36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
#include "parallel/ForceMatrixDecomposition.hpp" |
43 |
|
#include "math/SquareMatrix3.hpp" |
248 |
|
for (int j = 0; j < nLocal_; j++) { |
249 |
|
int jglob = AtomLocalToGlobal[j]; |
250 |
|
|
251 |
< |
if (excludes->hasPair(iglob, jglob)) |
251 |
> |
if (excludes->hasPair(iglob, jglob)) |
252 |
|
excludesForAtom[i].push_back(j); |
253 |
|
|
253 |
– |
|
254 |
|
if (oneTwo->hasPair(iglob, jglob)) { |
255 |
|
toposForAtom[i].push_back(j); |
256 |
|
topoDist[i].push_back(1); |
836 |
|
*/ |
837 |
|
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
838 |
|
int unique_id_1, unique_id_2; |
839 |
< |
|
839 |
> |
|
840 |
|
#ifdef IS_MPI |
841 |
|
// in MPI, we have to look up the unique IDs for each atom |
842 |
|
unique_id_1 = AtomRowToGlobal[atom1]; |
843 |
|
unique_id_2 = AtomColToGlobal[atom2]; |
844 |
+ |
#else |
845 |
+ |
unique_id_1 = AtomLocalToGlobal[atom1]; |
846 |
+ |
unique_id_2 = AtomLocalToGlobal[atom2]; |
847 |
+ |
#endif |
848 |
|
|
845 |
– |
// this situation should only arise in MPI simulations |
849 |
|
if (unique_id_1 == unique_id_2) return true; |
850 |
< |
|
850 |
> |
|
851 |
> |
#ifdef IS_MPI |
852 |
|
// this prevents us from doing the pair on multiple processors |
853 |
|
if (unique_id_1 < unique_id_2) { |
854 |
|
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
855 |
|
} else { |
856 |
< |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
856 |
> |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
857 |
|
} |
858 |
|
#endif |
859 |
+ |
|
860 |
|
return false; |
861 |
|
} |
862 |
|
|
876 |
|
|
877 |
|
for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
878 |
|
i != excludesForAtom[atom1].end(); ++i) { |
879 |
< |
if ( (*i) == atom2 ) return true; |
879 |
> |
if ( (*i) == atom2 ) return true; |
880 |
|
} |
881 |
|
|
882 |
|
return false; |
1001 |
|
|
1002 |
|
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
1003 |
|
#ifdef IS_MPI |
1004 |
< |
pot_row[atom1] += 0.5 * *(idat.pot); |
1005 |
< |
pot_col[atom2] += 0.5 * *(idat.pot); |
1004 |
> |
pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1005 |
> |
pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1006 |
|
|
1007 |
|
atomRowData.force[atom1] += *(idat.f1); |
1008 |
|
atomColData.force[atom2] -= *(idat.f1); |
1195 |
|
} |
1196 |
|
} |
1197 |
|
#else |
1193 |
– |
|
1198 |
|
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1199 |
|
j1 != cellList_[m1].end(); ++j1) { |
1200 |
|
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1201 |
|
j2 != cellList_[m2].end(); ++j2) { |
1202 |
< |
|
1202 |
> |
|
1203 |
|
// Always do this if we're in different cells or if |
1204 |
< |
// we're in the same cell and the global index of the |
1205 |
< |
// j2 cutoff group is less than the j1 cutoff group |
1206 |
< |
|
1207 |
< |
if (m2 != m1 || (*j2) < (*j1)) { |
1204 |
> |
// we're in the same cell and the global index of |
1205 |
> |
// the j2 cutoff group is greater than or equal to |
1206 |
> |
// the j1 cutoff group. Note that Rappaport's code |
1207 |
> |
// has a "less than" conditional here, but that |
1208 |
> |
// deals with atom-by-atom computation. OpenMD |
1209 |
> |
// allows atoms within a single cutoff group to |
1210 |
> |
// interact with each other. |
1211 |
> |
|
1212 |
> |
|
1213 |
> |
|
1214 |
> |
if (m2 != m1 || (*j2) >= (*j1) ) { |
1215 |
> |
|
1216 |
|
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1217 |
|
snap_->wrapVector(dr); |
1218 |
|
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1231 |
|
// branch to do all cutoff group pairs |
1232 |
|
#ifdef IS_MPI |
1233 |
|
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1234 |
< |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1234 |
> |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1235 |
|
dr = cgColData.position[j2] - cgRowData.position[j1]; |
1236 |
|
snap_->wrapVector(dr); |
1237 |
|
cuts = getGroupCutoffs( j1, j2 ); |
1239 |
|
neighborList.push_back(make_pair(j1, j2)); |
1240 |
|
} |
1241 |
|
} |
1242 |
< |
} |
1242 |
> |
} |
1243 |
|
#else |
1244 |
< |
for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1245 |
< |
for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1244 |
> |
// include all groups here. |
1245 |
> |
for (int j1 = 0; j1 < nGroups_; j1++) { |
1246 |
> |
// include self group interactions j2 == j1 |
1247 |
> |
for (int j2 = j1; j2 < nGroups_; j2++) { |
1248 |
|
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1249 |
|
snap_->wrapVector(dr); |
1250 |
|
cuts = getGroupCutoffs( j1, j2 ); |
1251 |
|
if (dr.lengthSquare() < cuts.third) { |
1252 |
|
neighborList.push_back(make_pair(j1, j2)); |
1253 |
|
} |
1254 |
< |
} |
1255 |
< |
} |
1254 |
> |
} |
1255 |
> |
} |
1256 |
|
#endif |
1257 |
|
} |
1258 |
|
|