >                             ff_->getAtomType(idents[atom2]) );
881  
882      if (storageLayout_ & DataStorage::dslAmat) {
883        idat.A1 = &(snap_->atomData.aMat[atom1]);
# Line 853 | Line 894 | namespace OpenMD {
894        idat.t2 = &(snap_->atomData.torque[atom2]);
895      }
896  
897 <    if (storageLayout_ & DataStorage::dslDensity) {
897 >    if (storageLayout_ & DataStorage::dslDensity) {    
898        idat.rho1 = &(snap_->atomData.density[atom1]);
899        idat.rho2 = &(snap_->atomData.density[atom2]);
900      }
# Line 873 | Line 914 | namespace OpenMD {
914        idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
915      }
916  
917 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
918 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
919 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
920 +    }
921   #endif
877    return idat;
922    }
923  
924    
925 <  void ForceMatrixDecomposition::unpackInteractionData(InteractionData idat, int atom1, int atom2) {    
925 >  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
926   #ifdef IS_MPI
927      pot_row[atom1] += 0.5 *  *(idat.pot);
928      pot_col[atom2] += 0.5 *  *(idat.pot);
# Line 886 | Line 930 | namespace OpenMD {
930      atomRowData.force[atom1] += *(idat.f1);
931      atomColData.force[atom2] -= *(idat.f1);
932   #else
933 <    longRangePot_ += *(idat.pot);
934 <    
933 >    pairwisePot += *(idat.pot);
934 >
935      snap_->atomData.force[atom1] += *(idat.f1);
936      snap_->atomData.force[atom2] -= *(idat.f1);
937   #endif
938 <
938 >    
939    }
940  
897
898  InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){
899
900    InteractionData idat;
901 #ifdef IS_MPI
902    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
903                             ff_->getAtomType(identsCol[atom2]) );
904
905    if (storageLayout_ & DataStorage::dslElectroFrame) {
906      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
907      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
908    }
909    if (storageLayout_ & DataStorage::dslTorque) {
910      idat.t1 = &(atomRowData.torque[atom1]);
911      idat.t2 = &(atomColData.torque[atom2]);
912    }
913 #else
914    idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]),
915                             ff_->getAtomType(identsLocal[atom2]) );
916
917    if (storageLayout_ & DataStorage::dslElectroFrame) {
918      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
919      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
920    }
921    if (storageLayout_ & DataStorage::dslTorque) {
922      idat.t1 = &(snap_->atomData.torque[atom1]);
923      idat.t2 = &(snap_->atomData.torque[atom2]);
924    }
925 #endif    
926  }
927
941    /*
942     * buildNeighborList
943     *
# Line 935 | Line 948 | namespace OpenMD {
948        
949      vector<pair<int, int> > neighborList;
950      groupCutoffs cuts;
951 +    bool doAllPairs = false;
952 +
953   #ifdef IS_MPI
954      cellListRow_.clear();
955      cellListCol_.clear();
# Line 954 | Line 969 | namespace OpenMD {
969      nCells_.y() = (int) ( Hy.length() )/ rList_;
970      nCells_.z() = (int) ( Hz.length() )/ rList_;
971  
972 +    // handle small boxes where the cell offsets can end up repeating cells
973 +    
974 +    if (nCells_.x() < 3) doAllPairs = true;
975 +    if (nCells_.y() < 3) doAllPairs = true;
976 +    if (nCells_.z() < 3) doAllPairs = true;
977 +
978      Mat3x3d invHmat = snap_->getInvHmat();
979      Vector3d rs, scaled, dr;
980      Vector3i whichCell;
981      int cellIndex;
982 +    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
983  
984   #ifdef IS_MPI
985 <    for (int i = 0; i < nGroupsInRow_; i++) {
986 <      rs = cgRowData.position[i];
965 <      // scaled positions relative to the box vectors
966 <      scaled = invHmat * rs;
967 <      // wrap the vector back into the unit box by subtracting integer box
968 <      // numbers
969 <      for (int j = 0; j < 3; j++)
970 <        scaled[j] -= roundMe(scaled[j]);
971 <    
972 <      // find xyz-indices of cell that cutoffGroup is in.
973 <      whichCell.x() = nCells_.x() * scaled.x();
974 <      whichCell.y() = nCells_.y() * scaled.y();
975 <      whichCell.z() = nCells_.z() * scaled.z();
976 <
977 <      // find single index of this cell:
978 <      cellIndex = Vlinear(whichCell, nCells_);
979 <      // add this cutoff group to the list of groups in this cell;
980 <      cellListRow_[cellIndex].push_back(i);
981 <    }
982 <
983 <    for (int i = 0; i < nGroupsInCol_; i++) {
984 <      rs = cgColData.position[i];
985 <      // scaled positions relative to the box vectors
986 <      scaled = invHmat * rs;
987 <      // wrap the vector back into the unit box by subtracting integer box
988 <      // numbers
989 <      for (int j = 0; j < 3; j++)
990 <        scaled[j] -= roundMe(scaled[j]);
991 <
992 <      // find xyz-indices of cell that cutoffGroup is in.
993 <      whichCell.x() = nCells_.x() * scaled.x();
994 <      whichCell.y() = nCells_.y() * scaled.y();
995 <      whichCell.z() = nCells_.z() * scaled.z();
996 <
997 <      // find single index of this cell:
998 <      cellIndex = Vlinear(whichCell, nCells_);
999 <      // add this cutoff group to the list of groups in this cell;
1000 <      cellListCol_[cellIndex].push_back(i);
1001 <    }
985 >    cellListRow_.resize(nCtot);
986 >    cellListCol_.resize(nCtot);
987   #else
988 <    for (int i = 0; i < nGroups_; i++) {
989 <      rs = snap_->cgData.position[i];
1005 <      // scaled positions relative to the box vectors
1006 <      scaled = invHmat * rs;
1007 <      // wrap the vector back into the unit box by subtracting integer box
1008 <      // numbers
1009 <      for (int j = 0; j < 3; j++)
1010 <        scaled[j] -= roundMe(scaled[j]);
988 >    cellList_.resize(nCtot);
989 > #endif
990  
991 <      // find xyz-indices of cell that cutoffGroup is in.
992 <      whichCell.x() = nCells_.x() * scaled.x();
1014 <      whichCell.y() = nCells_.y() * scaled.y();
1015 <      whichCell.z() = nCells_.z() * scaled.z();
991 >    if (!doAllPairs) {
992 > #ifdef IS_MPI
993  
994 <      // find single index of this cell:
995 <      cellIndex = Vlinear(whichCell, nCells_);
996 <      // add this cutoff group to the list of groups in this cell;
997 <      cellList_[cellIndex].push_back(i);
998 <    }
994 >      for (int i = 0; i < nGroupsInRow_; i++) {
995 >        rs = cgRowData.position[i];
996 >        
997 >        // scaled positions relative to the box vectors
998 >        scaled = invHmat * rs;
999 >        
1000 >        // wrap the vector back into the unit box by subtracting integer box
1001 >        // numbers
1002 >        for (int j = 0; j < 3; j++) {
1003 >          scaled[j] -= roundMe(scaled[j]);
1004 >          scaled[j] += 0.5;
1005 >        }
1006 >        
1007 >        // find xyz-indices of cell that cutoffGroup is in.
1008 >        whichCell.x() = nCells_.x() * scaled.x();
1009 >        whichCell.y() = nCells_.y() * scaled.y();
1010 >        whichCell.z() = nCells_.z() * scaled.z();
1011 >        
1012 >        // find single index of this cell:
1013 >        cellIndex = Vlinear(whichCell, nCells_);
1014 >        
1015 >        // add this cutoff group to the list of groups in this cell;
1016 >        cellListRow_[cellIndex].push_back(i);
1017 >      }
1018 >      
1019 >      for (int i = 0; i < nGroupsInCol_; i++) {
1020 >        rs = cgColData.position[i];
1021 >        
1022 >        // scaled positions relative to the box vectors
1023 >        scaled = invHmat * rs;
1024 >        
1025 >        // wrap the vector back into the unit box by subtracting integer box
1026 >        // numbers
1027 >        for (int j = 0; j < 3; j++) {
1028 >          scaled[j] -= roundMe(scaled[j]);
1029 >          scaled[j] += 0.5;
1030 >        }
1031 >        
1032 >        // find xyz-indices of cell that cutoffGroup is in.
1033 >        whichCell.x() = nCells_.x() * scaled.x();
1034 >        whichCell.y() = nCells_.y() * scaled.y();
1035 >        whichCell.z() = nCells_.z() * scaled.z();
1036 >        
1037 >        // find single index of this cell:
1038 >        cellIndex = Vlinear(whichCell, nCells_);
1039 >        
1040 >        // add this cutoff group to the list of groups in this cell;
1041 >        cellListCol_[cellIndex].push_back(i);
1042 >      }
1043 > #else
1044 >      for (int i = 0; i < nGroups_; i++) {
1045 >        rs = snap_->cgData.position[i];
1046 >        
1047 >        // scaled positions relative to the box vectors
1048 >        scaled = invHmat * rs;
1049 >        
1050 >        // wrap the vector back into the unit box by subtracting integer box
1051 >        // numbers
1052 >        for (int j = 0; j < 3; j++) {
1053 >          scaled[j] -= roundMe(scaled[j]);
1054 >          scaled[j] += 0.5;
1055 >        }
1056 >        
1057 >        // find xyz-indices of cell that cutoffGroup is in.
1058 >        whichCell.x() = nCells_.x() * scaled.x();
1059 >        whichCell.y() = nCells_.y() * scaled.y();
1060 >        whichCell.z() = nCells_.z() * scaled.z();
1061 >        
1062 >        // find single index of this cell:
1063 >        cellIndex = Vlinear(whichCell, nCells_);      
1064 >        
1065 >        // add this cutoff group to the list of groups in this cell;
1066 >        cellList_[cellIndex].push_back(i);
1067 >      }
1068   #endif
1069  
1070 <    for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1071 <      for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1072 <        for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1073 <          Vector3i m1v(m1x, m1y, m1z);
1074 <          int m1 = Vlinear(m1v, nCells_);
1029 <
1030 <          for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1031 <               os != cellOffsets_.end(); ++os) {
1070 >      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1071 >        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1072 >          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1073 >            Vector3i m1v(m1x, m1y, m1z);
1074 >            int m1 = Vlinear(m1v, nCells_);
1075              
1076 <            Vector3i m2v = m1v + (*os);
1077 <            
1078 <            if (m2v.x() >= nCells_.x()) {
1079 <              m2v.x() = 0;          
1080 <            } else if (m2v.x() < 0) {
1081 <              m2v.x() = nCells_.x() - 1;
1082 <            }
1083 <            
1084 <            if (m2v.y() >= nCells_.y()) {
1085 <              m2v.y() = 0;          
1086 <            } else if (m2v.y() < 0) {
1087 <              m2v.y() = nCells_.y() - 1;
1088 <            }
1089 <            
1090 <            if (m2v.z() >= nCells_.z()) {
1091 <              m2v.z() = 0;          
1092 <            } else if (m2v.z() < 0) {
1093 <              m2v.z() = nCells_.z() - 1;
1094 <            }
1095 <            
1096 <            int m2 = Vlinear (m2v, nCells_);
1097 <
1076 >            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1077 >                 os != cellOffsets_.end(); ++os) {
1078 >              
1079 >              Vector3i m2v = m1v + (*os);
1080 >              
1081 >              if (m2v.x() >= nCells_.x()) {
1082 >                m2v.x() = 0;          
1083 >              } else if (m2v.x() < 0) {
1084 >                m2v.x() = nCells_.x() - 1;
1085 >              }
1086 >              
1087 >              if (m2v.y() >= nCells_.y()) {
1088 >                m2v.y() = 0;          
1089 >              } else if (m2v.y() < 0) {
1090 >                m2v.y() = nCells_.y() - 1;
1091 >              }
1092 >              
1093 >              if (m2v.z() >= nCells_.z()) {
1094 >                m2v.z() = 0;          
1095 >              } else if (m2v.z() < 0) {
1096 >                m2v.z() = nCells_.z() - 1;
1097 >              }
1098 >              
1099 >              int m2 = Vlinear (m2v, nCells_);
1100 >              
1101   #ifdef IS_MPI
1102 <            for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1103 <                 j1 != cellListRow_[m1].end(); ++j1) {
1104 <              for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1105 <                   j2 != cellListCol_[m2].end(); ++j2) {
1106 <                              
1107 <                // Always do this if we're in different cells or if
1108 <                // we're in the same cell and the global index of the
1109 <                // j2 cutoff group is less than the j1 cutoff group
1110 <
1111 <                if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1112 <                  dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1113 <                  snap_->wrapVector(dr);
1114 <                  cuts = getGroupCutoffs( (*j1), (*j2) );
1115 <                  if (dr.lengthSquare() < cuts.third) {
1116 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1102 >              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1103 >                   j1 != cellListRow_[m1].end(); ++j1) {
1104 >                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1105 >                     j2 != cellListCol_[m2].end(); ++j2) {
1106 >                  
1107 >                  // Always do this if we're in different cells or if
1108 >                  // we're in the same cell and the global index of the
1109 >                  // j2 cutoff group is less than the j1 cutoff group
1110 >                  
1111 >                  if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1112 >                    dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1113 >                    snap_->wrapVector(dr);
1114 >                    cuts = getGroupCutoffs( (*j1), (*j2) );
1115 >                    if (dr.lengthSquare() < cuts.third) {
1116 >                      neighborList.push_back(make_pair((*j1), (*j2)));
1117 >                    }
1118                    }
1119                  }
1120                }
1074            }
1121   #else
1122 <            for (vector<int>::iterator j1 = cellList_[m1].begin();
1123 <                 j1 != cellList_[m1].end(); ++j1) {
1124 <              for (vector<int>::iterator j2 = cellList_[m2].begin();
1125 <                   j2 != cellList_[m2].end(); ++j2) {
1126 <                              
1127 <                // Always do this if we're in different cells or if
1128 <                // we're in the same cell and the global index of the
1129 <                // j2 cutoff group is less than the j1 cutoff group
1130 <
1131 <                if (m2 != m1 || (*j2) < (*j1)) {
1132 <                  dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1133 <                  snap_->wrapVector(dr);
1134 <                  cuts = getGroupCutoffs( (*j1), (*j2) );
1135 <                  if (dr.lengthSquare() < cuts.third) {
1136 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1122 >              
1123 >              for (vector<int>::iterator j1 = cellList_[m1].begin();
1124 >                   j1 != cellList_[m1].end(); ++j1) {
1125 >                for (vector<int>::iterator j2 = cellList_[m2].begin();
1126 >                     j2 != cellList_[m2].end(); ++j2) {
1127 >                  
1128 >                  // Always do this if we're in different cells or if
1129 >                  // we're in the same cell and the global index of the
1130 >                  // j2 cutoff group is less than the j1 cutoff group
1131 >                  
1132 >                  if (m2 != m1 || (*j2) < (*j1)) {
1133 >                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1134 >                    snap_->wrapVector(dr);
1135 >                    cuts = getGroupCutoffs( (*j1), (*j2) );
1136 >                    if (dr.lengthSquare() < cuts.third) {
1137 >                      neighborList.push_back(make_pair((*j1), (*j2)));
1138 >                    }
1139                    }
1140                  }
1141                }
1094            }
1142   #endif
1143 +            }
1144            }
1145          }
1146        }
1147 +    } else {
1148 +      // branch to do all cutoff group pairs
1149 + #ifdef IS_MPI
1150 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1151 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {      
1152 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1153 +          snap_->wrapVector(dr);
1154 +          cuts = getGroupCutoffs( j1, j2 );
1155 +          if (dr.lengthSquare() < cuts.third) {
1156 +            neighborList.push_back(make_pair(j1, j2));
1157 +          }
1158 +        }
1159 +      }
1160 + #else
1161 +      for (int j1 = 0; j1 < nGroups_ - 1; j1++) {
1162 +        for (int j2 = j1 + 1; j2 < nGroups_; j2++) {
1163 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1164 +          snap_->wrapVector(dr);
1165 +          cuts = getGroupCutoffs( j1, j2 );
1166 +          if (dr.lengthSquare() < cuts.third) {
1167 +            neighborList.push_back(make_pair(j1, j2));
1168 +          }
1169 +        }
1170 +      }        
1171 + #endif
1172      }
1173 <
1173 >      
1174      // save the local cutoff group positions for the check that is
1175      // done on each loop:
1176      saved_CG_positions_.clear();
1177      for (int i = 0; i < nGroups_; i++)
1178        saved_CG_positions_.push_back(snap_->cgData.position[i]);
1179 <
1179 >    
1180      return neighborList;
1181    }
1182   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines