ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
Revision: 2062
Committed: Tue Mar 3 16:40:39 2015 UTC (10 years, 1 month ago) by gezelter
File size: 54879 byte(s)
Log Message:
Removed warnings, inlined common calls

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42 #include "parallel/ForceMatrixDecomposition.hpp"
43 #include "math/SquareMatrix3.hpp"
44 #include "nonbonded/NonBondedInteraction.hpp"
45 #include "brains/SnapshotManager.hpp"
46 #include "brains/PairList.hpp"
47
48 using namespace std;
49 namespace OpenMD {
50
51 ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52
53 // Row and colum scans must visit all surrounding cells
54 cellOffsets_.clear();
55 cellOffsets_.push_back( Vector3i(-1,-1,-1) );
56 cellOffsets_.push_back( Vector3i( 0,-1,-1) );
57 cellOffsets_.push_back( Vector3i( 1,-1,-1) );
58 cellOffsets_.push_back( Vector3i(-1, 0,-1) );
59 cellOffsets_.push_back( Vector3i( 0, 0,-1) );
60 cellOffsets_.push_back( Vector3i( 1, 0,-1) );
61 cellOffsets_.push_back( Vector3i(-1, 1,-1) );
62 cellOffsets_.push_back( Vector3i( 0, 1,-1) );
63 cellOffsets_.push_back( Vector3i( 1, 1,-1) );
64 cellOffsets_.push_back( Vector3i(-1,-1, 0) );
65 cellOffsets_.push_back( Vector3i( 0,-1, 0) );
66 cellOffsets_.push_back( Vector3i( 1,-1, 0) );
67 cellOffsets_.push_back( Vector3i(-1, 0, 0) );
68 cellOffsets_.push_back( Vector3i( 0, 0, 0) );
69 cellOffsets_.push_back( Vector3i( 1, 0, 0) );
70 cellOffsets_.push_back( Vector3i(-1, 1, 0) );
71 cellOffsets_.push_back( Vector3i( 0, 1, 0) );
72 cellOffsets_.push_back( Vector3i( 1, 1, 0) );
73 cellOffsets_.push_back( Vector3i(-1,-1, 1) );
74 cellOffsets_.push_back( Vector3i( 0,-1, 1) );
75 cellOffsets_.push_back( Vector3i( 1,-1, 1) );
76 cellOffsets_.push_back( Vector3i(-1, 0, 1) );
77 cellOffsets_.push_back( Vector3i( 0, 0, 1) );
78 cellOffsets_.push_back( Vector3i( 1, 0, 1) );
79 cellOffsets_.push_back( Vector3i(-1, 1, 1) );
80 cellOffsets_.push_back( Vector3i( 0, 1, 1) );
81 cellOffsets_.push_back( Vector3i( 1, 1, 1) );
82 }
83
84
85 /**
86 * distributeInitialData is essentially a copy of the older fortran
87 * SimulationSetup
88 */
89 void ForceMatrixDecomposition::distributeInitialData() {
90 snap_ = sman_->getCurrentSnapshot();
91 storageLayout_ = sman_->getStorageLayout();
92 ff_ = info_->getForceField();
93 nLocal_ = snap_->getNumberOfAtoms();
94
95 nGroups_ = info_->getNLocalCutoffGroups();
96 // gather the information for atomtype IDs (atids):
97 idents = info_->getIdentArray();
98 regions = info_->getRegions();
99 AtomLocalToGlobal = info_->getGlobalAtomIndices();
100 cgLocalToGlobal = info_->getGlobalGroupIndices();
101 vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
102
103 massFactors = info_->getMassFactors();
104
105 PairList* excludes = info_->getExcludedInteractions();
106 PairList* oneTwo = info_->getOneTwoInteractions();
107 PairList* oneThree = info_->getOneThreeInteractions();
108 PairList* oneFour = info_->getOneFourInteractions();
109
110 if (needVelocities_)
111 snap_->cgData.setStorageLayout(DataStorage::dslPosition |
112 DataStorage::dslVelocity);
113 else
114 snap_->cgData.setStorageLayout(DataStorage::dslPosition);
115
116 #ifdef IS_MPI
117
118 MPI_Comm row = rowComm.getComm();
119 MPI_Comm col = colComm.getComm();
120
121 AtomPlanIntRow = new Plan<int>(row, nLocal_);
122 AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
123 AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
124 AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
125 AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
126
127 AtomPlanIntColumn = new Plan<int>(col, nLocal_);
128 AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
129 AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
130 AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
131 AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
132
133 cgPlanIntRow = new Plan<int>(row, nGroups_);
134 cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
135 cgPlanIntColumn = new Plan<int>(col, nGroups_);
136 cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
137
138 nAtomsInRow_ = AtomPlanIntRow->getSize();
139 nAtomsInCol_ = AtomPlanIntColumn->getSize();
140 nGroupsInRow_ = cgPlanIntRow->getSize();
141 nGroupsInCol_ = cgPlanIntColumn->getSize();
142
143 // Modify the data storage objects with the correct layouts and sizes:
144 atomRowData.resize(nAtomsInRow_);
145 atomRowData.setStorageLayout(storageLayout_);
146 atomColData.resize(nAtomsInCol_);
147 atomColData.setStorageLayout(storageLayout_);
148 cgRowData.resize(nGroupsInRow_);
149 cgRowData.setStorageLayout(DataStorage::dslPosition);
150 cgColData.resize(nGroupsInCol_);
151 if (needVelocities_)
152 // we only need column velocities if we need them.
153 cgColData.setStorageLayout(DataStorage::dslPosition |
154 DataStorage::dslVelocity);
155 else
156 cgColData.setStorageLayout(DataStorage::dslPosition);
157
158 identsRow.resize(nAtomsInRow_);
159 identsCol.resize(nAtomsInCol_);
160
161 AtomPlanIntRow->gather(idents, identsRow);
162 AtomPlanIntColumn->gather(idents, identsCol);
163
164 regionsRow.resize(nAtomsInRow_);
165 regionsCol.resize(nAtomsInCol_);
166
167 AtomPlanIntRow->gather(regions, regionsRow);
168 AtomPlanIntColumn->gather(regions, regionsCol);
169
170 // allocate memory for the parallel objects
171 atypesRow.resize(nAtomsInRow_);
172 atypesCol.resize(nAtomsInCol_);
173
174 for (int i = 0; i < nAtomsInRow_; i++)
175 atypesRow[i] = ff_->getAtomType(identsRow[i]);
176 for (int i = 0; i < nAtomsInCol_; i++)
177 atypesCol[i] = ff_->getAtomType(identsCol[i]);
178
179 pot_row.resize(nAtomsInRow_);
180 pot_col.resize(nAtomsInCol_);
181
182 expot_row.resize(nAtomsInRow_);
183 expot_col.resize(nAtomsInCol_);
184
185 AtomRowToGlobal.resize(nAtomsInRow_);
186 AtomColToGlobal.resize(nAtomsInCol_);
187 AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
188 AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
189
190 cgRowToGlobal.resize(nGroupsInRow_);
191 cgColToGlobal.resize(nGroupsInCol_);
192 cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
193 cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
194
195 massFactorsRow.resize(nAtomsInRow_);
196 massFactorsCol.resize(nAtomsInCol_);
197 AtomPlanRealRow->gather(massFactors, massFactorsRow);
198 AtomPlanRealColumn->gather(massFactors, massFactorsCol);
199
200 groupListRow_.clear();
201 groupListRow_.resize(nGroupsInRow_);
202 for (int i = 0; i < nGroupsInRow_; i++) {
203 int gid = cgRowToGlobal[i];
204 for (int j = 0; j < nAtomsInRow_; j++) {
205 int aid = AtomRowToGlobal[j];
206 if (globalGroupMembership[aid] == gid)
207 groupListRow_[i].push_back(j);
208 }
209 }
210
211 groupListCol_.clear();
212 groupListCol_.resize(nGroupsInCol_);
213 for (int i = 0; i < nGroupsInCol_; i++) {
214 int gid = cgColToGlobal[i];
215 for (int j = 0; j < nAtomsInCol_; j++) {
216 int aid = AtomColToGlobal[j];
217 if (globalGroupMembership[aid] == gid)
218 groupListCol_[i].push_back(j);
219 }
220 }
221
222 excludesForAtom.clear();
223 excludesForAtom.resize(nAtomsInRow_);
224 toposForAtom.clear();
225 toposForAtom.resize(nAtomsInRow_);
226 topoDist.clear();
227 topoDist.resize(nAtomsInRow_);
228 for (int i = 0; i < nAtomsInRow_; i++) {
229 int iglob = AtomRowToGlobal[i];
230
231 for (int j = 0; j < nAtomsInCol_; j++) {
232 int jglob = AtomColToGlobal[j];
233
234 if (excludes->hasPair(iglob, jglob))
235 excludesForAtom[i].push_back(j);
236
237 if (oneTwo->hasPair(iglob, jglob)) {
238 toposForAtom[i].push_back(j);
239 topoDist[i].push_back(1);
240 } else {
241 if (oneThree->hasPair(iglob, jglob)) {
242 toposForAtom[i].push_back(j);
243 topoDist[i].push_back(2);
244 } else {
245 if (oneFour->hasPair(iglob, jglob)) {
246 toposForAtom[i].push_back(j);
247 topoDist[i].push_back(3);
248 }
249 }
250 }
251 }
252 }
253
254 #else
255 excludesForAtom.clear();
256 excludesForAtom.resize(nLocal_);
257 toposForAtom.clear();
258 toposForAtom.resize(nLocal_);
259 topoDist.clear();
260 topoDist.resize(nLocal_);
261
262 for (int i = 0; i < nLocal_; i++) {
263 int iglob = AtomLocalToGlobal[i];
264
265 for (int j = 0; j < nLocal_; j++) {
266 int jglob = AtomLocalToGlobal[j];
267
268 if (excludes->hasPair(iglob, jglob))
269 excludesForAtom[i].push_back(j);
270
271 if (oneTwo->hasPair(iglob, jglob)) {
272 toposForAtom[i].push_back(j);
273 topoDist[i].push_back(1);
274 } else {
275 if (oneThree->hasPair(iglob, jglob)) {
276 toposForAtom[i].push_back(j);
277 topoDist[i].push_back(2);
278 } else {
279 if (oneFour->hasPair(iglob, jglob)) {
280 toposForAtom[i].push_back(j);
281 topoDist[i].push_back(3);
282 }
283 }
284 }
285 }
286 }
287 #endif
288
289 // allocate memory for the parallel objects
290 atypesLocal.resize(nLocal_);
291
292 for (int i = 0; i < nLocal_; i++)
293 atypesLocal[i] = ff_->getAtomType(idents[i]);
294
295 groupList_.clear();
296 groupList_.resize(nGroups_);
297 for (int i = 0; i < nGroups_; i++) {
298 int gid = cgLocalToGlobal[i];
299 for (int j = 0; j < nLocal_; j++) {
300 int aid = AtomLocalToGlobal[j];
301 if (globalGroupMembership[aid] == gid) {
302 groupList_[i].push_back(j);
303 }
304 }
305 }
306 }
307
308 int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
309 for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) {
310 if (toposForAtom[atom1][j] == atom2)
311 return topoDist[atom1][j];
312 }
313 return 0;
314 }
315
316 void ForceMatrixDecomposition::zeroWorkArrays() {
317 pairwisePot = 0.0;
318 embeddingPot = 0.0;
319 excludedPot = 0.0;
320 excludedSelfPot = 0.0;
321
322 #ifdef IS_MPI
323 if (storageLayout_ & DataStorage::dslForce) {
324 fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
325 fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
326 }
327
328 if (storageLayout_ & DataStorage::dslTorque) {
329 fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
330 fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
331 }
332
333 fill(pot_row.begin(), pot_row.end(),
334 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
335
336 fill(pot_col.begin(), pot_col.end(),
337 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
338
339 fill(expot_row.begin(), expot_row.end(),
340 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
341
342 fill(expot_col.begin(), expot_col.end(),
343 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
344
345 if (storageLayout_ & DataStorage::dslParticlePot) {
346 fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
347 0.0);
348 fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
349 0.0);
350 }
351
352 if (storageLayout_ & DataStorage::dslDensity) {
353 fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
354 fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
355 }
356
357 if (storageLayout_ & DataStorage::dslFunctional) {
358 fill(atomRowData.functional.begin(), atomRowData.functional.end(),
359 0.0);
360 fill(atomColData.functional.begin(), atomColData.functional.end(),
361 0.0);
362 }
363
364 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
365 fill(atomRowData.functionalDerivative.begin(),
366 atomRowData.functionalDerivative.end(), 0.0);
367 fill(atomColData.functionalDerivative.begin(),
368 atomColData.functionalDerivative.end(), 0.0);
369 }
370
371 if (storageLayout_ & DataStorage::dslSkippedCharge) {
372 fill(atomRowData.skippedCharge.begin(),
373 atomRowData.skippedCharge.end(), 0.0);
374 fill(atomColData.skippedCharge.begin(),
375 atomColData.skippedCharge.end(), 0.0);
376 }
377
378 if (storageLayout_ & DataStorage::dslFlucQForce) {
379 fill(atomRowData.flucQFrc.begin(),
380 atomRowData.flucQFrc.end(), 0.0);
381 fill(atomColData.flucQFrc.begin(),
382 atomColData.flucQFrc.end(), 0.0);
383 }
384
385 if (storageLayout_ & DataStorage::dslElectricField) {
386 fill(atomRowData.electricField.begin(),
387 atomRowData.electricField.end(), V3Zero);
388 fill(atomColData.electricField.begin(),
389 atomColData.electricField.end(), V3Zero);
390 }
391
392 if (storageLayout_ & DataStorage::dslSitePotential) {
393 fill(atomRowData.sitePotential.begin(),
394 atomRowData.sitePotential.end(), 0.0);
395 fill(atomColData.sitePotential.begin(),
396 atomColData.sitePotential.end(), 0.0);
397 }
398
399 #endif
400 // even in parallel, we need to zero out the local arrays:
401
402 if (storageLayout_ & DataStorage::dslParticlePot) {
403 fill(snap_->atomData.particlePot.begin(),
404 snap_->atomData.particlePot.end(), 0.0);
405 }
406
407 if (storageLayout_ & DataStorage::dslDensity) {
408 fill(snap_->atomData.density.begin(),
409 snap_->atomData.density.end(), 0.0);
410 }
411
412 if (storageLayout_ & DataStorage::dslFunctional) {
413 fill(snap_->atomData.functional.begin(),
414 snap_->atomData.functional.end(), 0.0);
415 }
416
417 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
418 fill(snap_->atomData.functionalDerivative.begin(),
419 snap_->atomData.functionalDerivative.end(), 0.0);
420 }
421
422 if (storageLayout_ & DataStorage::dslSkippedCharge) {
423 fill(snap_->atomData.skippedCharge.begin(),
424 snap_->atomData.skippedCharge.end(), 0.0);
425 }
426
427 if (storageLayout_ & DataStorage::dslElectricField) {
428 fill(snap_->atomData.electricField.begin(),
429 snap_->atomData.electricField.end(), V3Zero);
430 }
431 if (storageLayout_ & DataStorage::dslSitePotential) {
432 fill(snap_->atomData.sitePotential.begin(),
433 snap_->atomData.sitePotential.end(), 0.0);
434 }
435 }
436
437
438 void ForceMatrixDecomposition::distributeData() {
439
440 #ifdef IS_MPI
441
442 snap_ = sman_->getCurrentSnapshot();
443 storageLayout_ = sman_->getStorageLayout();
444
445 bool needsCG = true;
446 if(info_->getNCutoffGroups() != info_->getNAtoms())
447 needsCG = false;
448
449 // gather up the atomic positions
450 AtomPlanVectorRow->gather(snap_->atomData.position,
451 atomRowData.position);
452 AtomPlanVectorColumn->gather(snap_->atomData.position,
453 atomColData.position);
454
455 // gather up the cutoff group positions
456
457 if (needsCG) {
458 cgPlanVectorRow->gather(snap_->cgData.position,
459 cgRowData.position);
460
461 cgPlanVectorColumn->gather(snap_->cgData.position,
462 cgColData.position);
463 }
464
465
466 if (needVelocities_) {
467 // gather up the atomic velocities
468 AtomPlanVectorColumn->gather(snap_->atomData.velocity,
469 atomColData.velocity);
470
471 if (needsCG) {
472 cgPlanVectorColumn->gather(snap_->cgData.velocity,
473 cgColData.velocity);
474 }
475 }
476
477
478 // if needed, gather the atomic rotation matrices
479 if (storageLayout_ & DataStorage::dslAmat) {
480 AtomPlanMatrixRow->gather(snap_->atomData.aMat,
481 atomRowData.aMat);
482 AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
483 atomColData.aMat);
484 }
485
486 // if needed, gather the atomic eletrostatic information
487 if (storageLayout_ & DataStorage::dslDipole) {
488 AtomPlanVectorRow->gather(snap_->atomData.dipole,
489 atomRowData.dipole);
490 AtomPlanVectorColumn->gather(snap_->atomData.dipole,
491 atomColData.dipole);
492 }
493
494 if (storageLayout_ & DataStorage::dslQuadrupole) {
495 AtomPlanMatrixRow->gather(snap_->atomData.quadrupole,
496 atomRowData.quadrupole);
497 AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole,
498 atomColData.quadrupole);
499 }
500
501 // if needed, gather the atomic fluctuating charge values
502 if (storageLayout_ & DataStorage::dslFlucQPosition) {
503 AtomPlanRealRow->gather(snap_->atomData.flucQPos,
504 atomRowData.flucQPos);
505 AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
506 atomColData.flucQPos);
507 }
508
509 #endif
510 }
511
512 /* collects information obtained during the pre-pair loop onto local
513 * data structures.
514 */
515 void ForceMatrixDecomposition::collectIntermediateData() {
516 #ifdef IS_MPI
517
518 snap_ = sman_->getCurrentSnapshot();
519 storageLayout_ = sman_->getStorageLayout();
520
521 if (storageLayout_ & DataStorage::dslDensity) {
522
523 AtomPlanRealRow->scatter(atomRowData.density,
524 snap_->atomData.density);
525
526 int n = snap_->atomData.density.size();
527 vector<RealType> rho_tmp(n, 0.0);
528 AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
529 for (int i = 0; i < n; i++)
530 snap_->atomData.density[i] += rho_tmp[i];
531 }
532
533 // this isn't necessary if we don't have polarizable atoms, but
534 // we'll leave it here for now.
535 if (storageLayout_ & DataStorage::dslElectricField) {
536
537 AtomPlanVectorRow->scatter(atomRowData.electricField,
538 snap_->atomData.electricField);
539
540 int n = snap_->atomData.electricField.size();
541 vector<Vector3d> field_tmp(n, V3Zero);
542 AtomPlanVectorColumn->scatter(atomColData.electricField,
543 field_tmp);
544 for (int i = 0; i < n; i++)
545 snap_->atomData.electricField[i] += field_tmp[i];
546 }
547 #endif
548 }
549
550 /*
551 * redistributes information obtained during the pre-pair loop out to
552 * row and column-indexed data structures
553 */
554 void ForceMatrixDecomposition::distributeIntermediateData() {
555 #ifdef IS_MPI
556 snap_ = sman_->getCurrentSnapshot();
557 storageLayout_ = sman_->getStorageLayout();
558
559 if (storageLayout_ & DataStorage::dslFunctional) {
560 AtomPlanRealRow->gather(snap_->atomData.functional,
561 atomRowData.functional);
562 AtomPlanRealColumn->gather(snap_->atomData.functional,
563 atomColData.functional);
564 }
565
566 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
567 AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
568 atomRowData.functionalDerivative);
569 AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
570 atomColData.functionalDerivative);
571 }
572 #endif
573 }
574
575
576 void ForceMatrixDecomposition::collectData() {
577 #ifdef IS_MPI
578 snap_ = sman_->getCurrentSnapshot();
579 storageLayout_ = sman_->getStorageLayout();
580
581 int n = snap_->atomData.force.size();
582 vector<Vector3d> frc_tmp(n, V3Zero);
583
584 AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
585 for (int i = 0; i < n; i++) {
586 snap_->atomData.force[i] += frc_tmp[i];
587 frc_tmp[i] = 0.0;
588 }
589
590 AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
591 for (int i = 0; i < n; i++) {
592 snap_->atomData.force[i] += frc_tmp[i];
593 }
594
595 if (storageLayout_ & DataStorage::dslTorque) {
596
597 int nt = snap_->atomData.torque.size();
598 vector<Vector3d> trq_tmp(nt, V3Zero);
599
600 AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
601 for (int i = 0; i < nt; i++) {
602 snap_->atomData.torque[i] += trq_tmp[i];
603 trq_tmp[i] = 0.0;
604 }
605
606 AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
607 for (int i = 0; i < nt; i++)
608 snap_->atomData.torque[i] += trq_tmp[i];
609 }
610
611 if (storageLayout_ & DataStorage::dslSkippedCharge) {
612
613 int ns = snap_->atomData.skippedCharge.size();
614 vector<RealType> skch_tmp(ns, 0.0);
615
616 AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
617 for (int i = 0; i < ns; i++) {
618 snap_->atomData.skippedCharge[i] += skch_tmp[i];
619 skch_tmp[i] = 0.0;
620 }
621
622 AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
623 for (int i = 0; i < ns; i++)
624 snap_->atomData.skippedCharge[i] += skch_tmp[i];
625
626 }
627
628 if (storageLayout_ & DataStorage::dslFlucQForce) {
629
630 int nq = snap_->atomData.flucQFrc.size();
631 vector<RealType> fqfrc_tmp(nq, 0.0);
632
633 AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
634 for (int i = 0; i < nq; i++) {
635 snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
636 fqfrc_tmp[i] = 0.0;
637 }
638
639 AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
640 for (int i = 0; i < nq; i++)
641 snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
642
643 }
644
645 if (storageLayout_ & DataStorage::dslElectricField) {
646
647 int nef = snap_->atomData.electricField.size();
648 vector<Vector3d> efield_tmp(nef, V3Zero);
649
650 AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp);
651 for (int i = 0; i < nef; i++) {
652 snap_->atomData.electricField[i] += efield_tmp[i];
653 efield_tmp[i] = 0.0;
654 }
655
656 AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp);
657 for (int i = 0; i < nef; i++)
658 snap_->atomData.electricField[i] += efield_tmp[i];
659 }
660
661 if (storageLayout_ & DataStorage::dslSitePotential) {
662
663 int nsp = snap_->atomData.sitePotential.size();
664 vector<RealType> sp_tmp(nsp, 0.0);
665
666 AtomPlanRealRow->scatter(atomRowData.sitePotential, sp_tmp);
667 for (int i = 0; i < nsp; i++) {
668 snap_->atomData.sitePotential[i] += sp_tmp[i];
669 sp_tmp[i] = 0.0;
670 }
671
672 AtomPlanRealColumn->scatter(atomColData.sitePotential, sp_tmp);
673 for (int i = 0; i < nsp; i++)
674 snap_->atomData.sitePotential[i] += sp_tmp[i];
675 }
676
677 nLocal_ = snap_->getNumberOfAtoms();
678
679 vector<potVec> pot_temp(nLocal_,
680 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
681 vector<potVec> expot_temp(nLocal_,
682 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
683
684 // scatter/gather pot_row into the members of my column
685
686 AtomPlanPotRow->scatter(pot_row, pot_temp);
687 AtomPlanPotRow->scatter(expot_row, expot_temp);
688
689 for (int ii = 0; ii < pot_temp.size(); ii++ )
690 pairwisePot += pot_temp[ii];
691
692 for (int ii = 0; ii < expot_temp.size(); ii++ )
693 excludedPot += expot_temp[ii];
694
695 if (storageLayout_ & DataStorage::dslParticlePot) {
696 // This is the pairwise contribution to the particle pot. The
697 // embedding contribution is added in each of the low level
698 // non-bonded routines. In single processor, this is done in
699 // unpackInteractionData, not in collectData.
700 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
701 for (int i = 0; i < nLocal_; i++) {
702 // factor of two is because the total potential terms are divided
703 // by 2 in parallel due to row/ column scatter
704 snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
705 }
706 }
707 }
708
709 fill(pot_temp.begin(), pot_temp.end(),
710 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
711 fill(expot_temp.begin(), expot_temp.end(),
712 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
713
714 AtomPlanPotColumn->scatter(pot_col, pot_temp);
715 AtomPlanPotColumn->scatter(expot_col, expot_temp);
716
717 for (int ii = 0; ii < pot_temp.size(); ii++ )
718 pairwisePot += pot_temp[ii];
719
720 for (int ii = 0; ii < expot_temp.size(); ii++ )
721 excludedPot += expot_temp[ii];
722
723 if (storageLayout_ & DataStorage::dslParticlePot) {
724 // This is the pairwise contribution to the particle pot. The
725 // embedding contribution is added in each of the low level
726 // non-bonded routines. In single processor, this is done in
727 // unpackInteractionData, not in collectData.
728 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
729 for (int i = 0; i < nLocal_; i++) {
730 // factor of two is because the total potential terms are divided
731 // by 2 in parallel due to row/ column scatter
732 snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
733 }
734 }
735 }
736
737 if (storageLayout_ & DataStorage::dslParticlePot) {
738 int npp = snap_->atomData.particlePot.size();
739 vector<RealType> ppot_temp(npp, 0.0);
740
741 // This is the direct or embedding contribution to the particle
742 // pot.
743
744 AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
745 for (int i = 0; i < npp; i++) {
746 snap_->atomData.particlePot[i] += ppot_temp[i];
747 }
748
749 fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
750
751 AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
752 for (int i = 0; i < npp; i++) {
753 snap_->atomData.particlePot[i] += ppot_temp[i];
754 }
755 }
756
757 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
758 RealType ploc1 = pairwisePot[ii];
759 RealType ploc2 = 0.0;
760 MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
761 pairwisePot[ii] = ploc2;
762 }
763
764 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
765 RealType ploc1 = excludedPot[ii];
766 RealType ploc2 = 0.0;
767 MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
768 excludedPot[ii] = ploc2;
769 }
770
771 // Here be dragons.
772 MPI_Comm col = colComm.getComm();
773
774 MPI_Allreduce(MPI_IN_PLACE,
775 &snap_->frameData.conductiveHeatFlux[0], 3,
776 MPI_REALTYPE, MPI_SUM, col);
777
778
779 #endif
780
781 }
782
783 /**
784 * Collects information obtained during the post-pair (and embedding
785 * functional) loops onto local data structures.
786 */
787 void ForceMatrixDecomposition::collectSelfData() {
788
789 #ifdef IS_MPI
790 snap_ = sman_->getCurrentSnapshot();
791 storageLayout_ = sman_->getStorageLayout();
792
793 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
794 RealType ploc1 = embeddingPot[ii];
795 RealType ploc2 = 0.0;
796 MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
797 embeddingPot[ii] = ploc2;
798 }
799 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
800 RealType ploc1 = excludedSelfPot[ii];
801 RealType ploc2 = 0.0;
802 MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
803 excludedSelfPot[ii] = ploc2;
804 }
805 #endif
806
807 }
808
809 int& ForceMatrixDecomposition::getNAtomsInRow() {
810 #ifdef IS_MPI
811 return nAtomsInRow_;
812 #else
813 return nLocal_;
814 #endif
815 }
816
817 /**
818 * returns the list of atoms belonging to this group.
819 */
820 vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
821 #ifdef IS_MPI
822 return groupListRow_[cg1];
823 #else
824 return groupList_[cg1];
825 #endif
826 }
827
828 vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
829 #ifdef IS_MPI
830 return groupListCol_[cg2];
831 #else
832 return groupList_[cg2];
833 #endif
834 }
835
836 inline Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1,
837 int cg2){
838
839 Vector3d d;
840 #ifdef IS_MPI
841 d = cgColData.position[cg2] - cgRowData.position[cg1];
842 #else
843 d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
844 #endif
845
846 if (usePeriodicBoundaryConditions_) {
847 snap_->wrapVector(d);
848 }
849 return d;
850 }
851
852 Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
853 #ifdef IS_MPI
854 return cgColData.velocity[cg2];
855 #else
856 return snap_->cgData.velocity[cg2];
857 #endif
858 }
859
860 Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
861 #ifdef IS_MPI
862 return atomColData.velocity[atom2];
863 #else
864 return snap_->atomData.velocity[atom2];
865 #endif
866 }
867
868
869 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1,
870 int cg1) {
871 Vector3d d;
872
873 #ifdef IS_MPI
874 d = cgRowData.position[cg1] - atomRowData.position[atom1];
875 #else
876 d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
877 #endif
878 if (usePeriodicBoundaryConditions_) {
879 snap_->wrapVector(d);
880 }
881 return d;
882 }
883
884 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2,
885 int cg2) {
886 Vector3d d;
887
888 #ifdef IS_MPI
889 d = cgColData.position[cg2] - atomColData.position[atom2];
890 #else
891 d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
892 #endif
893 if (usePeriodicBoundaryConditions_) {
894 snap_->wrapVector(d);
895 }
896 return d;
897 }
898
899 RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) {
900 #ifdef IS_MPI
901 return massFactorsRow[atom1];
902 #else
903 return massFactors[atom1];
904 #endif
905 }
906
907 RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
908 #ifdef IS_MPI
909 return massFactorsCol[atom2];
910 #else
911 return massFactors[atom2];
912 #endif
913
914 }
915
916 inline Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1,
917 int atom2){
918 Vector3d d;
919
920 #ifdef IS_MPI
921 d = atomColData.position[atom2] - atomRowData.position[atom1];
922 #else
923 d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
924 #endif
925 if (usePeriodicBoundaryConditions_) {
926 snap_->wrapVector(d);
927 }
928 return d;
929 }
930
931 vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
932 return excludesForAtom[atom1];
933 }
934
935 /**
936 * We need to exclude some overcounted interactions that result from
937 * the parallel decomposition.
938 */
939 bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2,
940 int cg1, int cg2) {
941 int unique_id_1, unique_id_2;
942
943 #ifdef IS_MPI
944 // in MPI, we have to look up the unique IDs for each atom
945 unique_id_1 = AtomRowToGlobal[atom1];
946 unique_id_2 = AtomColToGlobal[atom2];
947 // group1 = cgRowToGlobal[cg1];
948 // group2 = cgColToGlobal[cg2];
949 #else
950 unique_id_1 = AtomLocalToGlobal[atom1];
951 unique_id_2 = AtomLocalToGlobal[atom2];
952 int group1 = cgLocalToGlobal[cg1];
953 int group2 = cgLocalToGlobal[cg2];
954 #endif
955
956 if (unique_id_1 == unique_id_2) return true;
957
958 #ifdef IS_MPI
959 // this prevents us from doing the pair on multiple processors
960 if (unique_id_1 < unique_id_2) {
961 if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
962 } else {
963 if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
964 }
965 #endif
966
967 #ifndef IS_MPI
968 if (group1 == group2) {
969 if (unique_id_1 < unique_id_2) return true;
970 }
971 #endif
972
973 return false;
974 }
975
976 /**
977 * We need to handle the interactions for atoms who are involved in
978 * the same rigid body as well as some short range interactions
979 * (bonds, bends, torsions) differently from other interactions.
980 * We'll still visit the pairwise routines, but with a flag that
981 * tells those routines to exclude the pair from direct long range
982 * interactions. Some indirect interactions (notably reaction
983 * field) must still be handled for these pairs.
984 */
985 bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
986
987 // excludesForAtom was constructed to use row/column indices in the MPI
988 // version, and to use local IDs in the non-MPI version:
989
990 for (vector<int>::iterator i = excludesForAtom[atom1].begin();
991 i != excludesForAtom[atom1].end(); ++i) {
992 if ( (*i) == atom2 ) return true;
993 }
994
995 return false;
996 }
997
998
999 void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
1000 #ifdef IS_MPI
1001 atomRowData.force[atom1] += fg;
1002 #else
1003 snap_->atomData.force[atom1] += fg;
1004 #endif
1005 }
1006
1007 void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
1008 #ifdef IS_MPI
1009 atomColData.force[atom2] += fg;
1010 #else
1011 snap_->atomData.force[atom2] += fg;
1012 #endif
1013 }
1014
1015 // filling interaction blocks with pointers
1016 void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1017 int atom1, int atom2,
1018 bool newAtom1) {
1019
1020 idat.excluded = excludeAtomPair(atom1, atom2);
1021
1022 if (newAtom1) {
1023
1024 #ifdef IS_MPI
1025 idat.atid1 = identsRow[atom1];
1026 idat.atid2 = identsCol[atom2];
1027
1028 if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) {
1029 idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]);
1030 } else {
1031 idat.sameRegion = false;
1032 }
1033
1034 if (storageLayout_ & DataStorage::dslAmat) {
1035 idat.A1 = &(atomRowData.aMat[atom1]);
1036 idat.A2 = &(atomColData.aMat[atom2]);
1037 }
1038
1039 if (storageLayout_ & DataStorage::dslTorque) {
1040 idat.t1 = &(atomRowData.torque[atom1]);
1041 idat.t2 = &(atomColData.torque[atom2]);
1042 }
1043
1044 if (storageLayout_ & DataStorage::dslDipole) {
1045 idat.dipole1 = &(atomRowData.dipole[atom1]);
1046 idat.dipole2 = &(atomColData.dipole[atom2]);
1047 }
1048
1049 if (storageLayout_ & DataStorage::dslQuadrupole) {
1050 idat.quadrupole1 = &(atomRowData.quadrupole[atom1]);
1051 idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1052 }
1053
1054 if (storageLayout_ & DataStorage::dslDensity) {
1055 idat.rho1 = &(atomRowData.density[atom1]);
1056 idat.rho2 = &(atomColData.density[atom2]);
1057 }
1058
1059 if (storageLayout_ & DataStorage::dslFunctional) {
1060 idat.frho1 = &(atomRowData.functional[atom1]);
1061 idat.frho2 = &(atomColData.functional[atom2]);
1062 }
1063
1064 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1065 idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1066 idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1067 }
1068
1069 if (storageLayout_ & DataStorage::dslParticlePot) {
1070 idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1071 idat.particlePot2 = &(atomColData.particlePot[atom2]);
1072 }
1073
1074 if (storageLayout_ & DataStorage::dslSkippedCharge) {
1075 idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1076 idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1077 }
1078
1079 if (storageLayout_ & DataStorage::dslFlucQPosition) {
1080 idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1081 idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1082 }
1083
1084 #else
1085
1086 idat.atid1 = idents[atom1];
1087 idat.atid2 = idents[atom2];
1088
1089 if (regions[atom1] >= 0 && regions[atom2] >= 0) {
1090 idat.sameRegion = (regions[atom1] == regions[atom2]);
1091 } else {
1092 idat.sameRegion = false;
1093 }
1094
1095 if (storageLayout_ & DataStorage::dslAmat) {
1096 idat.A1 = &(snap_->atomData.aMat[atom1]);
1097 idat.A2 = &(snap_->atomData.aMat[atom2]);
1098 }
1099
1100 if (storageLayout_ & DataStorage::dslTorque) {
1101 idat.t1 = &(snap_->atomData.torque[atom1]);
1102 idat.t2 = &(snap_->atomData.torque[atom2]);
1103 }
1104
1105 if (storageLayout_ & DataStorage::dslDipole) {
1106 idat.dipole1 = &(snap_->atomData.dipole[atom1]);
1107 idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1108 }
1109
1110 if (storageLayout_ & DataStorage::dslQuadrupole) {
1111 idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]);
1112 idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1113 }
1114
1115 if (storageLayout_ & DataStorage::dslDensity) {
1116 idat.rho1 = &(snap_->atomData.density[atom1]);
1117 idat.rho2 = &(snap_->atomData.density[atom2]);
1118 }
1119
1120 if (storageLayout_ & DataStorage::dslFunctional) {
1121 idat.frho1 = &(snap_->atomData.functional[atom1]);
1122 idat.frho2 = &(snap_->atomData.functional[atom2]);
1123 }
1124
1125 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1126 idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1127 idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1128 }
1129
1130 if (storageLayout_ & DataStorage::dslParticlePot) {
1131 idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1132 idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1133 }
1134
1135 if (storageLayout_ & DataStorage::dslSkippedCharge) {
1136 idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1137 idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1138 }
1139
1140 if (storageLayout_ & DataStorage::dslFlucQPosition) {
1141 idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1142 idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1143 }
1144 #endif
1145
1146 } else {
1147 // atom1 is not new, so don't bother updating properties of that atom:
1148 #ifdef IS_MPI
1149 idat.atid2 = identsCol[atom2];
1150
1151 if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) {
1152 idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]);
1153 } else {
1154 idat.sameRegion = false;
1155 }
1156
1157 if (storageLayout_ & DataStorage::dslAmat) {
1158 idat.A2 = &(atomColData.aMat[atom2]);
1159 }
1160
1161 if (storageLayout_ & DataStorage::dslTorque) {
1162 idat.t2 = &(atomColData.torque[atom2]);
1163 }
1164
1165 if (storageLayout_ & DataStorage::dslDipole) {
1166 idat.dipole2 = &(atomColData.dipole[atom2]);
1167 }
1168
1169 if (storageLayout_ & DataStorage::dslQuadrupole) {
1170 idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1171 }
1172
1173 if (storageLayout_ & DataStorage::dslDensity) {
1174 idat.rho2 = &(atomColData.density[atom2]);
1175 }
1176
1177 if (storageLayout_ & DataStorage::dslFunctional) {
1178 idat.frho2 = &(atomColData.functional[atom2]);
1179 }
1180
1181 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1182 idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1183 }
1184
1185 if (storageLayout_ & DataStorage::dslParticlePot) {
1186 idat.particlePot2 = &(atomColData.particlePot[atom2]);
1187 }
1188
1189 if (storageLayout_ & DataStorage::dslSkippedCharge) {
1190 idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1191 }
1192
1193 if (storageLayout_ & DataStorage::dslFlucQPosition) {
1194 idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1195 }
1196
1197 #else
1198 idat.atid2 = idents[atom2];
1199
1200 if (regions[atom1] >= 0 && regions[atom2] >= 0) {
1201 idat.sameRegion = (regions[atom1] == regions[atom2]);
1202 } else {
1203 idat.sameRegion = false;
1204 }
1205
1206 if (storageLayout_ & DataStorage::dslAmat) {
1207 idat.A2 = &(snap_->atomData.aMat[atom2]);
1208 }
1209
1210 if (storageLayout_ & DataStorage::dslTorque) {
1211 idat.t2 = &(snap_->atomData.torque[atom2]);
1212 }
1213
1214 if (storageLayout_ & DataStorage::dslDipole) {
1215 idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1216 }
1217
1218 if (storageLayout_ & DataStorage::dslQuadrupole) {
1219 idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1220 }
1221
1222 if (storageLayout_ & DataStorage::dslDensity) {
1223 idat.rho2 = &(snap_->atomData.density[atom2]);
1224 }
1225
1226 if (storageLayout_ & DataStorage::dslFunctional) {
1227 idat.frho2 = &(snap_->atomData.functional[atom2]);
1228 }
1229
1230 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1231 idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1232 }
1233
1234 if (storageLayout_ & DataStorage::dslParticlePot) {
1235 idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1236 }
1237
1238 if (storageLayout_ & DataStorage::dslSkippedCharge) {
1239 idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1240 }
1241
1242 if (storageLayout_ & DataStorage::dslFlucQPosition) {
1243 idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1244 }
1245
1246 #endif
1247 }
1248 }
1249
1250 void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat,
1251 int atom1, int atom2) {
1252 #ifdef IS_MPI
1253 pot_row[atom1] += RealType(0.5) * *(idat.pot);
1254 pot_col[atom2] += RealType(0.5) * *(idat.pot);
1255 expot_row[atom1] += RealType(0.5) * *(idat.excludedPot);
1256 expot_col[atom2] += RealType(0.5) * *(idat.excludedPot);
1257
1258 atomRowData.force[atom1] += *(idat.f1);
1259 atomColData.force[atom2] -= *(idat.f1);
1260
1261 if (storageLayout_ & DataStorage::dslFlucQForce) {
1262 atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1263 atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1264 }
1265
1266 if (storageLayout_ & DataStorage::dslElectricField) {
1267 atomRowData.electricField[atom1] += *(idat.eField1);
1268 atomColData.electricField[atom2] += *(idat.eField2);
1269 }
1270
1271 if (storageLayout_ & DataStorage::dslSitePotential) {
1272 atomRowData.sitePotential[atom1] += *(idat.sPot1);
1273 atomColData.sitePotential[atom2] += *(idat.sPot2);
1274 }
1275
1276 #else
1277 pairwisePot += *(idat.pot);
1278 excludedPot += *(idat.excludedPot);
1279
1280 snap_->atomData.force[atom1] += *(idat.f1);
1281 snap_->atomData.force[atom2] -= *(idat.f1);
1282
1283 if (idat.doParticlePot) {
1284 // This is the pairwise contribution to the particle pot. The
1285 // embedding contribution is added in each of the low level
1286 // non-bonded routines. In parallel, this calculation is done
1287 // in collectData, not in unpackInteractionData.
1288 snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1289 snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1290 }
1291
1292 if (storageLayout_ & DataStorage::dslFlucQForce) {
1293 snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1294 snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1295 }
1296
1297 if (storageLayout_ & DataStorage::dslElectricField) {
1298 snap_->atomData.electricField[atom1] += *(idat.eField1);
1299 snap_->atomData.electricField[atom2] += *(idat.eField2);
1300 }
1301
1302 if (storageLayout_ & DataStorage::dslSitePotential) {
1303 snap_->atomData.sitePotential[atom1] += *(idat.sPot1);
1304 snap_->atomData.sitePotential[atom2] += *(idat.sPot2);
1305 }
1306
1307 #endif
1308
1309 }
1310
1311 /*
1312 * buildNeighborList
1313 *
1314 * Constructs the Verlet neighbor list for a force-matrix
1315 * decomposition. In this case, each processor is responsible for
1316 * row-site interactions with column-sites.
1317 *
1318 * neighborList is returned as a packed array of neighboring
1319 * column-ordered CutoffGroups. The starting position in
1320 * neighborList for each row-ordered CutoffGroup is given by the
1321 * returned vector point.
1322 */
1323 void ForceMatrixDecomposition::buildNeighborList(vector<int>& neighborList,
1324 vector<int>& point) {
1325 neighborList.clear();
1326 point.clear();
1327 int len = 0;
1328
1329 bool doAllPairs = false;
1330
1331 Snapshot* snap_ = sman_->getCurrentSnapshot();
1332 Mat3x3d box;
1333 Mat3x3d invBox;
1334
1335 Vector3d rs, scaled, dr;
1336 Vector3i whichCell;
1337 int cellIndex;
1338
1339 #ifdef IS_MPI
1340 cellListRow_.clear();
1341 cellListCol_.clear();
1342 point.resize(nGroupsInRow_+1);
1343 #else
1344 cellList_.clear();
1345 point.resize(nGroups_+1);
1346 #endif
1347
1348 if (!usePeriodicBoundaryConditions_) {
1349 box = snap_->getBoundingBox();
1350 invBox = snap_->getInvBoundingBox();
1351 } else {
1352 box = snap_->getHmat();
1353 invBox = snap_->getInvHmat();
1354 }
1355
1356 Vector3d A = box.getColumn(0);
1357 Vector3d B = box.getColumn(1);
1358 Vector3d C = box.getColumn(2);
1359
1360 // Required for triclinic cells
1361 Vector3d AxB = cross(A, B);
1362 Vector3d BxC = cross(B, C);
1363 Vector3d CxA = cross(C, A);
1364
1365 // unit vectors perpendicular to the faces of the triclinic cell:
1366 AxB.normalize();
1367 BxC.normalize();
1368 CxA.normalize();
1369
1370 // A set of perpendicular lengths in triclinic cells:
1371 RealType Wa = abs(dot(A, BxC));
1372 RealType Wb = abs(dot(B, CxA));
1373 RealType Wc = abs(dot(C, AxB));
1374
1375 nCells_.x() = int( Wa / rList_ );
1376 nCells_.y() = int( Wb / rList_ );
1377 nCells_.z() = int( Wc / rList_ );
1378
1379 // handle small boxes where the cell offsets can end up repeating cells
1380 if (nCells_.x() < 3) doAllPairs = true;
1381 if (nCells_.y() < 3) doAllPairs = true;
1382 if (nCells_.z() < 3) doAllPairs = true;
1383
1384 int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1385
1386 #ifdef IS_MPI
1387 cellListRow_.resize(nCtot);
1388 cellListCol_.resize(nCtot);
1389 #else
1390 cellList_.resize(nCtot);
1391 #endif
1392
1393 if (!doAllPairs) {
1394
1395 #ifdef IS_MPI
1396
1397 for (int i = 0; i < nGroupsInRow_; i++) {
1398 rs = cgRowData.position[i];
1399
1400 // scaled positions relative to the box vectors
1401 scaled = invBox * rs;
1402
1403 // wrap the vector back into the unit box by subtracting integer box
1404 // numbers
1405 for (int j = 0; j < 3; j++) {
1406 scaled[j] -= roundMe(scaled[j]);
1407 scaled[j] += 0.5;
1408 // Handle the special case when an object is exactly on the
1409 // boundary (a scaled coordinate of 1.0 is the same as
1410 // scaled coordinate of 0.0)
1411 if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1412 }
1413
1414 // find xyz-indices of cell that cutoffGroup is in.
1415 whichCell.x() = nCells_.x() * scaled.x();
1416 whichCell.y() = nCells_.y() * scaled.y();
1417 whichCell.z() = nCells_.z() * scaled.z();
1418
1419 // find single index of this cell:
1420 cellIndex = Vlinear(whichCell, nCells_);
1421
1422 // add this cutoff group to the list of groups in this cell;
1423 cellListRow_[cellIndex].push_back(i);
1424 }
1425 for (int i = 0; i < nGroupsInCol_; i++) {
1426 rs = cgColData.position[i];
1427
1428 // scaled positions relative to the box vectors
1429 scaled = invBox * rs;
1430
1431 // wrap the vector back into the unit box by subtracting integer box
1432 // numbers
1433 for (int j = 0; j < 3; j++) {
1434 scaled[j] -= roundMe(scaled[j]);
1435 scaled[j] += 0.5;
1436 // Handle the special case when an object is exactly on the
1437 // boundary (a scaled coordinate of 1.0 is the same as
1438 // scaled coordinate of 0.0)
1439 if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1440 }
1441
1442 // find xyz-indices of cell that cutoffGroup is in.
1443 whichCell.x() = nCells_.x() * scaled.x();
1444 whichCell.y() = nCells_.y() * scaled.y();
1445 whichCell.z() = nCells_.z() * scaled.z();
1446
1447 // find single index of this cell:
1448 cellIndex = Vlinear(whichCell, nCells_);
1449
1450 // add this cutoff group to the list of groups in this cell;
1451 cellListCol_[cellIndex].push_back(i);
1452 }
1453
1454 #else
1455 for (int i = 0; i < nGroups_; i++) {
1456 rs = snap_->cgData.position[i];
1457
1458 // scaled positions relative to the box vectors
1459 scaled = invBox * rs;
1460
1461 // wrap the vector back into the unit box by subtracting integer box
1462 // numbers
1463 for (int j = 0; j < 3; j++) {
1464 scaled[j] -= roundMe(scaled[j]);
1465 scaled[j] += 0.5;
1466 // Handle the special case when an object is exactly on the
1467 // boundary (a scaled coordinate of 1.0 is the same as
1468 // scaled coordinate of 0.0)
1469 if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1470 }
1471
1472 // find xyz-indices of cell that cutoffGroup is in.
1473 whichCell.x() = int(nCells_.x() * scaled.x());
1474 whichCell.y() = int(nCells_.y() * scaled.y());
1475 whichCell.z() = int(nCells_.z() * scaled.z());
1476
1477 // find single index of this cell:
1478 cellIndex = Vlinear(whichCell, nCells_);
1479
1480 // add this cutoff group to the list of groups in this cell;
1481 cellList_[cellIndex].push_back(i);
1482 }
1483
1484 #endif
1485
1486 #ifdef IS_MPI
1487 for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1488 rs = cgRowData.position[j1];
1489 #else
1490
1491 for (int j1 = 0; j1 < nGroups_; j1++) {
1492 rs = snap_->cgData.position[j1];
1493 #endif
1494 point[j1] = len;
1495
1496 // scaled positions relative to the box vectors
1497 scaled = invBox * rs;
1498
1499 // wrap the vector back into the unit box by subtracting integer box
1500 // numbers
1501 for (int j = 0; j < 3; j++) {
1502 scaled[j] -= roundMe(scaled[j]);
1503 scaled[j] += 0.5;
1504 // Handle the special case when an object is exactly on the
1505 // boundary (a scaled coordinate of 1.0 is the same as
1506 // scaled coordinate of 0.0)
1507 if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1508 }
1509
1510 // find xyz-indices of cell that cutoffGroup is in.
1511 whichCell.x() = nCells_.x() * scaled.x();
1512 whichCell.y() = nCells_.y() * scaled.y();
1513 whichCell.z() = nCells_.z() * scaled.z();
1514
1515 // find single index of this cell:
1516 int m1 = Vlinear(whichCell, nCells_);
1517
1518 for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1519 os != cellOffsets_.end(); ++os) {
1520
1521 Vector3i m2v = whichCell + (*os);
1522
1523 if (m2v.x() >= nCells_.x()) {
1524 m2v.x() = 0;
1525 } else if (m2v.x() < 0) {
1526 m2v.x() = nCells_.x() - 1;
1527 }
1528
1529 if (m2v.y() >= nCells_.y()) {
1530 m2v.y() = 0;
1531 } else if (m2v.y() < 0) {
1532 m2v.y() = nCells_.y() - 1;
1533 }
1534
1535 if (m2v.z() >= nCells_.z()) {
1536 m2v.z() = 0;
1537 } else if (m2v.z() < 0) {
1538 m2v.z() = nCells_.z() - 1;
1539 }
1540 int m2 = Vlinear (m2v, nCells_);
1541 #ifdef IS_MPI
1542 for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1543 j2 != cellListCol_[m2].end(); ++j2) {
1544
1545 // In parallel, we need to visit *all* pairs of row
1546 // & column indicies and will divide labor in the
1547 // force evaluation later.
1548 dr = cgColData.position[(*j2)] - rs;
1549 if (usePeriodicBoundaryConditions_) {
1550 snap_->wrapVector(dr);
1551 }
1552 if (dr.lengthSquare() < rListSq_) {
1553 neighborList.push_back( (*j2) );
1554 ++len;
1555 }
1556 }
1557 #else
1558 for (vector<int>::iterator j2 = cellList_[m2].begin();
1559 j2 != cellList_[m2].end(); ++j2) {
1560
1561 // Always do this if we're in different cells or if
1562 // we're in the same cell and the global index of
1563 // the j2 cutoff group is greater than or equal to
1564 // the j1 cutoff group. Note that Rappaport's code
1565 // has a "less than" conditional here, but that
1566 // deals with atom-by-atom computation. OpenMD
1567 // allows atoms within a single cutoff group to
1568 // interact with each other.
1569
1570 if ( (*j2) >= j1 ) {
1571
1572 dr = snap_->cgData.position[(*j2)] - rs;
1573 if (usePeriodicBoundaryConditions_) {
1574 snap_->wrapVector(dr);
1575 }
1576 if ( dr.lengthSquare() < rListSq_) {
1577 neighborList.push_back( (*j2) );
1578 ++len;
1579 }
1580 }
1581 }
1582 #endif
1583 }
1584 }
1585 } else {
1586 // branch to do all cutoff group pairs
1587 #ifdef IS_MPI
1588 for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1589 point[j1] = len;
1590 rs = cgRowData.position[j1];
1591 for (int j2 = 0; j2 < nGroupsInCol_; j2++) {
1592 dr = cgColData.position[j2] - rs;
1593 if (usePeriodicBoundaryConditions_) {
1594 snap_->wrapVector(dr);
1595 }
1596 if (dr.lengthSquare() < rListSq_) {
1597 neighborList.push_back( j2 );
1598 ++len;
1599 }
1600 }
1601 }
1602 #else
1603 // include all groups here.
1604 for (int j1 = 0; j1 < nGroups_; j1++) {
1605 point[j1] = len;
1606 rs = snap_->cgData.position[j1];
1607 // include self group interactions j2 == j1
1608 for (int j2 = j1; j2 < nGroups_; j2++) {
1609 dr = snap_->cgData.position[j2] - rs;
1610 if (usePeriodicBoundaryConditions_) {
1611 snap_->wrapVector(dr);
1612 }
1613 if (dr.lengthSquare() < rListSq_) {
1614 neighborList.push_back( j2 );
1615 ++len;
1616 }
1617 }
1618 }
1619 #endif
1620 }
1621
1622 #ifdef IS_MPI
1623 point[nGroupsInRow_] = len;
1624 #else
1625 point[nGroups_] = len;
1626 #endif
1627
1628 // save the local cutoff group positions for the check that is
1629 // done on each loop:
1630 saved_CG_positions_.clear();
1631 saved_CG_positions_.reserve(nGroups_);
1632 for (int i = 0; i < nGroups_; i++)
1633 saved_CG_positions_.push_back(snap_->cgData.position[i]);
1634 }
1635 } //end namespace OpenMD