47 |
|
using namespace std; |
48 |
|
namespace OpenMD { |
49 |
|
|
50 |
+ |
ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
51 |
+ |
|
52 |
+ |
// In a parallel computation, row and colum scans must visit all |
53 |
+ |
// surrounding cells (not just the 14 upper triangular blocks that |
54 |
+ |
// are used when the processor can see all pairs) |
55 |
+ |
#ifdef IS_MPI |
56 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
57 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
58 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
59 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
60 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
61 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
62 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
63 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
64 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
65 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
66 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
68 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
69 |
+ |
#endif |
70 |
+ |
} |
71 |
+ |
|
72 |
+ |
|
73 |
|
/** |
74 |
|
* distributeInitialData is essentially a copy of the older fortran |
75 |
|
* SimulationSetup |
76 |
|
*/ |
54 |
– |
|
77 |
|
void ForceMatrixDecomposition::distributeInitialData() { |
78 |
|
snap_ = sman_->getCurrentSnapshot(); |
79 |
|
storageLayout_ = sman_->getStorageLayout(); |
80 |
|
ff_ = info_->getForceField(); |
81 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
82 |
< |
|
82 |
> |
|
83 |
|
nGroups_ = info_->getNLocalCutoffGroups(); |
62 |
– |
cerr << "in dId, nGroups = " << nGroups_ << "\n"; |
84 |
|
// gather the information for atomtype IDs (atids): |
85 |
|
idents = info_->getIdentArray(); |
86 |
|
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
87 |
|
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
88 |
|
vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
89 |
+ |
|
90 |
|
massFactors = info_->getMassFactors(); |
69 |
– |
PairList excludes = info_->getExcludedInteractions(); |
70 |
– |
PairList oneTwo = info_->getOneTwoInteractions(); |
71 |
– |
PairList oneThree = info_->getOneThreeInteractions(); |
72 |
– |
PairList oneFour = info_->getOneFourInteractions(); |
91 |
|
|
92 |
+ |
PairList* excludes = info_->getExcludedInteractions(); |
93 |
+ |
PairList* oneTwo = info_->getOneTwoInteractions(); |
94 |
+ |
PairList* oneThree = info_->getOneThreeInteractions(); |
95 |
+ |
PairList* oneFour = info_->getOneFourInteractions(); |
96 |
+ |
|
97 |
|
#ifdef IS_MPI |
98 |
|
|
99 |
< |
AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
100 |
< |
AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
78 |
< |
AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
79 |
< |
AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
80 |
< |
AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
99 |
> |
MPI::Intracomm row = rowComm.getComm(); |
100 |
> |
MPI::Intracomm col = colComm.getComm(); |
101 |
|
|
102 |
< |
AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
103 |
< |
AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
104 |
< |
AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
105 |
< |
AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
106 |
< |
AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
102 |
> |
AtomPlanIntRow = new Plan<int>(row, nLocal_); |
103 |
> |
AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
104 |
> |
AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
105 |
> |
AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
106 |
> |
AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
107 |
|
|
108 |
< |
cgCommIntRow = new Communicator<Row,int>(nGroups_); |
109 |
< |
cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
110 |
< |
cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
111 |
< |
cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
108 |
> |
AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
109 |
> |
AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
110 |
> |
AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
111 |
> |
AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
112 |
> |
AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
113 |
|
|
114 |
< |
nAtomsInRow_ = AtomCommIntRow->getSize(); |
115 |
< |
nAtomsInCol_ = AtomCommIntColumn->getSize(); |
116 |
< |
nGroupsInRow_ = cgCommIntRow->getSize(); |
117 |
< |
nGroupsInCol_ = cgCommIntColumn->getSize(); |
114 |
> |
cgPlanIntRow = new Plan<int>(row, nGroups_); |
115 |
> |
cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
116 |
> |
cgPlanIntColumn = new Plan<int>(col, nGroups_); |
117 |
> |
cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
118 |
|
|
119 |
+ |
nAtomsInRow_ = AtomPlanIntRow->getSize(); |
120 |
+ |
nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
121 |
+ |
nGroupsInRow_ = cgPlanIntRow->getSize(); |
122 |
+ |
nGroupsInCol_ = cgPlanIntColumn->getSize(); |
123 |
+ |
|
124 |
|
// Modify the data storage objects with the correct layouts and sizes: |
125 |
|
atomRowData.resize(nAtomsInRow_); |
126 |
|
atomRowData.setStorageLayout(storageLayout_); |
134 |
|
identsRow.resize(nAtomsInRow_); |
135 |
|
identsCol.resize(nAtomsInCol_); |
136 |
|
|
137 |
< |
AtomCommIntRow->gather(idents, identsRow); |
138 |
< |
AtomCommIntColumn->gather(idents, identsCol); |
137 |
> |
AtomPlanIntRow->gather(idents, identsRow); |
138 |
> |
AtomPlanIntColumn->gather(idents, identsCol); |
139 |
|
|
140 |
< |
AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
141 |
< |
AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
142 |
< |
|
117 |
< |
cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
118 |
< |
cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
140 |
> |
// allocate memory for the parallel objects |
141 |
> |
atypesRow.resize(nAtomsInRow_); |
142 |
> |
atypesCol.resize(nAtomsInCol_); |
143 |
|
|
144 |
< |
AtomCommRealRow->gather(massFactors, massFactorsRow); |
145 |
< |
AtomCommRealColumn->gather(massFactors, massFactorsCol); |
144 |
> |
for (int i = 0; i < nAtomsInRow_; i++) |
145 |
> |
atypesRow[i] = ff_->getAtomType(identsRow[i]); |
146 |
> |
for (int i = 0; i < nAtomsInCol_; i++) |
147 |
> |
atypesCol[i] = ff_->getAtomType(identsCol[i]); |
148 |
|
|
149 |
+ |
pot_row.resize(nAtomsInRow_); |
150 |
+ |
pot_col.resize(nAtomsInCol_); |
151 |
+ |
|
152 |
+ |
AtomRowToGlobal.resize(nAtomsInRow_); |
153 |
+ |
AtomColToGlobal.resize(nAtomsInCol_); |
154 |
+ |
AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
155 |
+ |
AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
156 |
+ |
|
157 |
+ |
cgRowToGlobal.resize(nGroupsInRow_); |
158 |
+ |
cgColToGlobal.resize(nGroupsInCol_); |
159 |
+ |
cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
160 |
+ |
cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
161 |
+ |
|
162 |
+ |
massFactorsRow.resize(nAtomsInRow_); |
163 |
+ |
massFactorsCol.resize(nAtomsInCol_); |
164 |
+ |
AtomPlanRealRow->gather(massFactors, massFactorsRow); |
165 |
+ |
AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
166 |
+ |
|
167 |
|
groupListRow_.clear(); |
168 |
|
groupListRow_.resize(nGroupsInRow_); |
169 |
|
for (int i = 0; i < nGroupsInRow_; i++) { |
186 |
|
} |
187 |
|
} |
188 |
|
|
189 |
< |
skipsForAtom.clear(); |
190 |
< |
skipsForAtom.resize(nAtomsInRow_); |
189 |
> |
excludesForAtom.clear(); |
190 |
> |
excludesForAtom.resize(nAtomsInRow_); |
191 |
|
toposForAtom.clear(); |
192 |
|
toposForAtom.resize(nAtomsInRow_); |
193 |
|
topoDist.clear(); |
198 |
|
for (int j = 0; j < nAtomsInCol_; j++) { |
199 |
|
int jglob = AtomColToGlobal[j]; |
200 |
|
|
201 |
< |
if (excludes.hasPair(iglob, jglob)) |
202 |
< |
skipsForAtom[i].push_back(j); |
201 |
> |
if (excludes->hasPair(iglob, jglob)) |
202 |
> |
excludesForAtom[i].push_back(j); |
203 |
|
|
204 |
< |
if (oneTwo.hasPair(iglob, jglob)) { |
204 |
> |
if (oneTwo->hasPair(iglob, jglob)) { |
205 |
|
toposForAtom[i].push_back(j); |
206 |
|
topoDist[i].push_back(1); |
207 |
|
} else { |
208 |
< |
if (oneThree.hasPair(iglob, jglob)) { |
208 |
> |
if (oneThree->hasPair(iglob, jglob)) { |
209 |
|
toposForAtom[i].push_back(j); |
210 |
|
topoDist[i].push_back(2); |
211 |
|
} else { |
212 |
< |
if (oneFour.hasPair(iglob, jglob)) { |
212 |
> |
if (oneFour->hasPair(iglob, jglob)) { |
213 |
|
toposForAtom[i].push_back(j); |
214 |
|
topoDist[i].push_back(3); |
215 |
|
} |
220 |
|
|
221 |
|
#endif |
222 |
|
|
223 |
+ |
// allocate memory for the parallel objects |
224 |
+ |
atypesLocal.resize(nLocal_); |
225 |
+ |
|
226 |
+ |
for (int i = 0; i < nLocal_; i++) |
227 |
+ |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
228 |
+ |
|
229 |
|
groupList_.clear(); |
230 |
|
groupList_.resize(nGroups_); |
231 |
|
for (int i = 0; i < nGroups_; i++) { |
238 |
|
} |
239 |
|
} |
240 |
|
|
241 |
< |
skipsForAtom.clear(); |
242 |
< |
skipsForAtom.resize(nLocal_); |
241 |
> |
excludesForAtom.clear(); |
242 |
> |
excludesForAtom.resize(nLocal_); |
243 |
|
toposForAtom.clear(); |
244 |
|
toposForAtom.resize(nLocal_); |
245 |
|
topoDist.clear(); |
251 |
|
for (int j = 0; j < nLocal_; j++) { |
252 |
|
int jglob = AtomLocalToGlobal[j]; |
253 |
|
|
254 |
< |
if (excludes.hasPair(iglob, jglob)) |
255 |
< |
skipsForAtom[i].push_back(j); |
254 |
> |
if (excludes->hasPair(iglob, jglob)) |
255 |
> |
excludesForAtom[i].push_back(j); |
256 |
|
|
257 |
< |
if (oneTwo.hasPair(iglob, jglob)) { |
257 |
> |
if (oneTwo->hasPair(iglob, jglob)) { |
258 |
|
toposForAtom[i].push_back(j); |
259 |
|
topoDist[i].push_back(1); |
260 |
|
} else { |
261 |
< |
if (oneThree.hasPair(iglob, jglob)) { |
261 |
> |
if (oneThree->hasPair(iglob, jglob)) { |
262 |
|
toposForAtom[i].push_back(j); |
263 |
|
topoDist[i].push_back(2); |
264 |
|
} else { |
265 |
< |
if (oneFour.hasPair(iglob, jglob)) { |
265 |
> |
if (oneFour->hasPair(iglob, jglob)) { |
266 |
|
toposForAtom[i].push_back(j); |
267 |
|
topoDist[i].push_back(3); |
268 |
|
} |
272 |
|
} |
273 |
|
|
274 |
|
createGtypeCutoffMap(); |
275 |
+ |
|
276 |
|
} |
277 |
|
|
278 |
|
void ForceMatrixDecomposition::createGtypeCutoffMap() { |
279 |
< |
|
279 |
> |
|
280 |
|
RealType tol = 1e-6; |
281 |
+ |
largestRcut_ = 0.0; |
282 |
|
RealType rc; |
283 |
|
int atid; |
284 |
|
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
285 |
< |
vector<RealType> atypeCutoff; |
286 |
< |
atypeCutoff.resize( atypes.size() ); |
285 |
> |
|
286 |
> |
map<int, RealType> atypeCutoff; |
287 |
|
|
288 |
|
for (set<AtomType*>::iterator at = atypes.begin(); |
289 |
|
at != atypes.end(); ++at){ |
290 |
|
atid = (*at)->getIdent(); |
291 |
< |
|
240 |
< |
if (userChoseCutoff_) |
291 |
> |
if (userChoseCutoff_) |
292 |
|
atypeCutoff[atid] = userCutoff_; |
293 |
|
else |
294 |
|
atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
295 |
|
} |
296 |
< |
|
296 |
> |
|
297 |
|
vector<RealType> gTypeCutoffs; |
247 |
– |
|
298 |
|
// first we do a single loop over the cutoff groups to find the |
299 |
|
// largest cutoff for any atypes present in this group. |
300 |
|
#ifdef IS_MPI |
352 |
|
|
353 |
|
vector<RealType> groupCutoff(nGroups_, 0.0); |
354 |
|
groupToGtype.resize(nGroups_); |
305 |
– |
|
306 |
– |
cerr << "nGroups = " << nGroups_ << "\n"; |
355 |
|
for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
308 |
– |
|
356 |
|
groupCutoff[cg1] = 0.0; |
357 |
|
vector<int> atomList = getAtomsInGroupRow(cg1); |
311 |
– |
|
358 |
|
for (vector<int>::iterator ia = atomList.begin(); |
359 |
|
ia != atomList.end(); ++ia) { |
360 |
|
int atom1 = (*ia); |
361 |
|
atid = idents[atom1]; |
362 |
< |
if (atypeCutoff[atid] > groupCutoff[cg1]) { |
362 |
> |
if (atypeCutoff[atid] > groupCutoff[cg1]) |
363 |
|
groupCutoff[cg1] = atypeCutoff[atid]; |
318 |
– |
} |
364 |
|
} |
365 |
< |
|
365 |
> |
|
366 |
|
bool gTypeFound = false; |
367 |
|
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
368 |
|
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
370 |
|
gTypeFound = true; |
371 |
|
} |
372 |
|
} |
373 |
< |
if (!gTypeFound) { |
373 |
> |
if (!gTypeFound) { |
374 |
|
gTypeCutoffs.push_back( groupCutoff[cg1] ); |
375 |
|
groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
376 |
|
} |
377 |
|
} |
378 |
|
#endif |
379 |
|
|
335 |
– |
cerr << "gTypeCutoffs.size() = " << gTypeCutoffs.size() << "\n"; |
380 |
|
// Now we find the maximum group cutoff value present in the simulation |
381 |
|
|
382 |
< |
RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); |
382 |
> |
RealType groupMax = *max_element(gTypeCutoffs.begin(), |
383 |
> |
gTypeCutoffs.end()); |
384 |
|
|
385 |
|
#ifdef IS_MPI |
386 |
< |
MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); |
386 |
> |
MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, |
387 |
> |
MPI::MAX); |
388 |
|
#endif |
389 |
|
|
390 |
|
RealType tradRcut = groupMax; |
414 |
|
|
415 |
|
pair<int,int> key = make_pair(i,j); |
416 |
|
gTypeCutoffMap[key].first = thisRcut; |
371 |
– |
|
417 |
|
if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
373 |
– |
|
418 |
|
gTypeCutoffMap[key].second = thisRcut*thisRcut; |
375 |
– |
|
419 |
|
gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
377 |
– |
|
420 |
|
// sanity check |
421 |
|
|
422 |
|
if (userChoseCutoff_) { |
476 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
477 |
|
|
478 |
|
if (storageLayout_ & DataStorage::dslParticlePot) { |
479 |
< |
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); |
480 |
< |
fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); |
479 |
> |
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
480 |
> |
0.0); |
481 |
> |
fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), |
482 |
> |
0.0); |
483 |
|
} |
484 |
|
|
485 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
488 |
|
} |
489 |
|
|
490 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
491 |
< |
fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); |
492 |
< |
fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); |
491 |
> |
fill(atomRowData.functional.begin(), atomRowData.functional.end(), |
492 |
> |
0.0); |
493 |
> |
fill(atomColData.functional.begin(), atomColData.functional.end(), |
494 |
> |
0.0); |
495 |
|
} |
496 |
|
|
497 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
501 |
|
atomColData.functionalDerivative.end(), 0.0); |
502 |
|
} |
503 |
|
|
504 |
< |
#else |
505 |
< |
|
504 |
> |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
505 |
> |
fill(atomRowData.skippedCharge.begin(), |
506 |
> |
atomRowData.skippedCharge.end(), 0.0); |
507 |
> |
fill(atomColData.skippedCharge.begin(), |
508 |
> |
atomColData.skippedCharge.end(), 0.0); |
509 |
> |
} |
510 |
> |
|
511 |
> |
#endif |
512 |
> |
// even in parallel, we need to zero out the local arrays: |
513 |
> |
|
514 |
|
if (storageLayout_ & DataStorage::dslParticlePot) { |
515 |
|
fill(snap_->atomData.particlePot.begin(), |
516 |
|
snap_->atomData.particlePot.end(), 0.0); |
528 |
|
fill(snap_->atomData.functionalDerivative.begin(), |
529 |
|
snap_->atomData.functionalDerivative.end(), 0.0); |
530 |
|
} |
531 |
< |
#endif |
531 |
> |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
532 |
> |
fill(snap_->atomData.skippedCharge.begin(), |
533 |
> |
snap_->atomData.skippedCharge.end(), 0.0); |
534 |
> |
} |
535 |
|
|
536 |
|
} |
537 |
|
|
542 |
|
#ifdef IS_MPI |
543 |
|
|
544 |
|
// gather up the atomic positions |
545 |
< |
AtomCommVectorRow->gather(snap_->atomData.position, |
545 |
> |
AtomPlanVectorRow->gather(snap_->atomData.position, |
546 |
|
atomRowData.position); |
547 |
< |
AtomCommVectorColumn->gather(snap_->atomData.position, |
547 |
> |
AtomPlanVectorColumn->gather(snap_->atomData.position, |
548 |
|
atomColData.position); |
549 |
|
|
550 |
|
// gather up the cutoff group positions |
551 |
< |
cgCommVectorRow->gather(snap_->cgData.position, |
551 |
> |
|
552 |
> |
cgPlanVectorRow->gather(snap_->cgData.position, |
553 |
|
cgRowData.position); |
554 |
< |
cgCommVectorColumn->gather(snap_->cgData.position, |
554 |
> |
|
555 |
> |
cgPlanVectorColumn->gather(snap_->cgData.position, |
556 |
|
cgColData.position); |
557 |
+ |
|
558 |
|
|
559 |
|
// if needed, gather the atomic rotation matrices |
560 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
561 |
< |
AtomCommMatrixRow->gather(snap_->atomData.aMat, |
561 |
> |
AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
562 |
|
atomRowData.aMat); |
563 |
< |
AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
563 |
> |
AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
564 |
|
atomColData.aMat); |
565 |
|
} |
566 |
|
|
567 |
|
// if needed, gather the atomic eletrostatic frames |
568 |
|
if (storageLayout_ & DataStorage::dslElectroFrame) { |
569 |
< |
AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
569 |
> |
AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
570 |
|
atomRowData.electroFrame); |
571 |
< |
AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
571 |
> |
AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
572 |
|
atomColData.electroFrame); |
573 |
|
} |
574 |
+ |
|
575 |
|
#endif |
576 |
|
} |
577 |
|
|
585 |
|
|
586 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
587 |
|
|
588 |
< |
AtomCommRealRow->scatter(atomRowData.density, |
588 |
> |
AtomPlanRealRow->scatter(atomRowData.density, |
589 |
|
snap_->atomData.density); |
590 |
|
|
591 |
|
int n = snap_->atomData.density.size(); |
592 |
|
vector<RealType> rho_tmp(n, 0.0); |
593 |
< |
AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
593 |
> |
AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
594 |
|
for (int i = 0; i < n; i++) |
595 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
596 |
|
} |
606 |
|
storageLayout_ = sman_->getStorageLayout(); |
607 |
|
#ifdef IS_MPI |
608 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
609 |
< |
AtomCommRealRow->gather(snap_->atomData.functional, |
609 |
> |
AtomPlanRealRow->gather(snap_->atomData.functional, |
610 |
|
atomRowData.functional); |
611 |
< |
AtomCommRealColumn->gather(snap_->atomData.functional, |
611 |
> |
AtomPlanRealColumn->gather(snap_->atomData.functional, |
612 |
|
atomColData.functional); |
613 |
|
} |
614 |
|
|
615 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
616 |
< |
AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
616 |
> |
AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
617 |
|
atomRowData.functionalDerivative); |
618 |
< |
AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
618 |
> |
AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
619 |
|
atomColData.functionalDerivative); |
620 |
|
} |
621 |
|
#endif |
629 |
|
int n = snap_->atomData.force.size(); |
630 |
|
vector<Vector3d> frc_tmp(n, V3Zero); |
631 |
|
|
632 |
< |
AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
632 |
> |
AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
633 |
|
for (int i = 0; i < n; i++) { |
634 |
|
snap_->atomData.force[i] += frc_tmp[i]; |
635 |
|
frc_tmp[i] = 0.0; |
636 |
|
} |
637 |
|
|
638 |
< |
AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
639 |
< |
for (int i = 0; i < n; i++) |
638 |
> |
AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
639 |
> |
for (int i = 0; i < n; i++) { |
640 |
|
snap_->atomData.force[i] += frc_tmp[i]; |
641 |
< |
|
642 |
< |
|
641 |
> |
} |
642 |
> |
|
643 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
644 |
|
|
645 |
< |
int nt = snap_->atomData.force.size(); |
645 |
> |
int nt = snap_->atomData.torque.size(); |
646 |
|
vector<Vector3d> trq_tmp(nt, V3Zero); |
647 |
|
|
648 |
< |
AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
649 |
< |
for (int i = 0; i < n; i++) { |
648 |
> |
AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
649 |
> |
for (int i = 0; i < nt; i++) { |
650 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
651 |
|
trq_tmp[i] = 0.0; |
652 |
|
} |
653 |
|
|
654 |
< |
AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
655 |
< |
for (int i = 0; i < n; i++) |
654 |
> |
AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
655 |
> |
for (int i = 0; i < nt; i++) |
656 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
657 |
+ |
} |
658 |
+ |
|
659 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
660 |
+ |
|
661 |
+ |
int ns = snap_->atomData.skippedCharge.size(); |
662 |
+ |
vector<RealType> skch_tmp(ns, 0.0); |
663 |
+ |
|
664 |
+ |
AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
665 |
+ |
for (int i = 0; i < ns; i++) { |
666 |
+ |
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
667 |
+ |
skch_tmp[i] = 0.0; |
668 |
+ |
} |
669 |
+ |
|
670 |
+ |
AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
671 |
+ |
for (int i = 0; i < ns; i++) |
672 |
+ |
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
673 |
|
} |
674 |
|
|
675 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
679 |
|
|
680 |
|
// scatter/gather pot_row into the members of my column |
681 |
|
|
682 |
< |
AtomCommPotRow->scatter(pot_row, pot_temp); |
682 |
> |
AtomPlanPotRow->scatter(pot_row, pot_temp); |
683 |
|
|
684 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
685 |
|
pairwisePot += pot_temp[ii]; |
687 |
|
fill(pot_temp.begin(), pot_temp.end(), |
688 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
689 |
|
|
690 |
< |
AtomCommPotColumn->scatter(pot_col, pot_temp); |
690 |
> |
AtomPlanPotColumn->scatter(pot_col, pot_temp); |
691 |
|
|
692 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
693 |
|
pairwisePot += pot_temp[ii]; |
694 |
+ |
|
695 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
696 |
+ |
RealType ploc1 = pairwisePot[ii]; |
697 |
+ |
RealType ploc2 = 0.0; |
698 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
699 |
+ |
pairwisePot[ii] = ploc2; |
700 |
+ |
} |
701 |
+ |
|
702 |
|
#endif |
703 |
|
|
704 |
|
} |
801 |
|
return d; |
802 |
|
} |
803 |
|
|
804 |
< |
vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) { |
805 |
< |
return skipsForAtom[atom1]; |
804 |
> |
vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
805 |
> |
return excludesForAtom[atom1]; |
806 |
|
} |
807 |
|
|
808 |
|
/** |
809 |
< |
* There are a number of reasons to skip a pair or a |
725 |
< |
* particle. Mostly we do this to exclude atoms who are involved in |
726 |
< |
* short range interactions (bonds, bends, torsions), but we also |
727 |
< |
* need to exclude some overcounted interactions that result from |
809 |
> |
* We need to exclude some overcounted interactions that result from |
810 |
|
* the parallel decomposition. |
811 |
|
*/ |
812 |
|
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
813 |
|
int unique_id_1, unique_id_2; |
814 |
< |
|
814 |
> |
|
815 |
|
#ifdef IS_MPI |
816 |
|
// in MPI, we have to look up the unique IDs for each atom |
817 |
|
unique_id_1 = AtomRowToGlobal[atom1]; |
826 |
|
} else { |
827 |
|
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
828 |
|
} |
829 |
+ |
#endif |
830 |
+ |
return false; |
831 |
+ |
} |
832 |
+ |
|
833 |
+ |
/** |
834 |
+ |
* We need to handle the interactions for atoms who are involved in |
835 |
+ |
* the same rigid body as well as some short range interactions |
836 |
+ |
* (bonds, bends, torsions) differently from other interactions. |
837 |
+ |
* We'll still visit the pairwise routines, but with a flag that |
838 |
+ |
* tells those routines to exclude the pair from direct long range |
839 |
+ |
* interactions. Some indirect interactions (notably reaction |
840 |
+ |
* field) must still be handled for these pairs. |
841 |
+ |
*/ |
842 |
+ |
bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
843 |
+ |
int unique_id_2; |
844 |
+ |
#ifdef IS_MPI |
845 |
+ |
// in MPI, we have to look up the unique IDs for the row atom. |
846 |
+ |
unique_id_2 = AtomColToGlobal[atom2]; |
847 |
|
#else |
848 |
|
// in the normal loop, the atom numbers are unique |
749 |
– |
unique_id_1 = atom1; |
849 |
|
unique_id_2 = atom2; |
850 |
|
#endif |
851 |
|
|
852 |
< |
for (vector<int>::iterator i = skipsForAtom[atom1].begin(); |
853 |
< |
i != skipsForAtom[atom1].end(); ++i) { |
852 |
> |
for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
853 |
> |
i != excludesForAtom[atom1].end(); ++i) { |
854 |
|
if ( (*i) == unique_id_2 ) return true; |
855 |
|
} |
856 |
|
|
876 |
|
|
877 |
|
// filling interaction blocks with pointers |
878 |
|
void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
879 |
< |
int atom1, int atom2) { |
879 |
> |
int atom1, int atom2) { |
880 |
> |
|
881 |
> |
idat.excluded = excludeAtomPair(atom1, atom2); |
882 |
> |
|
883 |
|
#ifdef IS_MPI |
884 |
+ |
idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
885 |
+ |
//idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
886 |
+ |
// ff_->getAtomType(identsCol[atom2]) ); |
887 |
|
|
783 |
– |
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
784 |
– |
ff_->getAtomType(identsCol[atom2]) ); |
785 |
– |
|
888 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
889 |
|
idat.A1 = &(atomRowData.aMat[atom1]); |
890 |
|
idat.A2 = &(atomColData.aMat[atom2]); |
920 |
|
idat.particlePot2 = &(atomColData.particlePot[atom2]); |
921 |
|
} |
922 |
|
|
923 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
924 |
+ |
idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
925 |
+ |
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
926 |
+ |
} |
927 |
+ |
|
928 |
|
#else |
929 |
|
|
930 |
< |
idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
931 |
< |
ff_->getAtomType(idents[atom2]) ); |
930 |
> |
idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
931 |
> |
//idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
932 |
> |
// ff_->getAtomType(idents[atom2]) ); |
933 |
|
|
934 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
935 |
|
idat.A1 = &(snap_->atomData.aMat[atom1]); |
966 |
|
idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
967 |
|
} |
968 |
|
|
969 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
970 |
+ |
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
971 |
+ |
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
972 |
+ |
} |
973 |
|
#endif |
974 |
|
} |
975 |
|
|
987 |
|
snap_->atomData.force[atom1] += *(idat.f1); |
988 |
|
snap_->atomData.force[atom2] -= *(idat.f1); |
989 |
|
#endif |
990 |
< |
|
990 |
> |
|
991 |
|
} |
992 |
|
|
881 |
– |
|
882 |
– |
void ForceMatrixDecomposition::fillSkipData(InteractionData &idat, |
883 |
– |
int atom1, int atom2) { |
884 |
– |
// Still Missing:: skippedCharge fill must be added to DataStorage |
885 |
– |
#ifdef IS_MPI |
886 |
– |
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
887 |
– |
ff_->getAtomType(identsCol[atom2]) ); |
888 |
– |
|
889 |
– |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
890 |
– |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
891 |
– |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
892 |
– |
} |
893 |
– |
if (storageLayout_ & DataStorage::dslTorque) { |
894 |
– |
idat.t1 = &(atomRowData.torque[atom1]); |
895 |
– |
idat.t2 = &(atomColData.torque[atom2]); |
896 |
– |
} |
897 |
– |
#else |
898 |
– |
idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
899 |
– |
ff_->getAtomType(idents[atom2]) ); |
900 |
– |
|
901 |
– |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
902 |
– |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
903 |
– |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
904 |
– |
} |
905 |
– |
if (storageLayout_ & DataStorage::dslTorque) { |
906 |
– |
idat.t1 = &(snap_->atomData.torque[atom1]); |
907 |
– |
idat.t2 = &(snap_->atomData.torque[atom2]); |
908 |
– |
} |
909 |
– |
#endif |
910 |
– |
} |
911 |
– |
|
912 |
– |
|
913 |
– |
void ForceMatrixDecomposition::unpackSkipData(InteractionData &idat, int atom1, int atom2) { |
914 |
– |
#ifdef IS_MPI |
915 |
– |
pot_row[atom1] += 0.5 * *(idat.pot); |
916 |
– |
pot_col[atom2] += 0.5 * *(idat.pot); |
917 |
– |
#else |
918 |
– |
pairwisePot += *(idat.pot); |
919 |
– |
#endif |
920 |
– |
|
921 |
– |
} |
922 |
– |
|
923 |
– |
|
993 |
|
/* |
994 |
|
* buildNeighborList |
995 |
|
* |
1000 |
|
|
1001 |
|
vector<pair<int, int> > neighborList; |
1002 |
|
groupCutoffs cuts; |
1003 |
+ |
bool doAllPairs = false; |
1004 |
+ |
|
1005 |
|
#ifdef IS_MPI |
1006 |
|
cellListRow_.clear(); |
1007 |
|
cellListCol_.clear(); |
1021 |
|
nCells_.y() = (int) ( Hy.length() )/ rList_; |
1022 |
|
nCells_.z() = (int) ( Hz.length() )/ rList_; |
1023 |
|
|
1024 |
+ |
// handle small boxes where the cell offsets can end up repeating cells |
1025 |
+ |
|
1026 |
+ |
if (nCells_.x() < 3) doAllPairs = true; |
1027 |
+ |
if (nCells_.y() < 3) doAllPairs = true; |
1028 |
+ |
if (nCells_.z() < 3) doAllPairs = true; |
1029 |
+ |
|
1030 |
|
Mat3x3d invHmat = snap_->getInvHmat(); |
1031 |
|
Vector3d rs, scaled, dr; |
1032 |
|
Vector3i whichCell; |
1040 |
|
cellList_.resize(nCtot); |
1041 |
|
#endif |
1042 |
|
|
1043 |
+ |
if (!doAllPairs) { |
1044 |
|
#ifdef IS_MPI |
967 |
– |
for (int i = 0; i < nGroupsInRow_; i++) { |
968 |
– |
rs = cgRowData.position[i]; |
1045 |
|
|
1046 |
< |
// scaled positions relative to the box vectors |
1047 |
< |
scaled = invHmat * rs; |
1048 |
< |
|
1049 |
< |
// wrap the vector back into the unit box by subtracting integer box |
1050 |
< |
// numbers |
1051 |
< |
for (int j = 0; j < 3; j++) { |
1052 |
< |
scaled[j] -= roundMe(scaled[j]); |
1053 |
< |
scaled[j] += 0.5; |
1046 |
> |
for (int i = 0; i < nGroupsInRow_; i++) { |
1047 |
> |
rs = cgRowData.position[i]; |
1048 |
> |
|
1049 |
> |
// scaled positions relative to the box vectors |
1050 |
> |
scaled = invHmat * rs; |
1051 |
> |
|
1052 |
> |
// wrap the vector back into the unit box by subtracting integer box |
1053 |
> |
// numbers |
1054 |
> |
for (int j = 0; j < 3; j++) { |
1055 |
> |
scaled[j] -= roundMe(scaled[j]); |
1056 |
> |
scaled[j] += 0.5; |
1057 |
> |
} |
1058 |
> |
|
1059 |
> |
// find xyz-indices of cell that cutoffGroup is in. |
1060 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
1061 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
1062 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
1063 |
> |
|
1064 |
> |
// find single index of this cell: |
1065 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1066 |
> |
|
1067 |
> |
// add this cutoff group to the list of groups in this cell; |
1068 |
> |
cellListRow_[cellIndex].push_back(i); |
1069 |
|
} |
1070 |
< |
|
1071 |
< |
// find xyz-indices of cell that cutoffGroup is in. |
1072 |
< |
whichCell.x() = nCells_.x() * scaled.x(); |
1073 |
< |
whichCell.y() = nCells_.y() * scaled.y(); |
1074 |
< |
whichCell.z() = nCells_.z() * scaled.z(); |
1075 |
< |
|
1076 |
< |
// find single index of this cell: |
1077 |
< |
cellIndex = Vlinear(whichCell, nCells_); |
1078 |
< |
|
1079 |
< |
// add this cutoff group to the list of groups in this cell; |
1080 |
< |
cellListRow_[cellIndex].push_back(i); |
1081 |
< |
} |
1082 |
< |
|
1083 |
< |
for (int i = 0; i < nGroupsInCol_; i++) { |
1084 |
< |
rs = cgColData.position[i]; |
1085 |
< |
|
1086 |
< |
// scaled positions relative to the box vectors |
1087 |
< |
scaled = invHmat * rs; |
1088 |
< |
|
1089 |
< |
// wrap the vector back into the unit box by subtracting integer box |
1090 |
< |
// numbers |
1091 |
< |
for (int j = 0; j < 3; j++) { |
1092 |
< |
scaled[j] -= roundMe(scaled[j]); |
1002 |
< |
scaled[j] += 0.5; |
1070 |
> |
for (int i = 0; i < nGroupsInCol_; i++) { |
1071 |
> |
rs = cgColData.position[i]; |
1072 |
> |
|
1073 |
> |
// scaled positions relative to the box vectors |
1074 |
> |
scaled = invHmat * rs; |
1075 |
> |
|
1076 |
> |
// wrap the vector back into the unit box by subtracting integer box |
1077 |
> |
// numbers |
1078 |
> |
for (int j = 0; j < 3; j++) { |
1079 |
> |
scaled[j] -= roundMe(scaled[j]); |
1080 |
> |
scaled[j] += 0.5; |
1081 |
> |
} |
1082 |
> |
|
1083 |
> |
// find xyz-indices of cell that cutoffGroup is in. |
1084 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
1085 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
1086 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
1087 |
> |
|
1088 |
> |
// find single index of this cell: |
1089 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1090 |
> |
|
1091 |
> |
// add this cutoff group to the list of groups in this cell; |
1092 |
> |
cellListCol_[cellIndex].push_back(i); |
1093 |
|
} |
1004 |
– |
|
1005 |
– |
// find xyz-indices of cell that cutoffGroup is in. |
1006 |
– |
whichCell.x() = nCells_.x() * scaled.x(); |
1007 |
– |
whichCell.y() = nCells_.y() * scaled.y(); |
1008 |
– |
whichCell.z() = nCells_.z() * scaled.z(); |
1009 |
– |
|
1010 |
– |
// find single index of this cell: |
1011 |
– |
cellIndex = Vlinear(whichCell, nCells_); |
1012 |
– |
|
1013 |
– |
// add this cutoff group to the list of groups in this cell; |
1014 |
– |
cellListCol_[cellIndex].push_back(i); |
1015 |
– |
} |
1094 |
|
#else |
1095 |
< |
for (int i = 0; i < nGroups_; i++) { |
1096 |
< |
rs = snap_->cgData.position[i]; |
1097 |
< |
|
1098 |
< |
// scaled positions relative to the box vectors |
1099 |
< |
scaled = invHmat * rs; |
1100 |
< |
|
1101 |
< |
// wrap the vector back into the unit box by subtracting integer box |
1102 |
< |
// numbers |
1103 |
< |
for (int j = 0; j < 3; j++) { |
1104 |
< |
scaled[j] -= roundMe(scaled[j]); |
1105 |
< |
scaled[j] += 0.5; |
1095 |
> |
for (int i = 0; i < nGroups_; i++) { |
1096 |
> |
rs = snap_->cgData.position[i]; |
1097 |
> |
|
1098 |
> |
// scaled positions relative to the box vectors |
1099 |
> |
scaled = invHmat * rs; |
1100 |
> |
|
1101 |
> |
// wrap the vector back into the unit box by subtracting integer box |
1102 |
> |
// numbers |
1103 |
> |
for (int j = 0; j < 3; j++) { |
1104 |
> |
scaled[j] -= roundMe(scaled[j]); |
1105 |
> |
scaled[j] += 0.5; |
1106 |
> |
} |
1107 |
> |
|
1108 |
> |
// find xyz-indices of cell that cutoffGroup is in. |
1109 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
1110 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
1111 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
1112 |
> |
|
1113 |
> |
// find single index of this cell: |
1114 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1115 |
> |
|
1116 |
> |
// add this cutoff group to the list of groups in this cell; |
1117 |
> |
cellList_[cellIndex].push_back(i); |
1118 |
|
} |
1029 |
– |
|
1030 |
– |
// find xyz-indices of cell that cutoffGroup is in. |
1031 |
– |
whichCell.x() = nCells_.x() * scaled.x(); |
1032 |
– |
whichCell.y() = nCells_.y() * scaled.y(); |
1033 |
– |
whichCell.z() = nCells_.z() * scaled.z(); |
1034 |
– |
|
1035 |
– |
// find single index of this cell: |
1036 |
– |
cellIndex = Vlinear(whichCell, nCells_); |
1037 |
– |
|
1038 |
– |
// add this cutoff group to the list of groups in this cell; |
1039 |
– |
cellList_[cellIndex].push_back(i); |
1040 |
– |
} |
1119 |
|
#endif |
1120 |
|
|
1121 |
< |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1122 |
< |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1123 |
< |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1124 |
< |
Vector3i m1v(m1x, m1y, m1z); |
1125 |
< |
int m1 = Vlinear(m1v, nCells_); |
1048 |
< |
|
1049 |
< |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1050 |
< |
os != cellOffsets_.end(); ++os) { |
1121 |
> |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1122 |
> |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1123 |
> |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1124 |
> |
Vector3i m1v(m1x, m1y, m1z); |
1125 |
> |
int m1 = Vlinear(m1v, nCells_); |
1126 |
|
|
1127 |
< |
Vector3i m2v = m1v + (*os); |
1128 |
< |
|
1129 |
< |
if (m2v.x() >= nCells_.x()) { |
1130 |
< |
m2v.x() = 0; |
1131 |
< |
} else if (m2v.x() < 0) { |
1132 |
< |
m2v.x() = nCells_.x() - 1; |
1133 |
< |
} |
1134 |
< |
|
1135 |
< |
if (m2v.y() >= nCells_.y()) { |
1136 |
< |
m2v.y() = 0; |
1137 |
< |
} else if (m2v.y() < 0) { |
1138 |
< |
m2v.y() = nCells_.y() - 1; |
1139 |
< |
} |
1140 |
< |
|
1141 |
< |
if (m2v.z() >= nCells_.z()) { |
1142 |
< |
m2v.z() = 0; |
1143 |
< |
} else if (m2v.z() < 0) { |
1144 |
< |
m2v.z() = nCells_.z() - 1; |
1145 |
< |
} |
1146 |
< |
|
1147 |
< |
int m2 = Vlinear (m2v, nCells_); |
1148 |
< |
|
1127 |
> |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1128 |
> |
os != cellOffsets_.end(); ++os) { |
1129 |
> |
|
1130 |
> |
Vector3i m2v = m1v + (*os); |
1131 |
> |
|
1132 |
> |
if (m2v.x() >= nCells_.x()) { |
1133 |
> |
m2v.x() = 0; |
1134 |
> |
} else if (m2v.x() < 0) { |
1135 |
> |
m2v.x() = nCells_.x() - 1; |
1136 |
> |
} |
1137 |
> |
|
1138 |
> |
if (m2v.y() >= nCells_.y()) { |
1139 |
> |
m2v.y() = 0; |
1140 |
> |
} else if (m2v.y() < 0) { |
1141 |
> |
m2v.y() = nCells_.y() - 1; |
1142 |
> |
} |
1143 |
> |
|
1144 |
> |
if (m2v.z() >= nCells_.z()) { |
1145 |
> |
m2v.z() = 0; |
1146 |
> |
} else if (m2v.z() < 0) { |
1147 |
> |
m2v.z() = nCells_.z() - 1; |
1148 |
> |
} |
1149 |
> |
|
1150 |
> |
int m2 = Vlinear (m2v, nCells_); |
1151 |
> |
|
1152 |
|
#ifdef IS_MPI |
1153 |
< |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1154 |
< |
j1 != cellListRow_[m1].end(); ++j1) { |
1155 |
< |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1156 |
< |
j2 != cellListCol_[m2].end(); ++j2) { |
1157 |
< |
|
1158 |
< |
// Always do this if we're in different cells or if |
1159 |
< |
// we're in the same cell and the global index of the |
1082 |
< |
// j2 cutoff group is less than the j1 cutoff group |
1083 |
< |
|
1084 |
< |
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1153 |
> |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1154 |
> |
j1 != cellListRow_[m1].end(); ++j1) { |
1155 |
> |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1156 |
> |
j2 != cellListCol_[m2].end(); ++j2) { |
1157 |
> |
|
1158 |
> |
// In parallel, we need to visit *all* pairs of row & |
1159 |
> |
// column indicies and will truncate later on. |
1160 |
|
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1161 |
|
snap_->wrapVector(dr); |
1162 |
|
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1163 |
|
if (dr.lengthSquare() < cuts.third) { |
1164 |
|
neighborList.push_back(make_pair((*j1), (*j2))); |
1165 |
< |
} |
1165 |
> |
} |
1166 |
|
} |
1167 |
|
} |
1093 |
– |
} |
1168 |
|
#else |
1169 |
< |
|
1170 |
< |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1171 |
< |
j1 != cellList_[m1].end(); ++j1) { |
1172 |
< |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1173 |
< |
j2 != cellList_[m2].end(); ++j2) { |
1174 |
< |
|
1175 |
< |
// Always do this if we're in different cells or if |
1176 |
< |
// we're in the same cell and the global index of the |
1177 |
< |
// j2 cutoff group is less than the j1 cutoff group |
1178 |
< |
|
1179 |
< |
if (m2 != m1 || (*j2) < (*j1)) { |
1180 |
< |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1181 |
< |
snap_->wrapVector(dr); |
1182 |
< |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1183 |
< |
if (dr.lengthSquare() < cuts.third) { |
1184 |
< |
neighborList.push_back(make_pair((*j1), (*j2))); |
1169 |
> |
|
1170 |
> |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1171 |
> |
j1 != cellList_[m1].end(); ++j1) { |
1172 |
> |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1173 |
> |
j2 != cellList_[m2].end(); ++j2) { |
1174 |
> |
|
1175 |
> |
// Always do this if we're in different cells or if |
1176 |
> |
// we're in the same cell and the global index of the |
1177 |
> |
// j2 cutoff group is less than the j1 cutoff group |
1178 |
> |
|
1179 |
> |
if (m2 != m1 || (*j2) < (*j1)) { |
1180 |
> |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1181 |
> |
snap_->wrapVector(dr); |
1182 |
> |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1183 |
> |
if (dr.lengthSquare() < cuts.third) { |
1184 |
> |
neighborList.push_back(make_pair((*j1), (*j2))); |
1185 |
> |
} |
1186 |
|
} |
1187 |
|
} |
1188 |
|
} |
1114 |
– |
} |
1189 |
|
#endif |
1190 |
+ |
} |
1191 |
|
} |
1192 |
|
} |
1193 |
|
} |
1194 |
+ |
} else { |
1195 |
+ |
// branch to do all cutoff group pairs |
1196 |
+ |
#ifdef IS_MPI |
1197 |
+ |
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1198 |
+ |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1199 |
+ |
dr = cgColData.position[j2] - cgRowData.position[j1]; |
1200 |
+ |
snap_->wrapVector(dr); |
1201 |
+ |
cuts = getGroupCutoffs( j1, j2 ); |
1202 |
+ |
if (dr.lengthSquare() < cuts.third) { |
1203 |
+ |
neighborList.push_back(make_pair(j1, j2)); |
1204 |
+ |
} |
1205 |
+ |
} |
1206 |
+ |
} |
1207 |
+ |
#else |
1208 |
+ |
for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1209 |
+ |
for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1210 |
+ |
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1211 |
+ |
snap_->wrapVector(dr); |
1212 |
+ |
cuts = getGroupCutoffs( j1, j2 ); |
1213 |
+ |
if (dr.lengthSquare() < cuts.third) { |
1214 |
+ |
neighborList.push_back(make_pair(j1, j2)); |
1215 |
+ |
} |
1216 |
+ |
} |
1217 |
+ |
} |
1218 |
+ |
#endif |
1219 |
|
} |
1220 |
< |
|
1220 |
> |
|
1221 |
|
// save the local cutoff group positions for the check that is |
1222 |
|
// done on each loop: |
1223 |
|
saved_CG_positions_.clear(); |
1224 |
|
for (int i = 0; i < nGroups_; i++) |
1225 |
|
saved_CG_positions_.push_back(snap_->cgData.position[i]); |
1226 |
< |
|
1226 |
> |
|
1227 |
|
return neighborList; |
1228 |
|
} |
1229 |
|
} //end namespace OpenMD |