ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing:
branches/development/src/parallel/ForceDecomposition.cpp (file contents), Revision 1538 by chuckv, Tue Jan 11 18:58:12 2011 UTC vs.
trunk/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 2057 by gezelter, Tue Mar 3 15:22:26 2015 UTC

# Line 1 | Line 1
1 < /**
2 < * @file ForceDecomposition.cpp
3 < * @author Charles Vardeman <cvardema.at.nd.edu>
4 < * @date 08/18/2010
5 < * @time 11:56am
6 < * @version 1.0
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
8 * @section LICENSE
9 * Copyright (c) 2010 The University of Notre Dame. All Rights Reserved.
10 *
4   * The University of Notre Dame grants you ("Licensee") a
5   * non-exclusive, royalty free, license to use, modify and
6   * redistribute this software in source and binary code form, provided
# Line 42 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42 + #include "parallel/ForceMatrixDecomposition.hpp"
43 + #include "math/SquareMatrix3.hpp"
44 + #include "nonbonded/NonBondedInteraction.hpp"
45 + #include "brains/SnapshotManager.hpp"
46 + #include "brains/PairList.hpp"
47  
48 + using namespace std;
49 + namespace OpenMD {
50  
51 +  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52  
53 < /*  -*- c++ -*-  */
54 < #include "config.h"
55 < #include <stdlib.h>
56 < #ifdef IS_MPI
57 < #include <mpi.h>
58 < #endif
53 >    // Row and colum scans must visit all surrounding cells
54 >    cellOffsets_.clear();
55 >    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
56 >    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
57 >    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                          
58 >    cellOffsets_.push_back( Vector3i(-1, 0,-1) );
59 >    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
60 >    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
61 >    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
62 >    cellOffsets_.push_back( Vector3i( 0, 1,-1) );      
63 >    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
64 >    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
65 >    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
66 >    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
67 >    cellOffsets_.push_back( Vector3i(-1, 0, 0) );      
68 >    cellOffsets_.push_back( Vector3i( 0, 0, 0) );
69 >    cellOffsets_.push_back( Vector3i( 1, 0, 0) );
70 >    cellOffsets_.push_back( Vector3i(-1, 1, 0) );
71 >    cellOffsets_.push_back( Vector3i( 0, 1, 0) );
72 >    cellOffsets_.push_back( Vector3i( 1, 1, 0) );
73 >    cellOffsets_.push_back( Vector3i(-1,-1, 1) );
74 >    cellOffsets_.push_back( Vector3i( 0,-1, 1) );
75 >    cellOffsets_.push_back( Vector3i( 1,-1, 1) );
76 >    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
77 >    cellOffsets_.push_back( Vector3i( 0, 0, 1) );
78 >    cellOffsets_.push_back( Vector3i( 1, 0, 1) );
79 >    cellOffsets_.push_back( Vector3i(-1, 1, 1) );
80 >    cellOffsets_.push_back( Vector3i( 0, 1, 1) );
81 >    cellOffsets_.push_back( Vector3i( 1, 1, 1) );
82 >  }
83  
58 #include <iostream>
59 #include <vector>
60 #include <algorithm>
61 #include <cmath>
62 #include "parallel/ForceDecomposition.hpp"
84  
85 +  /**
86 +   * distributeInitialData is essentially a copy of the older fortran
87 +   * SimulationSetup
88 +   */
89 +  void ForceMatrixDecomposition::distributeInitialData() {
90 +    snap_ = sman_->getCurrentSnapshot();
91 +    storageLayout_ = sman_->getStorageLayout();
92 +    ff_ = info_->getForceField();
93 +    nLocal_ = snap_->getNumberOfAtoms();
94 +  
95 +    nGroups_ = info_->getNLocalCutoffGroups();
96 +    // gather the information for atomtype IDs (atids):
97 +    idents = info_->getIdentArray();
98 +    regions = info_->getRegions();
99 +    AtomLocalToGlobal = info_->getGlobalAtomIndices();
100 +    cgLocalToGlobal = info_->getGlobalGroupIndices();
101 +    vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
102  
103 < using namespace std;
66 < using namespace OpenMD;
103 >    massFactors = info_->getMassFactors();
104  
105 < //__static
105 >    PairList* excludes = info_->getExcludedInteractions();
106 >    PairList* oneTwo = info_->getOneTwoInteractions();
107 >    PairList* oneThree = info_->getOneThreeInteractions();
108 >    PairList* oneFour = info_->getOneFourInteractions();
109 >    
110 >    if (needVelocities_)
111 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition |
112 >                                     DataStorage::dslVelocity);
113 >    else
114 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition);
115 >    
116   #ifdef IS_MPI
117 < static vector<MPI:Comm> communictors;
118 < #endif
117 >
118 >    MPI_Comm row = rowComm.getComm();
119 >    MPI_Comm col = colComm.getComm();
120  
121 < //____ MPITypeTraits
122 < template<typename T>
123 < struct MPITypeTraits;
121 >    AtomPlanIntRow = new Plan<int>(row, nLocal_);
122 >    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
123 >    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
124 >    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
125 >    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
126  
127 < #ifdef IS_MPI
128 < template<>
129 < struct MPITypeTraits<RealType> {
130 <  static const MPI::Datatype datatype;
131 < };
82 < const MPI_Datatype MPITypeTraits<RealType>::datatype = MY_MPI_REAL;
127 >    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
128 >    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
129 >    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
130 >    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
131 >    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
132  
133 < template<>
134 < struct MPITypeTraits<int> {
135 <  static const MPI::Datatype datatype;
136 < };
88 < const MPI::Datatype MPITypeTraits<int>::datatype = MPI_INT;
89 < #endif
133 >    cgPlanIntRow = new Plan<int>(row, nGroups_);
134 >    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
135 >    cgPlanIntColumn = new Plan<int>(col, nGroups_);
136 >    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
137  
138 < /**
139 < * Constructor for ForceDecomposition Parallel Decomposition Method
140 < * Will try to construct a symmetric grid of processors. Ideally, the
141 < * number of processors will be a square ex: 4, 9, 16, 25.
95 < *
96 < */
138 >    nAtomsInRow_ = AtomPlanIntRow->getSize();
139 >    nAtomsInCol_ = AtomPlanIntColumn->getSize();
140 >    nGroupsInRow_ = cgPlanIntRow->getSize();
141 >    nGroupsInCol_ = cgPlanIntColumn->getSize();
142  
143 < ForceDecomposition::ForceDecomposition() {
143 >    // Modify the data storage objects with the correct layouts and sizes:
144 >    atomRowData.resize(nAtomsInRow_);
145 >    atomRowData.setStorageLayout(storageLayout_);
146 >    atomColData.resize(nAtomsInCol_);
147 >    atomColData.setStorageLayout(storageLayout_);
148 >    cgRowData.resize(nGroupsInRow_);
149 >    cgRowData.setStorageLayout(DataStorage::dslPosition);
150 >    cgColData.resize(nGroupsInCol_);
151 >    if (needVelocities_)
152 >      // we only need column velocities if we need them.
153 >      cgColData.setStorageLayout(DataStorage::dslPosition |
154 >                                 DataStorage::dslVelocity);
155 >    else    
156 >      cgColData.setStorageLayout(DataStorage::dslPosition);
157 >      
158 >    identsRow.resize(nAtomsInRow_);
159 >    identsCol.resize(nAtomsInCol_);
160 >    
161 >    AtomPlanIntRow->gather(idents, identsRow);
162 >    AtomPlanIntColumn->gather(idents, identsCol);
163 >
164 >    regionsRow.resize(nAtomsInRow_);
165 >    regionsCol.resize(nAtomsInCol_);
166 >    
167 >    AtomPlanIntRow->gather(regions, regionsRow);
168 >    AtomPlanIntColumn->gather(regions, regionsCol);
169 >    
170 >    // allocate memory for the parallel objects
171 >    atypesRow.resize(nAtomsInRow_);
172 >    atypesCol.resize(nAtomsInCol_);
173 >
174 >    for (int i = 0; i < nAtomsInRow_; i++)
175 >      atypesRow[i] = ff_->getAtomType(identsRow[i]);
176 >    for (int i = 0; i < nAtomsInCol_; i++)
177 >      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
178 >
179 >    pot_row.resize(nAtomsInRow_);
180 >    pot_col.resize(nAtomsInCol_);
181 >
182 >    expot_row.resize(nAtomsInRow_);
183 >    expot_col.resize(nAtomsInCol_);
184 >
185 >    AtomRowToGlobal.resize(nAtomsInRow_);
186 >    AtomColToGlobal.resize(nAtomsInCol_);
187 >    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
188 >    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
189 >
190 >    cgRowToGlobal.resize(nGroupsInRow_);
191 >    cgColToGlobal.resize(nGroupsInCol_);
192 >    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
193 >    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
194 >
195 >    massFactorsRow.resize(nAtomsInRow_);
196 >    massFactorsCol.resize(nAtomsInCol_);
197 >    AtomPlanRealRow->gather(massFactors, massFactorsRow);
198 >    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
199 >
200 >    groupListRow_.clear();
201 >    groupListRow_.resize(nGroupsInRow_);
202 >    for (int i = 0; i < nGroupsInRow_; i++) {
203 >      int gid = cgRowToGlobal[i];
204 >      for (int j = 0; j < nAtomsInRow_; j++) {
205 >        int aid = AtomRowToGlobal[j];
206 >        if (globalGroupMembership[aid] == gid)
207 >          groupListRow_[i].push_back(j);
208 >      }      
209 >    }
210 >
211 >    groupListCol_.clear();
212 >    groupListCol_.resize(nGroupsInCol_);
213 >    for (int i = 0; i < nGroupsInCol_; i++) {
214 >      int gid = cgColToGlobal[i];
215 >      for (int j = 0; j < nAtomsInCol_; j++) {
216 >        int aid = AtomColToGlobal[j];
217 >        if (globalGroupMembership[aid] == gid)
218 >          groupListCol_[i].push_back(j);
219 >      }      
220 >    }
221  
222 +    excludesForAtom.clear();
223 +    excludesForAtom.resize(nAtomsInRow_);
224 +    toposForAtom.clear();
225 +    toposForAtom.resize(nAtomsInRow_);
226 +    topoDist.clear();
227 +    topoDist.resize(nAtomsInRow_);
228 +    for (int i = 0; i < nAtomsInRow_; i++) {
229 +      int iglob = AtomRowToGlobal[i];
230 +
231 +      for (int j = 0; j < nAtomsInCol_; j++) {
232 +        int jglob = AtomColToGlobal[j];
233 +
234 +        if (excludes->hasPair(iglob, jglob))
235 +          excludesForAtom[i].push_back(j);      
236 +        
237 +        if (oneTwo->hasPair(iglob, jglob)) {
238 +          toposForAtom[i].push_back(j);
239 +          topoDist[i].push_back(1);
240 +        } else {
241 +          if (oneThree->hasPair(iglob, jglob)) {
242 +            toposForAtom[i].push_back(j);
243 +            topoDist[i].push_back(2);
244 +          } else {
245 +            if (oneFour->hasPair(iglob, jglob)) {
246 +              toposForAtom[i].push_back(j);
247 +              topoDist[i].push_back(3);
248 +            }
249 +          }
250 +        }
251 +      }      
252 +    }
253 +
254 + #else
255 +    excludesForAtom.clear();
256 +    excludesForAtom.resize(nLocal_);
257 +    toposForAtom.clear();
258 +    toposForAtom.resize(nLocal_);
259 +    topoDist.clear();
260 +    topoDist.resize(nLocal_);
261 +
262 +    for (int i = 0; i < nLocal_; i++) {
263 +      int iglob = AtomLocalToGlobal[i];
264 +
265 +      for (int j = 0; j < nLocal_; j++) {
266 +        int jglob = AtomLocalToGlobal[j];
267 +
268 +        if (excludes->hasPair(iglob, jglob))
269 +          excludesForAtom[i].push_back(j);              
270 +        
271 +        if (oneTwo->hasPair(iglob, jglob)) {
272 +          toposForAtom[i].push_back(j);
273 +          topoDist[i].push_back(1);
274 +        } else {
275 +          if (oneThree->hasPair(iglob, jglob)) {
276 +            toposForAtom[i].push_back(j);
277 +            topoDist[i].push_back(2);
278 +          } else {
279 +            if (oneFour->hasPair(iglob, jglob)) {
280 +              toposForAtom[i].push_back(j);
281 +              topoDist[i].push_back(3);
282 +            }
283 +          }
284 +        }
285 +      }      
286 +    }
287 + #endif
288 +
289 +    // allocate memory for the parallel objects
290 +    atypesLocal.resize(nLocal_);
291 +
292 +    for (int i = 0; i < nLocal_; i++)
293 +      atypesLocal[i] = ff_->getAtomType(idents[i]);
294 +
295 +    groupList_.clear();
296 +    groupList_.resize(nGroups_);
297 +    for (int i = 0; i < nGroups_; i++) {
298 +      int gid = cgLocalToGlobal[i];
299 +      for (int j = 0; j < nLocal_; j++) {
300 +        int aid = AtomLocalToGlobal[j];
301 +        if (globalGroupMembership[aid] == gid) {
302 +          groupList_[i].push_back(j);
303 +        }
304 +      }      
305 +    }    
306 +  }
307 +    
308 +  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
309 +    for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) {
310 +      if (toposForAtom[atom1][j] == atom2)
311 +        return topoDist[atom1][j];
312 +    }                                          
313 +    return 0;
314 +  }
315 +
316 +  void ForceMatrixDecomposition::zeroWorkArrays() {
317 +    pairwisePot = 0.0;
318 +    embeddingPot = 0.0;
319 +    excludedPot = 0.0;
320 +    excludedSelfPot = 0.0;
321 +
322 + #ifdef IS_MPI
323 +    if (storageLayout_ & DataStorage::dslForce) {
324 +      fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
325 +      fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
326 +    }
327 +
328 +    if (storageLayout_ & DataStorage::dslTorque) {
329 +      fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
330 +      fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
331 +    }
332 +    
333 +    fill(pot_row.begin(), pot_row.end(),
334 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
335 +
336 +    fill(pot_col.begin(), pot_col.end(),
337 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
338 +
339 +    fill(expot_row.begin(), expot_row.end(),
340 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
341 +
342 +    fill(expot_col.begin(), expot_col.end(),
343 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
344 +
345 +    if (storageLayout_ & DataStorage::dslParticlePot) {    
346 +      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
347 +           0.0);
348 +      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
349 +           0.0);
350 +    }
351 +
352 +    if (storageLayout_ & DataStorage::dslDensity) {      
353 +      fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
354 +      fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
355 +    }
356 +
357 +    if (storageLayout_ & DataStorage::dslFunctional) {  
358 +      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
359 +           0.0);
360 +      fill(atomColData.functional.begin(), atomColData.functional.end(),
361 +           0.0);
362 +    }
363 +
364 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
365 +      fill(atomRowData.functionalDerivative.begin(),
366 +           atomRowData.functionalDerivative.end(), 0.0);
367 +      fill(atomColData.functionalDerivative.begin(),
368 +           atomColData.functionalDerivative.end(), 0.0);
369 +    }
370 +
371 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
372 +      fill(atomRowData.skippedCharge.begin(),
373 +           atomRowData.skippedCharge.end(), 0.0);
374 +      fill(atomColData.skippedCharge.begin(),
375 +           atomColData.skippedCharge.end(), 0.0);
376 +    }
377 +
378 +    if (storageLayout_ & DataStorage::dslFlucQForce) {      
379 +      fill(atomRowData.flucQFrc.begin(),
380 +           atomRowData.flucQFrc.end(), 0.0);
381 +      fill(atomColData.flucQFrc.begin(),
382 +           atomColData.flucQFrc.end(), 0.0);
383 +    }
384 +
385 +    if (storageLayout_ & DataStorage::dslElectricField) {    
386 +      fill(atomRowData.electricField.begin(),
387 +           atomRowData.electricField.end(), V3Zero);
388 +      fill(atomColData.electricField.begin(),
389 +           atomColData.electricField.end(), V3Zero);
390 +    }
391 +
392 +    if (storageLayout_ & DataStorage::dslSitePotential) {    
393 +      fill(atomRowData.sitePotential.begin(),
394 +           atomRowData.sitePotential.end(), 0.0);
395 +      fill(atomColData.sitePotential.begin(),
396 +           atomColData.sitePotential.end(), 0.0);
397 +    }
398 +
399 + #endif
400 +    // even in parallel, we need to zero out the local arrays:
401 +
402 +    if (storageLayout_ & DataStorage::dslParticlePot) {      
403 +      fill(snap_->atomData.particlePot.begin(),
404 +           snap_->atomData.particlePot.end(), 0.0);
405 +    }
406 +    
407 +    if (storageLayout_ & DataStorage::dslDensity) {      
408 +      fill(snap_->atomData.density.begin(),
409 +           snap_->atomData.density.end(), 0.0);
410 +    }
411 +
412 +    if (storageLayout_ & DataStorage::dslFunctional) {
413 +      fill(snap_->atomData.functional.begin(),
414 +           snap_->atomData.functional.end(), 0.0);
415 +    }
416 +
417 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
418 +      fill(snap_->atomData.functionalDerivative.begin(),
419 +           snap_->atomData.functionalDerivative.end(), 0.0);
420 +    }
421 +
422 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
423 +      fill(snap_->atomData.skippedCharge.begin(),
424 +           snap_->atomData.skippedCharge.end(), 0.0);
425 +    }
426 +
427 +    if (storageLayout_ & DataStorage::dslElectricField) {      
428 +      fill(snap_->atomData.electricField.begin(),
429 +           snap_->atomData.electricField.end(), V3Zero);
430 +    }
431 +    if (storageLayout_ & DataStorage::dslSitePotential) {      
432 +      fill(snap_->atomData.sitePotential.begin(),
433 +           snap_->atomData.sitePotential.end(), 0.0);
434 +    }
435 +  }
436 +
437 +
438 +  void ForceMatrixDecomposition::distributeData()  {
439 +    snap_ = sman_->getCurrentSnapshot();
440 +    storageLayout_ = sman_->getStorageLayout();
441 +
442 +    bool needsCG = true;
443 +    if(info_->getNCutoffGroups() != info_->getNAtoms())
444 +      needsCG = false;
445 +  
446   #ifdef IS_MPI
447 <  int nProcs = MPI::COMM_WORLD.Get_size();
448 <  int worldRank = MPI::COMM_WORLD.Get_rank();
449 < #endif
447 >    
448 >    // gather up the atomic positions
449 >    AtomPlanVectorRow->gather(snap_->atomData.position,
450 >                              atomRowData.position);
451 >    AtomPlanVectorColumn->gather(snap_->atomData.position,
452 >                                 atomColData.position);
453 >    
454 >    // gather up the cutoff group positions
455  
456 <  // First time through, construct column stride.
457 <  if (communicators.size() == 0)
458 <  {
459 <    int nColumnsMax = (int) round(sqrt((float) nProcs));
460 <    for (int i = 0; i < nProcs; ++i)
461 <    {
111 <      if (nProcs%i==0) nColumns=i;
456 >    if (needsCG) {
457 >      cgPlanVectorRow->gather(snap_->cgData.position,
458 >                              cgRowData.position);
459 >      
460 >      cgPlanVectorColumn->gather(snap_->cgData.position,
461 >                                 cgColData.position);
462      }
463  
464 <    int nRows = nProcs/nColumns;    
465 <    myRank_ = (int) worldRank%nColumns;
464 >
465 >    if (needVelocities_) {
466 >      // gather up the atomic velocities
467 >      AtomPlanVectorColumn->gather(snap_->atomData.velocity,
468 >                                   atomColData.velocity);
469 >
470 >      if (needsCG) {        
471 >        cgPlanVectorColumn->gather(snap_->cgData.velocity,
472 >                                   cgColData.velocity);
473 >      }
474 >    }
475 >
476 >    
477 >    // if needed, gather the atomic rotation matrices
478 >    if (storageLayout_ & DataStorage::dslAmat) {
479 >      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
480 >                                atomRowData.aMat);
481 >      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
482 >                                   atomColData.aMat);
483 >    }
484 >
485 >    // if needed, gather the atomic eletrostatic information
486 >    if (storageLayout_ & DataStorage::dslDipole) {
487 >      AtomPlanVectorRow->gather(snap_->atomData.dipole,
488 >                                atomRowData.dipole);
489 >      AtomPlanVectorColumn->gather(snap_->atomData.dipole,
490 >                                   atomColData.dipole);
491 >    }
492 >
493 >    if (storageLayout_ & DataStorage::dslQuadrupole) {
494 >      AtomPlanMatrixRow->gather(snap_->atomData.quadrupole,
495 >                                atomRowData.quadrupole);
496 >      AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole,
497 >                                   atomColData.quadrupole);
498 >    }
499 >        
500 >    // if needed, gather the atomic fluctuating charge values
501 >    if (storageLayout_ & DataStorage::dslFlucQPosition) {
502 >      AtomPlanRealRow->gather(snap_->atomData.flucQPos,
503 >                              atomRowData.flucQPos);
504 >      AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
505 >                                 atomColData.flucQPos);
506 >    }
507 >
508 > #endif      
509    }
510 <  else
511 <  {
512 <    myRank_ = myRank/nColumns;
510 >  
511 >  /* collects information obtained during the pre-pair loop onto local
512 >   * data structures.
513 >   */
514 >  void ForceMatrixDecomposition::collectIntermediateData() {
515 >    snap_ = sman_->getCurrentSnapshot();
516 >    storageLayout_ = sman_->getStorageLayout();
517 > #ifdef IS_MPI
518 >    
519 >    if (storageLayout_ & DataStorage::dslDensity) {
520 >      
521 >      AtomPlanRealRow->scatter(atomRowData.density,
522 >                               snap_->atomData.density);
523 >      
524 >      int n = snap_->atomData.density.size();
525 >      vector<RealType> rho_tmp(n, 0.0);
526 >      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
527 >      for (int i = 0; i < n; i++)
528 >        snap_->atomData.density[i] += rho_tmp[i];
529 >    }
530 >
531 >    // this isn't necessary if we don't have polarizable atoms, but
532 >    // we'll leave it here for now.
533 >    if (storageLayout_ & DataStorage::dslElectricField) {
534 >      
535 >      AtomPlanVectorRow->scatter(atomRowData.electricField,
536 >                                 snap_->atomData.electricField);
537 >      
538 >      int n = snap_->atomData.electricField.size();
539 >      vector<Vector3d> field_tmp(n, V3Zero);
540 >      AtomPlanVectorColumn->scatter(atomColData.electricField,
541 >                                    field_tmp);
542 >      for (int i = 0; i < n; i++)
543 >        snap_->atomData.electricField[i] += field_tmp[i];
544 >    }
545 > #endif
546    }
547 <  MPI::Comm newComm = MPI:COMM_WORLD.Split(myRank_,0);
547 >
548 >  /*
549 >   * redistributes information obtained during the pre-pair loop out to
550 >   * row and column-indexed data structures
551 >   */
552 >  void ForceMatrixDecomposition::distributeIntermediateData() {
553 >    snap_ = sman_->getCurrentSnapshot();
554 >    storageLayout_ = sman_->getStorageLayout();
555 > #ifdef IS_MPI
556 >    if (storageLayout_ & DataStorage::dslFunctional) {
557 >      AtomPlanRealRow->gather(snap_->atomData.functional,
558 >                              atomRowData.functional);
559 >      AtomPlanRealColumn->gather(snap_->atomData.functional,
560 >                                 atomColData.functional);
561 >    }
562 >    
563 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
564 >      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
565 >                              atomRowData.functionalDerivative);
566 >      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
567 >                                 atomColData.functionalDerivative);
568 >    }
569 > #endif
570 >  }
571    
123  isColumn_ = false;
572    
573 < }
573 >  void ForceMatrixDecomposition::collectData() {
574 >    snap_ = sman_->getCurrentSnapshot();
575 >    storageLayout_ = sman_->getStorageLayout();
576 > #ifdef IS_MPI    
577 >    int n = snap_->atomData.force.size();
578 >    vector<Vector3d> frc_tmp(n, V3Zero);
579 >    
580 >    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
581 >    for (int i = 0; i < n; i++) {
582 >      snap_->atomData.force[i] += frc_tmp[i];
583 >      frc_tmp[i] = 0.0;
584 >    }
585 >    
586 >    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
587 >    for (int i = 0; i < n; i++) {
588 >      snap_->atomData.force[i] += frc_tmp[i];
589 >    }
590 >        
591 >    if (storageLayout_ & DataStorage::dslTorque) {
592  
593 < ForceDecomposition::gather(sendbuf, receivebuf){
594 <  communicators(myIndex_).Allgatherv();
129 < }
593 >      int nt = snap_->atomData.torque.size();
594 >      vector<Vector3d> trq_tmp(nt, V3Zero);
595  
596 +      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
597 +      for (int i = 0; i < nt; i++) {
598 +        snap_->atomData.torque[i] += trq_tmp[i];
599 +        trq_tmp[i] = 0.0;
600 +      }
601 +      
602 +      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
603 +      for (int i = 0; i < nt; i++)
604 +        snap_->atomData.torque[i] += trq_tmp[i];
605 +    }
606  
607 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
608  
609 < ForceDecomposition::scatter(sbuffer, rbuffer){
610 <  communicators(myIndex_).Reduce_scatter(sbuffer, recevbuf. recvcounts, MPI::DOUBLE, MPI::SUM);
135 < }
609 >      int ns = snap_->atomData.skippedCharge.size();
610 >      vector<RealType> skch_tmp(ns, 0.0);
611  
612 +      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
613 +      for (int i = 0; i < ns; i++) {
614 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
615 +        skch_tmp[i] = 0.0;
616 +      }
617 +      
618 +      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
619 +      for (int i = 0; i < ns; i++)
620 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
621 +            
622 +    }
623 +    
624 +    if (storageLayout_ & DataStorage::dslFlucQForce) {
625  
626 +      int nq = snap_->atomData.flucQFrc.size();
627 +      vector<RealType> fqfrc_tmp(nq, 0.0);
628 +
629 +      AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
630 +      for (int i = 0; i < nq; i++) {
631 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
632 +        fqfrc_tmp[i] = 0.0;
633 +      }
634 +      
635 +      AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
636 +      for (int i = 0; i < nq; i++)
637 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
638 +            
639 +    }
640 +
641 +    if (storageLayout_ & DataStorage::dslElectricField) {
642 +
643 +      int nef = snap_->atomData.electricField.size();
644 +      vector<Vector3d> efield_tmp(nef, V3Zero);
645 +
646 +      AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp);
647 +      for (int i = 0; i < nef; i++) {
648 +        snap_->atomData.electricField[i] += efield_tmp[i];
649 +        efield_tmp[i] = 0.0;
650 +      }
651 +      
652 +      AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp);
653 +      for (int i = 0; i < nef; i++)
654 +        snap_->atomData.electricField[i] += efield_tmp[i];
655 +    }
656 +
657 +    if (storageLayout_ & DataStorage::dslSitePotential) {
658 +
659 +      int nsp = snap_->atomData.sitePotential.size();
660 +      vector<RealType> sp_tmp(nsp, 0.0);
661 +
662 +      AtomPlanRealRow->scatter(atomRowData.sitePotential, sp_tmp);
663 +      for (int i = 0; i < nsp; i++) {
664 +        snap_->atomData.sitePotential[i] += sp_tmp[i];
665 +        sp_tmp[i] = 0.0;
666 +      }
667 +      
668 +      AtomPlanRealColumn->scatter(atomColData.sitePotential, sp_tmp);
669 +      for (int i = 0; i < nsp; i++)
670 +        snap_->atomData.sitePotential[i] += sp_tmp[i];
671 +    }
672 +
673 +    nLocal_ = snap_->getNumberOfAtoms();
674 +
675 +    vector<potVec> pot_temp(nLocal_,
676 +                            Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
677 +    vector<potVec> expot_temp(nLocal_,
678 +                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
679 +
680 +    // scatter/gather pot_row into the members of my column
681 +          
682 +    AtomPlanPotRow->scatter(pot_row, pot_temp);
683 +    AtomPlanPotRow->scatter(expot_row, expot_temp);
684 +
685 +    for (int ii = 0;  ii < pot_temp.size(); ii++ )
686 +      pairwisePot += pot_temp[ii];
687 +
688 +    for (int ii = 0;  ii < expot_temp.size(); ii++ )
689 +      excludedPot += expot_temp[ii];
690 +        
691 +    if (storageLayout_ & DataStorage::dslParticlePot) {
692 +      // This is the pairwise contribution to the particle pot.  The
693 +      // embedding contribution is added in each of the low level
694 +      // non-bonded routines.  In single processor, this is done in
695 +      // unpackInteractionData, not in collectData.
696 +      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
697 +        for (int i = 0; i < nLocal_; i++) {
698 +          // factor of two is because the total potential terms are divided
699 +          // by 2 in parallel due to row/ column scatter      
700 +          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
701 +        }
702 +      }
703 +    }
704 +
705 +    fill(pot_temp.begin(), pot_temp.end(),
706 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
707 +    fill(expot_temp.begin(), expot_temp.end(),
708 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
709 +      
710 +    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
711 +    AtomPlanPotColumn->scatter(expot_col, expot_temp);    
712 +    
713 +    for (int ii = 0;  ii < pot_temp.size(); ii++ )
714 +      pairwisePot += pot_temp[ii];    
715 +
716 +    for (int ii = 0;  ii < expot_temp.size(); ii++ )
717 +      excludedPot += expot_temp[ii];    
718 +
719 +    if (storageLayout_ & DataStorage::dslParticlePot) {
720 +      // This is the pairwise contribution to the particle pot.  The
721 +      // embedding contribution is added in each of the low level
722 +      // non-bonded routines.  In single processor, this is done in
723 +      // unpackInteractionData, not in collectData.
724 +      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
725 +        for (int i = 0; i < nLocal_; i++) {
726 +          // factor of two is because the total potential terms are divided
727 +          // by 2 in parallel due to row/ column scatter      
728 +          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
729 +        }
730 +      }
731 +    }
732 +    
733 +    if (storageLayout_ & DataStorage::dslParticlePot) {
734 +      int npp = snap_->atomData.particlePot.size();
735 +      vector<RealType> ppot_temp(npp, 0.0);
736 +
737 +      // This is the direct or embedding contribution to the particle
738 +      // pot.
739 +      
740 +      AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
741 +      for (int i = 0; i < npp; i++) {
742 +        snap_->atomData.particlePot[i] += ppot_temp[i];
743 +      }
744 +
745 +      fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
746 +      
747 +      AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
748 +      for (int i = 0; i < npp; i++) {
749 +        snap_->atomData.particlePot[i] += ppot_temp[i];
750 +      }
751 +    }
752 +
753 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
754 +      RealType ploc1 = pairwisePot[ii];
755 +      RealType ploc2 = 0.0;
756 +      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
757 +      pairwisePot[ii] = ploc2;
758 +    }
759 +
760 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
761 +      RealType ploc1 = excludedPot[ii];
762 +      RealType ploc2 = 0.0;
763 +      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
764 +      excludedPot[ii] = ploc2;
765 +    }
766 +
767 +    // Here be dragons.
768 +    MPI_Comm col = colComm.getComm();
769 +
770 +    MPI_Allreduce(MPI_IN_PLACE,
771 +                  &snap_->frameData.conductiveHeatFlux[0], 3,
772 +                  MPI_REALTYPE, MPI_SUM, col);
773 +
774 +
775 + #endif
776 +
777 +  }
778 +
779 +  /**
780 +   * Collects information obtained during the post-pair (and embedding
781 +   * functional) loops onto local data structures.
782 +   */
783 +  void ForceMatrixDecomposition::collectSelfData() {
784 +    snap_ = sman_->getCurrentSnapshot();
785 +    storageLayout_ = sman_->getStorageLayout();
786 +
787 + #ifdef IS_MPI
788 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
789 +      RealType ploc1 = embeddingPot[ii];
790 +      RealType ploc2 = 0.0;
791 +      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
792 +      embeddingPot[ii] = ploc2;
793 +    }    
794 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
795 +      RealType ploc1 = excludedSelfPot[ii];
796 +      RealType ploc2 = 0.0;
797 +      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
798 +      excludedSelfPot[ii] = ploc2;
799 +    }    
800 + #endif
801 +    
802 +  }
803 +
804 +
805 +
806 +  int& ForceMatrixDecomposition::getNAtomsInRow() {  
807 + #ifdef IS_MPI
808 +    return nAtomsInRow_;
809 + #else
810 +    return nLocal_;
811 + #endif
812 +  }
813 +
814 +  /**
815 +   * returns the list of atoms belonging to this group.  
816 +   */
817 +  vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
818 + #ifdef IS_MPI
819 +    return groupListRow_[cg1];
820 + #else
821 +    return groupList_[cg1];
822 + #endif
823 +  }
824 +
825 +  vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
826 + #ifdef IS_MPI
827 +    return groupListCol_[cg2];
828 + #else
829 +    return groupList_[cg2];
830 + #endif
831 +  }
832 +  
833 +  Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
834 +    Vector3d d;
835 +    
836 + #ifdef IS_MPI
837 +    d = cgColData.position[cg2] - cgRowData.position[cg1];
838 + #else
839 +    d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
840 + #endif
841 +    
842 +    if (usePeriodicBoundaryConditions_) {
843 +      snap_->wrapVector(d);
844 +    }
845 +    return d;    
846 +  }
847 +
848 +  Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
849 + #ifdef IS_MPI
850 +    return cgColData.velocity[cg2];
851 + #else
852 +    return snap_->cgData.velocity[cg2];
853 + #endif
854 +  }
855 +
856 +  Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
857 + #ifdef IS_MPI
858 +    return atomColData.velocity[atom2];
859 + #else
860 +    return snap_->atomData.velocity[atom2];
861 + #endif
862 +  }
863 +
864 +
865 +  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
866 +
867 +    Vector3d d;
868 +    
869 + #ifdef IS_MPI
870 +    d = cgRowData.position[cg1] - atomRowData.position[atom1];
871 + #else
872 +    d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
873 + #endif
874 +    if (usePeriodicBoundaryConditions_) {
875 +      snap_->wrapVector(d);
876 +    }
877 +    return d;    
878 +  }
879 +  
880 +  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
881 +    Vector3d d;
882 +    
883 + #ifdef IS_MPI
884 +    d = cgColData.position[cg2] - atomColData.position[atom2];
885 + #else
886 +    d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
887 + #endif
888 +    if (usePeriodicBoundaryConditions_) {
889 +      snap_->wrapVector(d);
890 +    }
891 +    return d;    
892 +  }
893 +
894 +  RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) {
895 + #ifdef IS_MPI
896 +    return massFactorsRow[atom1];
897 + #else
898 +    return massFactors[atom1];
899 + #endif
900 +  }
901 +
902 +  RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
903 + #ifdef IS_MPI
904 +    return massFactorsCol[atom2];
905 + #else
906 +    return massFactors[atom2];
907 + #endif
908 +
909 +  }
910 +    
911 +  Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
912 +    Vector3d d;
913 +    
914 + #ifdef IS_MPI
915 +    d = atomColData.position[atom2] - atomRowData.position[atom1];
916 + #else
917 +    d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
918 + #endif
919 +    if (usePeriodicBoundaryConditions_) {
920 +      snap_->wrapVector(d);
921 +    }
922 +    return d;    
923 +  }
924 +
925 +  vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
926 +    return excludesForAtom[atom1];
927 +  }
928 +
929 +  /**
930 +   * We need to exclude some overcounted interactions that result from
931 +   * the parallel decomposition.
932 +   */
933 +  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) {
934 +    int unique_id_1, unique_id_2;
935 +        
936 + #ifdef IS_MPI
937 +    // in MPI, we have to look up the unique IDs for each atom
938 +    unique_id_1 = AtomRowToGlobal[atom1];
939 +    unique_id_2 = AtomColToGlobal[atom2];
940 +    // group1 = cgRowToGlobal[cg1];
941 +    // group2 = cgColToGlobal[cg2];
942 + #else
943 +    unique_id_1 = AtomLocalToGlobal[atom1];
944 +    unique_id_2 = AtomLocalToGlobal[atom2];
945 +    int group1 = cgLocalToGlobal[cg1];
946 +    int group2 = cgLocalToGlobal[cg2];
947 + #endif  
948 +
949 +    if (unique_id_1 == unique_id_2) return true;
950 +
951 + #ifdef IS_MPI
952 +    // this prevents us from doing the pair on multiple processors
953 +    if (unique_id_1 < unique_id_2) {
954 +      if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
955 +    } else {
956 +      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
957 +    }
958 + #endif    
959 +
960 + #ifndef IS_MPI
961 +    if (group1 == group2) {
962 +      if (unique_id_1 < unique_id_2) return true;
963 +    }
964 + #endif
965 +    
966 +    return false;
967 +  }
968 +
969 +  /**
970 +   * We need to handle the interactions for atoms who are involved in
971 +   * the same rigid body as well as some short range interactions
972 +   * (bonds, bends, torsions) differently from other interactions.
973 +   * We'll still visit the pairwise routines, but with a flag that
974 +   * tells those routines to exclude the pair from direct long range
975 +   * interactions.  Some indirect interactions (notably reaction
976 +   * field) must still be handled for these pairs.
977 +   */
978 +  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
979 +
980 +    // excludesForAtom was constructed to use row/column indices in the MPI
981 +    // version, and to use local IDs in the non-MPI version:
982 +    
983 +    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
984 +         i != excludesForAtom[atom1].end(); ++i) {
985 +      if ( (*i) == atom2 ) return true;
986 +    }
987 +
988 +    return false;
989 +  }
990 +
991 +
992 +  void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
993 + #ifdef IS_MPI
994 +    atomRowData.force[atom1] += fg;
995 + #else
996 +    snap_->atomData.force[atom1] += fg;
997 + #endif
998 +  }
999 +
1000 +  void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
1001 + #ifdef IS_MPI
1002 +    atomColData.force[atom2] += fg;
1003 + #else
1004 +    snap_->atomData.force[atom2] += fg;
1005 + #endif
1006 +  }
1007 +
1008 +    // filling interaction blocks with pointers
1009 +  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1010 +                                                     int atom1, int atom2,
1011 +                                                     bool newAtom1) {
1012 +
1013 +    idat.excluded = excludeAtomPair(atom1, atom2);
1014 +
1015 +    if (newAtom1) {
1016 +      
1017 + #ifdef IS_MPI
1018 +      idat.atid1 = identsRow[atom1];
1019 +      idat.atid2 = identsCol[atom2];
1020 +      
1021 +      if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) {
1022 +        idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]);
1023 +      } else {
1024 +        idat.sameRegion = false;
1025 +      }
1026 +      
1027 +      if (storageLayout_ & DataStorage::dslAmat) {
1028 +        idat.A1 = &(atomRowData.aMat[atom1]);
1029 +        idat.A2 = &(atomColData.aMat[atom2]);
1030 +      }
1031 +      
1032 +      if (storageLayout_ & DataStorage::dslTorque) {
1033 +        idat.t1 = &(atomRowData.torque[atom1]);
1034 +        idat.t2 = &(atomColData.torque[atom2]);
1035 +      }
1036 +      
1037 +      if (storageLayout_ & DataStorage::dslDipole) {
1038 +        idat.dipole1 = &(atomRowData.dipole[atom1]);
1039 +        idat.dipole2 = &(atomColData.dipole[atom2]);
1040 +      }
1041 +      
1042 +      if (storageLayout_ & DataStorage::dslQuadrupole) {
1043 +        idat.quadrupole1 = &(atomRowData.quadrupole[atom1]);
1044 +        idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1045 +      }
1046 +      
1047 +      if (storageLayout_ & DataStorage::dslDensity) {
1048 +        idat.rho1 = &(atomRowData.density[atom1]);
1049 +        idat.rho2 = &(atomColData.density[atom2]);
1050 +      }
1051 +      
1052 +      if (storageLayout_ & DataStorage::dslFunctional) {
1053 +        idat.frho1 = &(atomRowData.functional[atom1]);
1054 +        idat.frho2 = &(atomColData.functional[atom2]);
1055 +      }
1056 +      
1057 +      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1058 +        idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1059 +        idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1060 +      }
1061 +      
1062 +      if (storageLayout_ & DataStorage::dslParticlePot) {
1063 +        idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1064 +        idat.particlePot2 = &(atomColData.particlePot[atom2]);
1065 +      }
1066 +      
1067 +      if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1068 +        idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1069 +        idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1070 +      }
1071 +      
1072 +      if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1073 +        idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1074 +        idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1075 +      }
1076 +      
1077 + #else
1078 +      
1079 +      idat.atid1 = idents[atom1];
1080 +      idat.atid2 = idents[atom2];
1081 +      
1082 +      if (regions[atom1] >= 0 && regions[atom2] >= 0) {
1083 +        idat.sameRegion = (regions[atom1] == regions[atom2]);
1084 +      } else {
1085 +        idat.sameRegion = false;
1086 +      }
1087 +      
1088 +      if (storageLayout_ & DataStorage::dslAmat) {
1089 +        idat.A1 = &(snap_->atomData.aMat[atom1]);
1090 +        idat.A2 = &(snap_->atomData.aMat[atom2]);
1091 +      }
1092 +      
1093 +      if (storageLayout_ & DataStorage::dslTorque) {
1094 +        idat.t1 = &(snap_->atomData.torque[atom1]);
1095 +        idat.t2 = &(snap_->atomData.torque[atom2]);
1096 +      }
1097 +      
1098 +      if (storageLayout_ & DataStorage::dslDipole) {
1099 +        idat.dipole1 = &(snap_->atomData.dipole[atom1]);
1100 +        idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1101 +      }
1102 +      
1103 +      if (storageLayout_ & DataStorage::dslQuadrupole) {
1104 +        idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]);
1105 +        idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1106 +      }
1107 +      
1108 +      if (storageLayout_ & DataStorage::dslDensity) {    
1109 +        idat.rho1 = &(snap_->atomData.density[atom1]);
1110 +        idat.rho2 = &(snap_->atomData.density[atom2]);
1111 +      }
1112 +      
1113 +      if (storageLayout_ & DataStorage::dslFunctional) {
1114 +        idat.frho1 = &(snap_->atomData.functional[atom1]);
1115 +        idat.frho2 = &(snap_->atomData.functional[atom2]);
1116 +      }
1117 +      
1118 +      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1119 +        idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1120 +        idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1121 +      }
1122 +      
1123 +      if (storageLayout_ & DataStorage::dslParticlePot) {
1124 +        idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1125 +        idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1126 +      }
1127 +      
1128 +      if (storageLayout_ & DataStorage::dslSkippedCharge) {
1129 +        idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1130 +        idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1131 +      }
1132 +      
1133 +      if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1134 +        idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1135 +        idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1136 +      }
1137 + #endif
1138 +      
1139 +    } else {
1140 +      // atom1 is not new, so don't bother updating properties of that atom:
1141 + #ifdef IS_MPI
1142 +    idat.atid2 = identsCol[atom2];
1143 +
1144 +    if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) {
1145 +      idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]);
1146 +    } else {
1147 +      idat.sameRegion = false;
1148 +    }
1149 +
1150 +    if (storageLayout_ & DataStorage::dslAmat) {
1151 +      idat.A2 = &(atomColData.aMat[atom2]);
1152 +    }
1153 +    
1154 +    if (storageLayout_ & DataStorage::dslTorque) {
1155 +      idat.t2 = &(atomColData.torque[atom2]);
1156 +    }
1157 +
1158 +    if (storageLayout_ & DataStorage::dslDipole) {
1159 +      idat.dipole2 = &(atomColData.dipole[atom2]);
1160 +    }
1161 +
1162 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1163 +      idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1164 +    }
1165 +
1166 +    if (storageLayout_ & DataStorage::dslDensity) {
1167 +      idat.rho2 = &(atomColData.density[atom2]);
1168 +    }
1169 +
1170 +    if (storageLayout_ & DataStorage::dslFunctional) {
1171 +      idat.frho2 = &(atomColData.functional[atom2]);
1172 +    }
1173 +
1174 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1175 +      idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1176 +    }
1177 +
1178 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1179 +      idat.particlePot2 = &(atomColData.particlePot[atom2]);
1180 +    }
1181 +
1182 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1183 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1184 +    }
1185 +
1186 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {
1187 +      idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1188 +    }
1189 +
1190 + #else  
1191 +    idat.atid2 = idents[atom2];
1192 +
1193 +    if (regions[atom1] >= 0 && regions[atom2] >= 0) {
1194 +      idat.sameRegion = (regions[atom1] == regions[atom2]);
1195 +    } else {
1196 +      idat.sameRegion = false;
1197 +    }
1198 +
1199 +    if (storageLayout_ & DataStorage::dslAmat) {
1200 +      idat.A2 = &(snap_->atomData.aMat[atom2]);
1201 +    }
1202 +
1203 +    if (storageLayout_ & DataStorage::dslTorque) {
1204 +      idat.t2 = &(snap_->atomData.torque[atom2]);
1205 +    }
1206 +
1207 +    if (storageLayout_ & DataStorage::dslDipole) {
1208 +      idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1209 +    }
1210 +
1211 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1212 +      idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1213 +    }
1214 +
1215 +    if (storageLayout_ & DataStorage::dslDensity) {    
1216 +      idat.rho2 = &(snap_->atomData.density[atom2]);
1217 +    }
1218 +
1219 +    if (storageLayout_ & DataStorage::dslFunctional) {
1220 +      idat.frho2 = &(snap_->atomData.functional[atom2]);
1221 +    }
1222 +
1223 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1224 +      idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1225 +    }
1226 +
1227 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1228 +      idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1229 +    }
1230 +
1231 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
1232 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1233 +    }
1234 +
1235 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1236 +      idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1237 +    }
1238 +
1239 + #endif
1240 +    }
1241 +  }
1242 +  
1243 +  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat,
1244 +                                                       int atom1, int atom2) {  
1245 + #ifdef IS_MPI
1246 +    pot_row[atom1] += RealType(0.5) *  *(idat.pot);
1247 +    pot_col[atom2] += RealType(0.5) *  *(idat.pot);
1248 +    expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot);
1249 +    expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot);
1250 +
1251 +    atomRowData.force[atom1] += *(idat.f1);
1252 +    atomColData.force[atom2] -= *(idat.f1);
1253 +
1254 +    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1255 +      atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1256 +      atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1257 +    }
1258 +
1259 +    if (storageLayout_ & DataStorage::dslElectricField) {              
1260 +      atomRowData.electricField[atom1] += *(idat.eField1);
1261 +      atomColData.electricField[atom2] += *(idat.eField2);
1262 +    }
1263 +
1264 +    if (storageLayout_ & DataStorage::dslSitePotential) {              
1265 +      atomRowData.sitePotential[atom1] += *(idat.sPot1);
1266 +      atomColData.sitePotential[atom2] += *(idat.sPot2);
1267 +    }
1268 +
1269 + #else
1270 +    pairwisePot += *(idat.pot);
1271 +    excludedPot += *(idat.excludedPot);
1272 +
1273 +    snap_->atomData.force[atom1] += *(idat.f1);
1274 +    snap_->atomData.force[atom2] -= *(idat.f1);
1275 +
1276 +    if (idat.doParticlePot) {
1277 +      // This is the pairwise contribution to the particle pot.  The
1278 +      // embedding contribution is added in each of the low level
1279 +      // non-bonded routines.  In parallel, this calculation is done
1280 +      // in collectData, not in unpackInteractionData.
1281 +      snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1282 +      snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1283 +    }
1284 +    
1285 +    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1286 +      snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1287 +      snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1288 +    }
1289 +
1290 +    if (storageLayout_ & DataStorage::dslElectricField) {              
1291 +      snap_->atomData.electricField[atom1] += *(idat.eField1);
1292 +      snap_->atomData.electricField[atom2] += *(idat.eField2);
1293 +    }
1294 +
1295 +    if (storageLayout_ & DataStorage::dslSitePotential) {              
1296 +      snap_->atomData.sitePotential[atom1] += *(idat.sPot1);
1297 +      snap_->atomData.sitePotential[atom2] += *(idat.sPot2);
1298 +    }
1299 +
1300 + #endif
1301 +    
1302 +  }
1303 +
1304 +  /*
1305 +   * buildNeighborList
1306 +   *
1307 +   * Constructs the Verlet neighbor list for a force-matrix
1308 +   * decomposition.  In this case, each processor is responsible for
1309 +   * row-site interactions with column-sites.
1310 +   *
1311 +   * neighborList is returned as a packed array of neighboring
1312 +   * column-ordered CutoffGroups.  The starting position in
1313 +   * neighborList for each row-ordered CutoffGroup is given by the
1314 +   * returned vector point.
1315 +   */
1316 +  void ForceMatrixDecomposition::buildNeighborList(vector<int>& neighborList,
1317 +                                                   vector<int>& point) {
1318 +    neighborList.clear();
1319 +    point.clear();
1320 +    int len = 0;
1321 +    
1322 +    bool doAllPairs = false;
1323 +
1324 +    Snapshot* snap_ = sman_->getCurrentSnapshot();
1325 +    Mat3x3d box;
1326 +    Mat3x3d invBox;
1327 +
1328 +    Vector3d rs, scaled, dr;
1329 +    Vector3i whichCell;
1330 +    int cellIndex;
1331 +
1332 + #ifdef IS_MPI
1333 +    cellListRow_.clear();
1334 +    cellListCol_.clear();
1335 +    point.resize(nGroupsInRow_+1);
1336 + #else
1337 +    cellList_.clear();
1338 +    point.resize(nGroups_+1);
1339 + #endif
1340 +    
1341 +    if (!usePeriodicBoundaryConditions_) {
1342 +      box = snap_->getBoundingBox();
1343 +      invBox = snap_->getInvBoundingBox();
1344 +    } else {
1345 +      box = snap_->getHmat();
1346 +      invBox = snap_->getInvHmat();
1347 +    }
1348 +    
1349 +    Vector3d A = box.getColumn(0);
1350 +    Vector3d B = box.getColumn(1);
1351 +    Vector3d C = box.getColumn(2);
1352 +
1353 +    // Required for triclinic cells
1354 +    Vector3d AxB = cross(A, B);
1355 +    Vector3d BxC = cross(B, C);
1356 +    Vector3d CxA = cross(C, A);
1357 +
1358 +    // unit vectors perpendicular to the faces of the triclinic cell:
1359 +    AxB.normalize();
1360 +    BxC.normalize();
1361 +    CxA.normalize();
1362 +
1363 +    // A set of perpendicular lengths in triclinic cells:
1364 +    RealType Wa = abs(dot(A, BxC));
1365 +    RealType Wb = abs(dot(B, CxA));
1366 +    RealType Wc = abs(dot(C, AxB));
1367 +    
1368 +    nCells_.x() = int( Wa / rList_ );
1369 +    nCells_.y() = int( Wb / rList_ );
1370 +    nCells_.z() = int( Wc / rList_ );
1371 +    
1372 +    // handle small boxes where the cell offsets can end up repeating cells
1373 +    if (nCells_.x() < 3) doAllPairs = true;
1374 +    if (nCells_.y() < 3) doAllPairs = true;
1375 +    if (nCells_.z() < 3) doAllPairs = true;
1376 +    
1377 +    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1378 +    
1379 + #ifdef IS_MPI
1380 +    cellListRow_.resize(nCtot);
1381 +    cellListCol_.resize(nCtot);
1382 + #else
1383 +    cellList_.resize(nCtot);
1384 + #endif
1385 +    
1386 +    if (!doAllPairs) {
1387 +      
1388 + #ifdef IS_MPI
1389 +      
1390 +      for (int i = 0; i < nGroupsInRow_; i++) {
1391 +        rs = cgRowData.position[i];
1392 +        
1393 +        // scaled positions relative to the box vectors
1394 +        scaled = invBox * rs;
1395 +        
1396 +        // wrap the vector back into the unit box by subtracting integer box
1397 +        // numbers
1398 +        for (int j = 0; j < 3; j++) {
1399 +          scaled[j] -= roundMe(scaled[j]);
1400 +          scaled[j] += 0.5;
1401 +          // Handle the special case when an object is exactly on the
1402 +          // boundary (a scaled coordinate of 1.0 is the same as
1403 +          // scaled coordinate of 0.0)
1404 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1405 +        }
1406 +        
1407 +        // find xyz-indices of cell that cutoffGroup is in.
1408 +        whichCell.x() = nCells_.x() * scaled.x();
1409 +        whichCell.y() = nCells_.y() * scaled.y();
1410 +        whichCell.z() = nCells_.z() * scaled.z();
1411 +        
1412 +        // find single index of this cell:
1413 +        cellIndex = Vlinear(whichCell, nCells_);
1414 +        
1415 +        // add this cutoff group to the list of groups in this cell;
1416 +        cellListRow_[cellIndex].push_back(i);
1417 +      }
1418 +      for (int i = 0; i < nGroupsInCol_; i++) {
1419 +        rs = cgColData.position[i];
1420 +        
1421 +        // scaled positions relative to the box vectors
1422 +        scaled = invBox * rs;
1423 +        
1424 +        // wrap the vector back into the unit box by subtracting integer box
1425 +        // numbers
1426 +        for (int j = 0; j < 3; j++) {
1427 +          scaled[j] -= roundMe(scaled[j]);
1428 +          scaled[j] += 0.5;
1429 +          // Handle the special case when an object is exactly on the
1430 +          // boundary (a scaled coordinate of 1.0 is the same as
1431 +          // scaled coordinate of 0.0)
1432 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1433 +        }
1434 +        
1435 +        // find xyz-indices of cell that cutoffGroup is in.
1436 +        whichCell.x() = nCells_.x() * scaled.x();
1437 +        whichCell.y() = nCells_.y() * scaled.y();
1438 +        whichCell.z() = nCells_.z() * scaled.z();
1439 +        
1440 +        // find single index of this cell:
1441 +        cellIndex = Vlinear(whichCell, nCells_);
1442 +        
1443 +        // add this cutoff group to the list of groups in this cell;
1444 +        cellListCol_[cellIndex].push_back(i);
1445 +      }
1446 +            
1447 + #else
1448 +      for (int i = 0; i < nGroups_; i++) {
1449 +        rs = snap_->cgData.position[i];
1450 +        
1451 +        // scaled positions relative to the box vectors
1452 +        scaled = invBox * rs;
1453 +        
1454 +        // wrap the vector back into the unit box by subtracting integer box
1455 +        // numbers
1456 +        for (int j = 0; j < 3; j++) {
1457 +          scaled[j] -= roundMe(scaled[j]);
1458 +          scaled[j] += 0.5;
1459 +          // Handle the special case when an object is exactly on the
1460 +          // boundary (a scaled coordinate of 1.0 is the same as
1461 +          // scaled coordinate of 0.0)
1462 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1463 +        }
1464 +        
1465 +        // find xyz-indices of cell that cutoffGroup is in.
1466 +        whichCell.x() = int(nCells_.x() * scaled.x());
1467 +        whichCell.y() = int(nCells_.y() * scaled.y());
1468 +        whichCell.z() = int(nCells_.z() * scaled.z());
1469 +        
1470 +        // find single index of this cell:
1471 +        cellIndex = Vlinear(whichCell, nCells_);
1472 +        
1473 +        // add this cutoff group to the list of groups in this cell;
1474 +        cellList_[cellIndex].push_back(i);
1475 +      }
1476 +
1477 + #endif
1478 +
1479 + #ifdef IS_MPI
1480 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1481 +        rs = cgRowData.position[j1];
1482 + #else
1483 +
1484 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1485 +        rs = snap_->cgData.position[j1];
1486 + #endif
1487 +        point[j1] = len;
1488 +        
1489 +        // scaled positions relative to the box vectors
1490 +        scaled = invBox * rs;
1491 +        
1492 +        // wrap the vector back into the unit box by subtracting integer box
1493 +        // numbers
1494 +        for (int j = 0; j < 3; j++) {
1495 +          scaled[j] -= roundMe(scaled[j]);
1496 +          scaled[j] += 0.5;
1497 +          // Handle the special case when an object is exactly on the
1498 +          // boundary (a scaled coordinate of 1.0 is the same as
1499 +          // scaled coordinate of 0.0)
1500 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1501 +        }
1502 +        
1503 +        // find xyz-indices of cell that cutoffGroup is in.
1504 +        whichCell.x() = nCells_.x() * scaled.x();
1505 +        whichCell.y() = nCells_.y() * scaled.y();
1506 +        whichCell.z() = nCells_.z() * scaled.z();
1507 +        
1508 +        // find single index of this cell:
1509 +        int m1 = Vlinear(whichCell, nCells_);
1510 +
1511 +        for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1512 +             os != cellOffsets_.end(); ++os) {
1513 +              
1514 +          Vector3i m2v = whichCell + (*os);
1515 +
1516 +          if (m2v.x() >= nCells_.x()) {
1517 +            m2v.x() = 0;          
1518 +          } else if (m2v.x() < 0) {
1519 +            m2v.x() = nCells_.x() - 1;
1520 +          }
1521 +          
1522 +          if (m2v.y() >= nCells_.y()) {
1523 +            m2v.y() = 0;          
1524 +          } else if (m2v.y() < 0) {
1525 +            m2v.y() = nCells_.y() - 1;
1526 +          }
1527 +          
1528 +          if (m2v.z() >= nCells_.z()) {
1529 +            m2v.z() = 0;          
1530 +          } else if (m2v.z() < 0) {
1531 +            m2v.z() = nCells_.z() - 1;
1532 +          }
1533 +          int m2 = Vlinear (m2v, nCells_);                                      
1534 + #ifdef IS_MPI
1535 +          for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1536 +               j2 != cellListCol_[m2].end(); ++j2) {
1537 +            
1538 +            // In parallel, we need to visit *all* pairs of row
1539 +            // & column indicies and will divide labor in the
1540 +            // force evaluation later.
1541 +            dr = cgColData.position[(*j2)] - rs;
1542 +            if (usePeriodicBoundaryConditions_) {
1543 +              snap_->wrapVector(dr);
1544 +            }
1545 +            if (dr.lengthSquare() < rListSq_) {
1546 +              neighborList.push_back( (*j2) );
1547 +              ++len;
1548 +            }                
1549 +          }        
1550 + #else
1551 +          for (vector<int>::iterator j2 = cellList_[m2].begin();
1552 +               j2 != cellList_[m2].end(); ++j2) {
1553 +          
1554 +            // Always do this if we're in different cells or if
1555 +            // we're in the same cell and the global index of
1556 +            // the j2 cutoff group is greater than or equal to
1557 +            // the j1 cutoff group.  Note that Rappaport's code
1558 +            // has a "less than" conditional here, but that
1559 +            // deals with atom-by-atom computation.  OpenMD
1560 +            // allows atoms within a single cutoff group to
1561 +            // interact with each other.
1562 +            
1563 +            if ( (*j2) >= j1 ) {
1564 +              
1565 +              dr = snap_->cgData.position[(*j2)] - rs;
1566 +              if (usePeriodicBoundaryConditions_) {
1567 +                snap_->wrapVector(dr);
1568 +              }
1569 +              if ( dr.lengthSquare() < rListSq_) {
1570 +                neighborList.push_back( (*j2) );
1571 +                ++len;
1572 +              }
1573 +            }
1574 +          }                
1575 + #endif
1576 +        }
1577 +      }      
1578 +    } else {
1579 +      // branch to do all cutoff group pairs
1580 + #ifdef IS_MPI
1581 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1582 +        point[j1] = len;
1583 +        rs = cgRowData.position[j1];
1584 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {    
1585 +          dr = cgColData.position[j2] - rs;
1586 +          if (usePeriodicBoundaryConditions_) {
1587 +            snap_->wrapVector(dr);
1588 +          }
1589 +          if (dr.lengthSquare() < rListSq_) {
1590 +            neighborList.push_back( j2 );
1591 +            ++len;
1592 +          }
1593 +        }
1594 +      }      
1595 + #else
1596 +      // include all groups here.
1597 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1598 +        point[j1] = len;
1599 +        rs = snap_->cgData.position[j1];
1600 +        // include self group interactions j2 == j1
1601 +        for (int j2 = j1; j2 < nGroups_; j2++) {
1602 +          dr = snap_->cgData.position[j2] - rs;
1603 +          if (usePeriodicBoundaryConditions_) {
1604 +            snap_->wrapVector(dr);
1605 +          }
1606 +          if (dr.lengthSquare() < rListSq_) {
1607 +            neighborList.push_back( j2 );
1608 +            ++len;
1609 +          }
1610 +        }    
1611 +      }
1612 + #endif
1613 +    }
1614 +
1615 + #ifdef IS_MPI
1616 +    point[nGroupsInRow_] = len;
1617 + #else
1618 +    point[nGroups_] = len;
1619 + #endif
1620 +  
1621 +    // save the local cutoff group positions for the check that is
1622 +    // done on each loop:
1623 +    saved_CG_positions_.clear();
1624 +    saved_CG_positions_.reserve(nGroups_);
1625 +    for (int i = 0; i < nGroups_; i++)
1626 +      saved_CG_positions_.push_back(snap_->cgData.position[i]);
1627 +  }
1628 + } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines