ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing:
branches/development/src/parallel/ForceDecomposition.cpp (file contents), Revision 1541 by gezelter, Fri Feb 4 20:04:56 2011 UTC vs.
branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 1592 by gezelter, Tue Jul 12 20:33:14 2011 UTC

# Line 38 | Line 38
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39   * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41 < #include "parallel/ForceDecomposition.hpp"
42 < #include "parallel/Communicator.hpp"
41 > #include "parallel/ForceMatrixDecomposition.hpp"
42   #include "math/SquareMatrix3.hpp"
43 + #include "nonbonded/NonBondedInteraction.hpp"
44 + #include "brains/SnapshotManager.hpp"
45 + #include "brains/PairList.hpp"
46  
47   using namespace std;
48   namespace OpenMD {
49  
50 <  void ForceDecomposition::distributeInitialData() {
50 >  /**
51 >   * distributeInitialData is essentially a copy of the older fortran
52 >   * SimulationSetup
53 >   */
54 >  
55 >  void ForceMatrixDecomposition::distributeInitialData() {
56 >    snap_ = sman_->getCurrentSnapshot();
57 >    storageLayout_ = sman_->getStorageLayout();
58 >    ff_ = info_->getForceField();
59 >    nLocal_ = snap_->getNumberOfAtoms();
60 >    
61 >    nGroups_ = info_->getNLocalCutoffGroups();
62 >    // gather the information for atomtype IDs (atids):
63 >    idents = info_->getIdentArray();
64 >    AtomLocalToGlobal = info_->getGlobalAtomIndices();
65 >    cgLocalToGlobal = info_->getGlobalGroupIndices();
66 >    vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
67 >
68 >    massFactors = info_->getMassFactors();
69 >
70 >    PairList* excludes = info_->getExcludedInteractions();
71 >    PairList* oneTwo = info_->getOneTwoInteractions();
72 >    PairList* oneThree = info_->getOneThreeInteractions();
73 >    PairList* oneFour = info_->getOneFourInteractions();
74 >
75   #ifdef IS_MPI
76 <    Snapshot* snap = sman_->getCurrentSnapshot();
77 <    int nAtoms = snap->getNumberOfAtoms();
78 <    int nGroups = snap->getNumberOfCutoffGroups();
76 >
77 >    AtomCommIntRow = new Communicator<Row,int>(nLocal_);
78 >    AtomCommRealRow = new Communicator<Row,RealType>(nLocal_);
79 >    AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_);
80 >    AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_);
81 >    AtomCommPotRow = new Communicator<Row,potVec>(nLocal_);
82  
83 <    AtomCommRealI = new Communicator<Row,RealType>(nAtoms);
84 <    AtomCommVectorI = new Communicator<Row,Vector3d>(nAtoms);
85 <    AtomCommMatrixI = new Communicator<Row,Mat3x3d>(nAtoms);
83 >    AtomCommIntColumn = new Communicator<Column,int>(nLocal_);
84 >    AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_);
85 >    AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_);
86 >    AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_);
87 >    AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_);
88  
89 <    AtomCommRealJ = new Communicator<Column,RealType>(nAtoms);
90 <    AtomCommVectorJ = new Communicator<Column,Vector3d>(nAtoms);
91 <    AtomCommMatrixJ = new Communicator<Column,Mat3x3d>(nAtoms);
89 >    cgCommIntRow = new Communicator<Row,int>(nGroups_);
90 >    cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_);
91 >    cgCommIntColumn = new Communicator<Column,int>(nGroups_);
92 >    cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_);
93  
94 <    cgCommVectorI = new Communicator<Row,Vector3d>(nGroups);
95 <    cgCommVectorJ = new Communicator<Column,Vector3d>(nGroups);
94 >    nAtomsInRow_ = AtomCommIntRow->getSize();
95 >    nAtomsInCol_ = AtomCommIntColumn->getSize();
96 >    nGroupsInRow_ = cgCommIntRow->getSize();
97 >    nGroupsInCol_ = cgCommIntColumn->getSize();
98  
99 <    int nInRow = AtomCommRealI.getSize();
100 <    int nInCol = AtomCommRealJ.getSize();
99 >    // Modify the data storage objects with the correct layouts and sizes:
100 >    atomRowData.resize(nAtomsInRow_);
101 >    atomRowData.setStorageLayout(storageLayout_);
102 >    atomColData.resize(nAtomsInCol_);
103 >    atomColData.setStorageLayout(storageLayout_);
104 >    cgRowData.resize(nGroupsInRow_);
105 >    cgRowData.setStorageLayout(DataStorage::dslPosition);
106 >    cgColData.resize(nGroupsInCol_);
107 >    cgColData.setStorageLayout(DataStorage::dslPosition);
108 >        
109 >    identsRow.resize(nAtomsInRow_);
110 >    identsCol.resize(nAtomsInCol_);
111 >    
112 >    AtomCommIntRow->gather(idents, identsRow);
113 >    AtomCommIntColumn->gather(idents, identsCol);
114 >    
115 >    // allocate memory for the parallel objects
116 >    atypesRow.resize(nAtomsInRow_);
117 >    atypesCol.resize(nAtomsInCol_);
118  
119 <    vector<vector<RealType> > pot_row(LR_POT_TYPES,
120 <                                      vector<RealType> (nInRow, 0.0));
121 <    vector<vector<RealType> > pot_col(LR_POT_TYPES,
122 <                                      vector<RealType> (nInCol, 0.0));
119 >    for (int i = 0; i < nAtomsInRow_; i++)
120 >      atypesRow[i] = ff_->getAtomType(identsRow[i]);
121 >    for (int i = 0; i < nAtomsInCol_; i++)
122 >      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
123  
124 <    vector<vector<RealType> > pot_local(LR_POT_TYPES,
125 <                                        vector<RealType> (nAtoms, 0.0));
124 >    pot_row.resize(nAtomsInRow_);
125 >    pot_col.resize(nAtomsInCol_);
126  
127 +    AtomRowToGlobal.resize(nAtomsInRow_);
128 +    AtomColToGlobal.resize(nAtomsInCol_);
129 +    AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
130 +    AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
131 +    
132 +    cgRowToGlobal.resize(nGroupsInRow_);
133 +    cgColToGlobal.resize(nGroupsInCol_);
134 +    cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
135 +    cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
136 +
137 +    massFactorsRow.resize(nAtomsInRow_);
138 +    massFactorsCol.resize(nAtomsInCol_);
139 +    AtomCommRealRow->gather(massFactors, massFactorsRow);
140 +    AtomCommRealColumn->gather(massFactors, massFactorsCol);
141 +
142 +    groupListRow_.clear();
143 +    groupListRow_.resize(nGroupsInRow_);
144 +    for (int i = 0; i < nGroupsInRow_; i++) {
145 +      int gid = cgRowToGlobal[i];
146 +      for (int j = 0; j < nAtomsInRow_; j++) {
147 +        int aid = AtomRowToGlobal[j];
148 +        if (globalGroupMembership[aid] == gid)
149 +          groupListRow_[i].push_back(j);
150 +      }      
151 +    }
152 +
153 +    groupListCol_.clear();
154 +    groupListCol_.resize(nGroupsInCol_);
155 +    for (int i = 0; i < nGroupsInCol_; i++) {
156 +      int gid = cgColToGlobal[i];
157 +      for (int j = 0; j < nAtomsInCol_; j++) {
158 +        int aid = AtomColToGlobal[j];
159 +        if (globalGroupMembership[aid] == gid)
160 +          groupListCol_[i].push_back(j);
161 +      }      
162 +    }
163 +
164 +    excludesForAtom.clear();
165 +    excludesForAtom.resize(nAtomsInRow_);
166 +    toposForAtom.clear();
167 +    toposForAtom.resize(nAtomsInRow_);
168 +    topoDist.clear();
169 +    topoDist.resize(nAtomsInRow_);
170 +    for (int i = 0; i < nAtomsInRow_; i++) {
171 +      int iglob = AtomRowToGlobal[i];
172 +
173 +      for (int j = 0; j < nAtomsInCol_; j++) {
174 +        int jglob = AtomColToGlobal[j];
175 +
176 +        if (excludes->hasPair(iglob, jglob))
177 +          excludesForAtom[i].push_back(j);      
178 +        
179 +        if (oneTwo->hasPair(iglob, jglob)) {
180 +          toposForAtom[i].push_back(j);
181 +          topoDist[i].push_back(1);
182 +        } else {
183 +          if (oneThree->hasPair(iglob, jglob)) {
184 +            toposForAtom[i].push_back(j);
185 +            topoDist[i].push_back(2);
186 +          } else {
187 +            if (oneFour->hasPair(iglob, jglob)) {
188 +              toposForAtom[i].push_back(j);
189 +              topoDist[i].push_back(3);
190 +            }
191 +          }
192 +        }
193 +      }      
194 +    }
195 +
196   #endif
197 +
198 +    // allocate memory for the parallel objects
199 +    atypesLocal.resize(nLocal_);
200 +
201 +    for (int i = 0; i < nLocal_; i++)
202 +      atypesLocal[i] = ff_->getAtomType(idents[i]);
203 +
204 +    groupList_.clear();
205 +    groupList_.resize(nGroups_);
206 +    for (int i = 0; i < nGroups_; i++) {
207 +      int gid = cgLocalToGlobal[i];
208 +      for (int j = 0; j < nLocal_; j++) {
209 +        int aid = AtomLocalToGlobal[j];
210 +        if (globalGroupMembership[aid] == gid) {
211 +          groupList_[i].push_back(j);
212 +        }
213 +      }      
214 +    }
215 +
216 +    excludesForAtom.clear();
217 +    excludesForAtom.resize(nLocal_);
218 +    toposForAtom.clear();
219 +    toposForAtom.resize(nLocal_);
220 +    topoDist.clear();
221 +    topoDist.resize(nLocal_);
222 +
223 +    for (int i = 0; i < nLocal_; i++) {
224 +      int iglob = AtomLocalToGlobal[i];
225 +
226 +      for (int j = 0; j < nLocal_; j++) {
227 +        int jglob = AtomLocalToGlobal[j];
228 +
229 +        if (excludes->hasPair(iglob, jglob))
230 +          excludesForAtom[i].push_back(j);              
231 +        
232 +        if (oneTwo->hasPair(iglob, jglob)) {
233 +          toposForAtom[i].push_back(j);
234 +          topoDist[i].push_back(1);
235 +        } else {
236 +          if (oneThree->hasPair(iglob, jglob)) {
237 +            toposForAtom[i].push_back(j);
238 +            topoDist[i].push_back(2);
239 +          } else {
240 +            if (oneFour->hasPair(iglob, jglob)) {
241 +              toposForAtom[i].push_back(j);
242 +              topoDist[i].push_back(3);
243 +            }
244 +          }
245 +        }
246 +      }      
247 +    }
248 +    
249 +    createGtypeCutoffMap();
250 +
251    }
252 +  
253 +  void ForceMatrixDecomposition::createGtypeCutoffMap() {
254      
255 +    RealType tol = 1e-6;
256 +    largestRcut_ = 0.0;
257 +    RealType rc;
258 +    int atid;
259 +    set<AtomType*> atypes = info_->getSimulatedAtomTypes();
260 +    
261 +    map<int, RealType> atypeCutoff;
262 +      
263 +    for (set<AtomType*>::iterator at = atypes.begin();
264 +         at != atypes.end(); ++at){
265 +      atid = (*at)->getIdent();
266 +      if (userChoseCutoff_)
267 +        atypeCutoff[atid] = userCutoff_;
268 +      else
269 +        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
270 +    }
271 +    
272 +    vector<RealType> gTypeCutoffs;
273 +    // first we do a single loop over the cutoff groups to find the
274 +    // largest cutoff for any atypes present in this group.
275 + #ifdef IS_MPI
276 +    vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
277 +    groupRowToGtype.resize(nGroupsInRow_);
278 +    for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
279 +      vector<int> atomListRow = getAtomsInGroupRow(cg1);
280 +      for (vector<int>::iterator ia = atomListRow.begin();
281 +           ia != atomListRow.end(); ++ia) {            
282 +        int atom1 = (*ia);
283 +        atid = identsRow[atom1];
284 +        if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
285 +          groupCutoffRow[cg1] = atypeCutoff[atid];
286 +        }
287 +      }
288  
289 +      bool gTypeFound = false;
290 +      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
291 +        if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
292 +          groupRowToGtype[cg1] = gt;
293 +          gTypeFound = true;
294 +        }
295 +      }
296 +      if (!gTypeFound) {
297 +        gTypeCutoffs.push_back( groupCutoffRow[cg1] );
298 +        groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
299 +      }
300 +      
301 +    }
302 +    vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
303 +    groupColToGtype.resize(nGroupsInCol_);
304 +    for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
305 +      vector<int> atomListCol = getAtomsInGroupColumn(cg2);
306 +      for (vector<int>::iterator jb = atomListCol.begin();
307 +           jb != atomListCol.end(); ++jb) {            
308 +        int atom2 = (*jb);
309 +        atid = identsCol[atom2];
310 +        if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
311 +          groupCutoffCol[cg2] = atypeCutoff[atid];
312 +        }
313 +      }
314 +      bool gTypeFound = false;
315 +      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
316 +        if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
317 +          groupColToGtype[cg2] = gt;
318 +          gTypeFound = true;
319 +        }
320 +      }
321 +      if (!gTypeFound) {
322 +        gTypeCutoffs.push_back( groupCutoffCol[cg2] );
323 +        groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
324 +      }
325 +    }
326 + #else
327  
328 <  void ForceDecomposition::distributeData()  {
328 >    vector<RealType> groupCutoff(nGroups_, 0.0);
329 >    groupToGtype.resize(nGroups_);
330 >    for (int cg1 = 0; cg1 < nGroups_; cg1++) {
331 >      groupCutoff[cg1] = 0.0;
332 >      vector<int> atomList = getAtomsInGroupRow(cg1);
333 >      for (vector<int>::iterator ia = atomList.begin();
334 >           ia != atomList.end(); ++ia) {            
335 >        int atom1 = (*ia);
336 >        atid = idents[atom1];
337 >        if (atypeCutoff[atid] > groupCutoff[cg1])
338 >          groupCutoff[cg1] = atypeCutoff[atid];
339 >      }
340 >      
341 >      bool gTypeFound = false;
342 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
343 >        if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
344 >          groupToGtype[cg1] = gt;
345 >          gTypeFound = true;
346 >        }
347 >      }
348 >      if (!gTypeFound) {      
349 >        gTypeCutoffs.push_back( groupCutoff[cg1] );
350 >        groupToGtype[cg1] = gTypeCutoffs.size() - 1;
351 >      }      
352 >    }
353 > #endif
354 >
355 >    // Now we find the maximum group cutoff value present in the simulation
356 >
357 >    RealType groupMax = *max_element(gTypeCutoffs.begin(),
358 >                                     gTypeCutoffs.end());
359 >
360   #ifdef IS_MPI
361 <    Snapshot* snap = sman_->getCurrentSnapshot();
361 >    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
362 >                              MPI::MAX);
363 > #endif
364      
365 +    RealType tradRcut = groupMax;
366 +
367 +    for (int i = 0; i < gTypeCutoffs.size();  i++) {
368 +      for (int j = 0; j < gTypeCutoffs.size();  j++) {      
369 +        RealType thisRcut;
370 +        switch(cutoffPolicy_) {
371 +        case TRADITIONAL:
372 +          thisRcut = tradRcut;
373 +          break;
374 +        case MIX:
375 +          thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
376 +          break;
377 +        case MAX:
378 +          thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
379 +          break;
380 +        default:
381 +          sprintf(painCave.errMsg,
382 +                  "ForceMatrixDecomposition::createGtypeCutoffMap "
383 +                  "hit an unknown cutoff policy!\n");
384 +          painCave.severity = OPENMD_ERROR;
385 +          painCave.isFatal = 1;
386 +          simError();
387 +          break;
388 +        }
389 +
390 +        pair<int,int> key = make_pair(i,j);
391 +        gTypeCutoffMap[key].first = thisRcut;
392 +        if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
393 +        gTypeCutoffMap[key].second = thisRcut*thisRcut;
394 +        gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
395 +        // sanity check
396 +        
397 +        if (userChoseCutoff_) {
398 +          if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
399 +            sprintf(painCave.errMsg,
400 +                    "ForceMatrixDecomposition::createGtypeCutoffMap "
401 +                    "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
402 +            painCave.severity = OPENMD_ERROR;
403 +            painCave.isFatal = 1;
404 +            simError();            
405 +          }
406 +        }
407 +      }
408 +    }
409 +  }
410 +
411 +
412 +  groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
413 +    int i, j;  
414 + #ifdef IS_MPI
415 +    i = groupRowToGtype[cg1];
416 +    j = groupColToGtype[cg2];
417 + #else
418 +    i = groupToGtype[cg1];
419 +    j = groupToGtype[cg2];
420 + #endif    
421 +    return gTypeCutoffMap[make_pair(i,j)];
422 +  }
423 +
424 +  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
425 +    for (int j = 0; j < toposForAtom[atom1].size(); j++) {
426 +      if (toposForAtom[atom1][j] == atom2)
427 +        return topoDist[atom1][j];
428 +    }
429 +    return 0;
430 +  }
431 +
432 +  void ForceMatrixDecomposition::zeroWorkArrays() {
433 +    pairwisePot = 0.0;
434 +    embeddingPot = 0.0;
435 +
436 + #ifdef IS_MPI
437 +    if (storageLayout_ & DataStorage::dslForce) {
438 +      fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
439 +      fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
440 +    }
441 +
442 +    if (storageLayout_ & DataStorage::dslTorque) {
443 +      fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
444 +      fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
445 +    }
446 +    
447 +    fill(pot_row.begin(), pot_row.end(),
448 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
449 +
450 +    fill(pot_col.begin(), pot_col.end(),
451 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
452 +
453 +    if (storageLayout_ & DataStorage::dslParticlePot) {    
454 +      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
455 +           0.0);
456 +      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
457 +           0.0);
458 +    }
459 +
460 +    if (storageLayout_ & DataStorage::dslDensity) {      
461 +      fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
462 +      fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
463 +    }
464 +
465 +    if (storageLayout_ & DataStorage::dslFunctional) {  
466 +      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
467 +           0.0);
468 +      fill(atomColData.functional.begin(), atomColData.functional.end(),
469 +           0.0);
470 +    }
471 +
472 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
473 +      fill(atomRowData.functionalDerivative.begin(),
474 +           atomRowData.functionalDerivative.end(), 0.0);
475 +      fill(atomColData.functionalDerivative.begin(),
476 +           atomColData.functionalDerivative.end(), 0.0);
477 +    }
478 +
479 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
480 +      fill(atomRowData.skippedCharge.begin(),
481 +           atomRowData.skippedCharge.end(), 0.0);
482 +      fill(atomColData.skippedCharge.begin(),
483 +           atomColData.skippedCharge.end(), 0.0);
484 +    }
485 +
486 + #endif
487 +    // even in parallel, we need to zero out the local arrays:
488 +
489 +    if (storageLayout_ & DataStorage::dslParticlePot) {      
490 +      fill(snap_->atomData.particlePot.begin(),
491 +           snap_->atomData.particlePot.end(), 0.0);
492 +    }
493 +    
494 +    if (storageLayout_ & DataStorage::dslDensity) {      
495 +      fill(snap_->atomData.density.begin(),
496 +           snap_->atomData.density.end(), 0.0);
497 +    }
498 +    if (storageLayout_ & DataStorage::dslFunctional) {
499 +      fill(snap_->atomData.functional.begin(),
500 +           snap_->atomData.functional.end(), 0.0);
501 +    }
502 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
503 +      fill(snap_->atomData.functionalDerivative.begin(),
504 +           snap_->atomData.functionalDerivative.end(), 0.0);
505 +    }
506 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
507 +      fill(snap_->atomData.skippedCharge.begin(),
508 +           snap_->atomData.skippedCharge.end(), 0.0);
509 +    }
510 +    
511 +  }
512 +
513 +
514 +  void ForceMatrixDecomposition::distributeData()  {
515 +    snap_ = sman_->getCurrentSnapshot();
516 +    storageLayout_ = sman_->getStorageLayout();
517 + #ifdef IS_MPI
518 +    
519      // gather up the atomic positions
520 <    AtomCommVectorI->gather(snap->atomData.position,
521 <                            snap->atomIData.position);
522 <    AtomCommVectorJ->gather(snap->atomData.position,
523 <                            snap->atomJData.position);
520 >    AtomCommVectorRow->gather(snap_->atomData.position,
521 >                              atomRowData.position);
522 >    AtomCommVectorColumn->gather(snap_->atomData.position,
523 >                                 atomColData.position);
524      
525      // gather up the cutoff group positions
526 <    cgCommVectorI->gather(snap->cgData.position,
527 <                          snap->cgIData.position);
528 <    cgCommVectorJ->gather(snap->cgData.position,
529 <                          snap->cgJData.position);
526 >    cgCommVectorRow->gather(snap_->cgData.position,
527 >                            cgRowData.position);
528 >    cgCommVectorColumn->gather(snap_->cgData.position,
529 >                               cgColData.position);
530      
531      // if needed, gather the atomic rotation matrices
532 <    if (snap->atomData.getStorageLayout() & DataStorage::dslAmat) {
533 <      AtomCommMatrixI->gather(snap->atomData.aMat,
534 <                              snap->atomIData.aMat);
535 <      AtomCommMatrixJ->gather(snap->atomData.aMat,
536 <                              snap->atomJData.aMat);
532 >    if (storageLayout_ & DataStorage::dslAmat) {
533 >      AtomCommMatrixRow->gather(snap_->atomData.aMat,
534 >                                atomRowData.aMat);
535 >      AtomCommMatrixColumn->gather(snap_->atomData.aMat,
536 >                                   atomColData.aMat);
537      }
538      
539      // if needed, gather the atomic eletrostatic frames
540 <    if (snap->atomData.getStorageLayout() & DataStorage::dslElectroFrame) {
541 <      AtomCommMatrixI->gather(snap->atomData.electroFrame,
542 <                              snap->atomIData.electroFrame);
543 <      AtomCommMatrixJ->gather(snap->atomData.electroFrame,
544 <                              snap->atomJData.electroFrame);
540 >    if (storageLayout_ & DataStorage::dslElectroFrame) {
541 >      AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
542 >                                atomRowData.electroFrame);
543 >      AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
544 >                                   atomColData.electroFrame);
545      }
546 +
547   #endif      
548    }
549    
550 <  void ForceDecomposition::collectIntermediateData() {
550 >  /* collects information obtained during the pre-pair loop onto local
551 >   * data structures.
552 >   */
553 >  void ForceMatrixDecomposition::collectIntermediateData() {
554 >    snap_ = sman_->getCurrentSnapshot();
555 >    storageLayout_ = sman_->getStorageLayout();
556   #ifdef IS_MPI
117    Snapshot* snap = sman_->getCurrentSnapshot();
557      
558 <    if (snap->atomData.getStorageLayout() & DataStorage::dslDensity) {
559 <
560 <      AtomCommRealI->scatter(snap->atomIData.density,
561 <                             snap->atomData.density);
562 <
563 <      int n = snap->atomData.density.size();
564 <      std::vector<RealType> rho_tmp(n, 0.0);
565 <      AtomCommRealJ->scatter(snap->atomJData.density, rho_tmp);
558 >    if (storageLayout_ & DataStorage::dslDensity) {
559 >      
560 >      AtomCommRealRow->scatter(atomRowData.density,
561 >                               snap_->atomData.density);
562 >      
563 >      int n = snap_->atomData.density.size();
564 >      vector<RealType> rho_tmp(n, 0.0);
565 >      AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
566        for (int i = 0; i < n; i++)
567 <        snap->atomData.density[i] += rho_tmp[i];
567 >        snap_->atomData.density[i] += rho_tmp[i];
568      }
569   #endif
570    }
571 <  
572 <  void ForceDecomposition::distributeIntermediateData() {
571 >
572 >  /*
573 >   * redistributes information obtained during the pre-pair loop out to
574 >   * row and column-indexed data structures
575 >   */
576 >  void ForceMatrixDecomposition::distributeIntermediateData() {
577 >    snap_ = sman_->getCurrentSnapshot();
578 >    storageLayout_ = sman_->getStorageLayout();
579   #ifdef IS_MPI
580 <    Snapshot* snap = sman_->getCurrentSnapshot();
581 <    if (snap->atomData.getStorageLayout() & DataStorage::dslFunctional) {
582 <      AtomCommRealI->gather(snap->atomData.functional,
583 <                            snap->atomIData.functional);
584 <      AtomCommRealJ->gather(snap->atomData.functional,
140 <                            snap->atomJData.functional);
580 >    if (storageLayout_ & DataStorage::dslFunctional) {
581 >      AtomCommRealRow->gather(snap_->atomData.functional,
582 >                              atomRowData.functional);
583 >      AtomCommRealColumn->gather(snap_->atomData.functional,
584 >                                 atomColData.functional);
585      }
586      
587 <    if (snap->atomData.getStorageLayout() & DataStorage::dslFunctionalDerivative) {
588 <      AtomCommRealI->gather(snap->atomData.functionalDerivative,
589 <                            snap->atomIData.functionalDerivative);
590 <      AtomCommRealJ->gather(snap->atomData.functionalDerivative,
591 <                            snap->atomJData.functionalDerivative);
587 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
588 >      AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
589 >                              atomRowData.functionalDerivative);
590 >      AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
591 >                                 atomColData.functionalDerivative);
592      }
593   #endif
594    }
595    
596    
597 <  void ForceDecomposition::collectData() {
598 < #ifdef IS_MPI
599 <    Snapshot* snap = sman_->getCurrentSnapshot();
597 >  void ForceMatrixDecomposition::collectData() {
598 >    snap_ = sman_->getCurrentSnapshot();
599 >    storageLayout_ = sman_->getStorageLayout();
600 > #ifdef IS_MPI    
601 >    int n = snap_->atomData.force.size();
602 >    vector<Vector3d> frc_tmp(n, V3Zero);
603      
604 <    int n = snap->atomData.force.size();
158 <    std::vector<Vector3d> frc_tmp(n, 0.0);
159 <    
160 <    AtomCommVectorI->scatter(snap->atomIData.force, frc_tmp);
604 >    AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
605      for (int i = 0; i < n; i++) {
606 <      snap->atomData.force[i] += frc_tmp[i];
606 >      snap_->atomData.force[i] += frc_tmp[i];
607        frc_tmp[i] = 0.0;
608      }
609      
610 <    AtomCommVectorJ->scatter(snap->atomJData.force, frc_tmp);
610 >    AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
611      for (int i = 0; i < n; i++)
612 <      snap->atomData.force[i] += frc_tmp[i];
613 <    
614 <    
171 <    if (snap->atomData.getStorageLayout() & DataStorage::dslTorque) {
612 >      snap_->atomData.force[i] += frc_tmp[i];
613 >        
614 >    if (storageLayout_ & DataStorage::dslTorque) {
615  
616 <      int nt = snap->atomData.force.size();
617 <      std::vector<Vector3d> trq_tmp(nt, 0.0);
616 >      int nt = snap_->atomData.torque.size();
617 >      vector<Vector3d> trq_tmp(nt, V3Zero);
618  
619 <      AtomCommVectorI->scatter(snap->atomIData.torque, trq_tmp);
620 <      for (int i = 0; i < n; i++) {
621 <        snap->atomData.torque[i] += trq_tmp[i];
619 >      AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
620 >      for (int i = 0; i < nt; i++) {
621 >        snap_->atomData.torque[i] += trq_tmp[i];
622          trq_tmp[i] = 0.0;
623        }
624        
625 <      AtomCommVectorJ->scatter(snap->atomJData.torque, trq_tmp);
626 <      for (int i = 0; i < n; i++)
627 <        snap->atomData.torque[i] += trq_tmp[i];
625 >      AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
626 >      for (int i = 0; i < nt; i++)
627 >        snap_->atomData.torque[i] += trq_tmp[i];
628      }
629 +
630 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
631 +
632 +      int ns = snap_->atomData.skippedCharge.size();
633 +      vector<RealType> skch_tmp(ns, 0.0);
634 +
635 +      AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
636 +      for (int i = 0; i < ns; i++) {
637 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
638 +        skch_tmp[i] = 0.0;
639 +      }
640 +      
641 +      AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
642 +      for (int i = 0; i < ns; i++)
643 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
644 +    }
645      
646 +    nLocal_ = snap_->getNumberOfAtoms();
647 +
648 +    vector<potVec> pot_temp(nLocal_,
649 +                            Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
650 +
651 +    // scatter/gather pot_row into the members of my column
652 +          
653 +    AtomCommPotRow->scatter(pot_row, pot_temp);
654 +
655 +    for (int ii = 0;  ii < pot_temp.size(); ii++ )
656 +      pairwisePot += pot_temp[ii];
657      
658 <    vector<vector<RealType> > pot_temp(LR_POT_TYPES,
659 <                                       vector<RealType> (nAtoms, 0.0));
658 >    fill(pot_temp.begin(), pot_temp.end(),
659 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
660 >      
661 >    AtomCommPotColumn->scatter(pot_col, pot_temp);    
662      
663 <    for (int i = 0; i < LR_POT_TYPES; i++) {
664 <      AtomCommRealI->scatter(pot_row[i], pot_temp[i]);
665 <      for (int ii = 0;  ii < pot_temp[i].size(); ii++ ) {
666 <        pot_local[i] += pot_temp[i][ii];
667 <      }
663 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
664 >      pairwisePot += pot_temp[ii];    
665 > #endif
666 >
667 >  }
668 >
669 >  int ForceMatrixDecomposition::getNAtomsInRow() {  
670 > #ifdef IS_MPI
671 >    return nAtomsInRow_;
672 > #else
673 >    return nLocal_;
674 > #endif
675 >  }
676 >
677 >  /**
678 >   * returns the list of atoms belonging to this group.  
679 >   */
680 >  vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
681 > #ifdef IS_MPI
682 >    return groupListRow_[cg1];
683 > #else
684 >    return groupList_[cg1];
685 > #endif
686 >  }
687 >
688 >  vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
689 > #ifdef IS_MPI
690 >    return groupListCol_[cg2];
691 > #else
692 >    return groupList_[cg2];
693 > #endif
694 >  }
695 >  
696 >  Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
697 >    Vector3d d;
698 >    
699 > #ifdef IS_MPI
700 >    d = cgColData.position[cg2] - cgRowData.position[cg1];
701 > #else
702 >    d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
703 > #endif
704 >    
705 >    snap_->wrapVector(d);
706 >    return d;    
707 >  }
708 >
709 >
710 >  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
711 >
712 >    Vector3d d;
713 >    
714 > #ifdef IS_MPI
715 >    d = cgRowData.position[cg1] - atomRowData.position[atom1];
716 > #else
717 >    d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
718 > #endif
719 >
720 >    snap_->wrapVector(d);
721 >    return d;    
722 >  }
723 >  
724 >  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
725 >    Vector3d d;
726 >    
727 > #ifdef IS_MPI
728 >    d = cgColData.position[cg2] - atomColData.position[atom2];
729 > #else
730 >    d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
731 > #endif
732 >    
733 >    snap_->wrapVector(d);
734 >    return d;    
735 >  }
736 >
737 >  RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
738 > #ifdef IS_MPI
739 >    return massFactorsRow[atom1];
740 > #else
741 >    return massFactors[atom1];
742 > #endif
743 >  }
744 >
745 >  RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
746 > #ifdef IS_MPI
747 >    return massFactorsCol[atom2];
748 > #else
749 >    return massFactors[atom2];
750 > #endif
751 >
752 >  }
753 >    
754 >  Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
755 >    Vector3d d;
756 >    
757 > #ifdef IS_MPI
758 >    d = atomColData.position[atom2] - atomRowData.position[atom1];
759 > #else
760 >    d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
761 > #endif
762 >
763 >    snap_->wrapVector(d);
764 >    return d;    
765 >  }
766 >
767 >  vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
768 >    return excludesForAtom[atom1];
769 >  }
770 >
771 >  /**
772 >   * We need to exclude some overcounted interactions that result from
773 >   * the parallel decomposition.
774 >   */
775 >  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
776 >    int unique_id_1, unique_id_2;
777 >
778 > #ifdef IS_MPI
779 >    // in MPI, we have to look up the unique IDs for each atom
780 >    unique_id_1 = AtomRowToGlobal[atom1];
781 >    unique_id_2 = AtomColToGlobal[atom2];
782 >
783 >    // this situation should only arise in MPI simulations
784 >    if (unique_id_1 == unique_id_2) return true;
785 >    
786 >    // this prevents us from doing the pair on multiple processors
787 >    if (unique_id_1 < unique_id_2) {
788 >      if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
789 >    } else {
790 >      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
791      }
792 + #endif
793 +    return false;
794 +  }
795 +
796 +  /**
797 +   * We need to handle the interactions for atoms who are involved in
798 +   * the same rigid body as well as some short range interactions
799 +   * (bonds, bends, torsions) differently from other interactions.
800 +   * We'll still visit the pairwise routines, but with a flag that
801 +   * tells those routines to exclude the pair from direct long range
802 +   * interactions.  Some indirect interactions (notably reaction
803 +   * field) must still be handled for these pairs.
804 +   */
805 +  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
806 +    int unique_id_2;
807      
808 + #ifdef IS_MPI
809 +    // in MPI, we have to look up the unique IDs for the row atom.
810 +    unique_id_2 = AtomColToGlobal[atom2];
811 + #else
812 +    // in the normal loop, the atom numbers are unique
813 +    unique_id_2 = atom2;
814 + #endif
815 +    
816 +    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
817 +         i != excludesForAtom[atom1].end(); ++i) {
818 +      if ( (*i) == unique_id_2 ) return true;
819 +    }
820 +
821 +    return false;
822 +  }
823 +
824 +
825 +  void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
826 + #ifdef IS_MPI
827 +    atomRowData.force[atom1] += fg;
828 + #else
829 +    snap_->atomData.force[atom1] += fg;
830 + #endif
831 +  }
832 +
833 +  void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
834 + #ifdef IS_MPI
835 +    atomColData.force[atom2] += fg;
836 + #else
837 +    snap_->atomData.force[atom2] += fg;
838 + #endif
839 +  }
840 +
841 +    // filling interaction blocks with pointers
842 +  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
843 +                                                     int atom1, int atom2) {
844 +
845 +    idat.excluded = excludeAtomPair(atom1, atom2);
846 +  
847 + #ifdef IS_MPI
848 +    idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
849 +    //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
850 +    //                         ff_->getAtomType(identsCol[atom2]) );
851 +    
852 +    if (storageLayout_ & DataStorage::dslAmat) {
853 +      idat.A1 = &(atomRowData.aMat[atom1]);
854 +      idat.A2 = &(atomColData.aMat[atom2]);
855 +    }
856 +    
857 +    if (storageLayout_ & DataStorage::dslElectroFrame) {
858 +      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
859 +      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
860 +    }
861 +
862 +    if (storageLayout_ & DataStorage::dslTorque) {
863 +      idat.t1 = &(atomRowData.torque[atom1]);
864 +      idat.t2 = &(atomColData.torque[atom2]);
865 +    }
866 +
867 +    if (storageLayout_ & DataStorage::dslDensity) {
868 +      idat.rho1 = &(atomRowData.density[atom1]);
869 +      idat.rho2 = &(atomColData.density[atom2]);
870 +    }
871 +
872 +    if (storageLayout_ & DataStorage::dslFunctional) {
873 +      idat.frho1 = &(atomRowData.functional[atom1]);
874 +      idat.frho2 = &(atomColData.functional[atom2]);
875 +    }
876 +
877 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
878 +      idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
879 +      idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
880 +    }
881 +
882 +    if (storageLayout_ & DataStorage::dslParticlePot) {
883 +      idat.particlePot1 = &(atomRowData.particlePot[atom1]);
884 +      idat.particlePot2 = &(atomColData.particlePot[atom2]);
885 +    }
886 +
887 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
888 +      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
889 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
890 +    }
891 +
892 + #else
893 +
894 +    idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
895 +    //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
896 +    //                         ff_->getAtomType(idents[atom2]) );
897 +
898 +    if (storageLayout_ & DataStorage::dslAmat) {
899 +      idat.A1 = &(snap_->atomData.aMat[atom1]);
900 +      idat.A2 = &(snap_->atomData.aMat[atom2]);
901 +    }
902  
903 +    if (storageLayout_ & DataStorage::dslElectroFrame) {
904 +      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
905 +      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
906 +    }
907  
908 +    if (storageLayout_ & DataStorage::dslTorque) {
909 +      idat.t1 = &(snap_->atomData.torque[atom1]);
910 +      idat.t2 = &(snap_->atomData.torque[atom2]);
911 +    }
912 +
913 +    if (storageLayout_ & DataStorage::dslDensity) {    
914 +      idat.rho1 = &(snap_->atomData.density[atom1]);
915 +      idat.rho2 = &(snap_->atomData.density[atom2]);
916 +    }
917 +
918 +    if (storageLayout_ & DataStorage::dslFunctional) {
919 +      idat.frho1 = &(snap_->atomData.functional[atom1]);
920 +      idat.frho2 = &(snap_->atomData.functional[atom2]);
921 +    }
922 +
923 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
924 +      idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
925 +      idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
926 +    }
927 +
928 +    if (storageLayout_ & DataStorage::dslParticlePot) {
929 +      idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
930 +      idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
931 +    }
932 +
933 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
934 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
935 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
936 +    }
937   #endif
938    }
939 +
940    
941 +  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
942 + #ifdef IS_MPI
943 +    pot_row[atom1] += 0.5 *  *(idat.pot);
944 +    pot_col[atom2] += 0.5 *  *(idat.pot);
945 +
946 +    atomRowData.force[atom1] += *(idat.f1);
947 +    atomColData.force[atom2] -= *(idat.f1);
948 + #else
949 +    pairwisePot += *(idat.pot);
950 +
951 +    snap_->atomData.force[atom1] += *(idat.f1);
952 +    snap_->atomData.force[atom2] -= *(idat.f1);
953 + #endif
954 +    
955 +  }
956 +
957 +  /*
958 +   * buildNeighborList
959 +   *
960 +   * first element of pair is row-indexed CutoffGroup
961 +   * second element of pair is column-indexed CutoffGroup
962 +   */
963 +  vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
964 +      
965 +    vector<pair<int, int> > neighborList;
966 +    groupCutoffs cuts;
967 +    bool doAllPairs = false;
968 +
969 + #ifdef IS_MPI
970 +    cellListRow_.clear();
971 +    cellListCol_.clear();
972 + #else
973 +    cellList_.clear();
974 + #endif
975 +
976 +    RealType rList_ = (largestRcut_ + skinThickness_);
977 +    RealType rl2 = rList_ * rList_;
978 +    Snapshot* snap_ = sman_->getCurrentSnapshot();
979 +    Mat3x3d Hmat = snap_->getHmat();
980 +    Vector3d Hx = Hmat.getColumn(0);
981 +    Vector3d Hy = Hmat.getColumn(1);
982 +    Vector3d Hz = Hmat.getColumn(2);
983 +
984 +    nCells_.x() = (int) ( Hx.length() )/ rList_;
985 +    nCells_.y() = (int) ( Hy.length() )/ rList_;
986 +    nCells_.z() = (int) ( Hz.length() )/ rList_;
987 +
988 +    // handle small boxes where the cell offsets can end up repeating cells
989 +    
990 +    if (nCells_.x() < 3) doAllPairs = true;
991 +    if (nCells_.y() < 3) doAllPairs = true;
992 +    if (nCells_.z() < 3) doAllPairs = true;
993 +
994 +    Mat3x3d invHmat = snap_->getInvHmat();
995 +    Vector3d rs, scaled, dr;
996 +    Vector3i whichCell;
997 +    int cellIndex;
998 +    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
999 +
1000 + #ifdef IS_MPI
1001 +    cellListRow_.resize(nCtot);
1002 +    cellListCol_.resize(nCtot);
1003 + #else
1004 +    cellList_.resize(nCtot);
1005 + #endif
1006 +
1007 +    if (!doAllPairs) {
1008 + #ifdef IS_MPI
1009 +
1010 +      for (int i = 0; i < nGroupsInRow_; i++) {
1011 +        rs = cgRowData.position[i];
1012 +        
1013 +        // scaled positions relative to the box vectors
1014 +        scaled = invHmat * rs;
1015 +        
1016 +        // wrap the vector back into the unit box by subtracting integer box
1017 +        // numbers
1018 +        for (int j = 0; j < 3; j++) {
1019 +          scaled[j] -= roundMe(scaled[j]);
1020 +          scaled[j] += 0.5;
1021 +        }
1022 +        
1023 +        // find xyz-indices of cell that cutoffGroup is in.
1024 +        whichCell.x() = nCells_.x() * scaled.x();
1025 +        whichCell.y() = nCells_.y() * scaled.y();
1026 +        whichCell.z() = nCells_.z() * scaled.z();
1027 +        
1028 +        // find single index of this cell:
1029 +        cellIndex = Vlinear(whichCell, nCells_);
1030 +        
1031 +        // add this cutoff group to the list of groups in this cell;
1032 +        cellListRow_[cellIndex].push_back(i);
1033 +      }
1034 +      
1035 +      for (int i = 0; i < nGroupsInCol_; i++) {
1036 +        rs = cgColData.position[i];
1037 +        
1038 +        // scaled positions relative to the box vectors
1039 +        scaled = invHmat * rs;
1040 +        
1041 +        // wrap the vector back into the unit box by subtracting integer box
1042 +        // numbers
1043 +        for (int j = 0; j < 3; j++) {
1044 +          scaled[j] -= roundMe(scaled[j]);
1045 +          scaled[j] += 0.5;
1046 +        }
1047 +        
1048 +        // find xyz-indices of cell that cutoffGroup is in.
1049 +        whichCell.x() = nCells_.x() * scaled.x();
1050 +        whichCell.y() = nCells_.y() * scaled.y();
1051 +        whichCell.z() = nCells_.z() * scaled.z();
1052 +        
1053 +        // find single index of this cell:
1054 +        cellIndex = Vlinear(whichCell, nCells_);
1055 +        
1056 +        // add this cutoff group to the list of groups in this cell;
1057 +        cellListCol_[cellIndex].push_back(i);
1058 +      }
1059 + #else
1060 +      for (int i = 0; i < nGroups_; i++) {
1061 +        rs = snap_->cgData.position[i];
1062 +        
1063 +        // scaled positions relative to the box vectors
1064 +        scaled = invHmat * rs;
1065 +        
1066 +        // wrap the vector back into the unit box by subtracting integer box
1067 +        // numbers
1068 +        for (int j = 0; j < 3; j++) {
1069 +          scaled[j] -= roundMe(scaled[j]);
1070 +          scaled[j] += 0.5;
1071 +        }
1072 +        
1073 +        // find xyz-indices of cell that cutoffGroup is in.
1074 +        whichCell.x() = nCells_.x() * scaled.x();
1075 +        whichCell.y() = nCells_.y() * scaled.y();
1076 +        whichCell.z() = nCells_.z() * scaled.z();
1077 +        
1078 +        // find single index of this cell:
1079 +        cellIndex = Vlinear(whichCell, nCells_);      
1080 +        
1081 +        // add this cutoff group to the list of groups in this cell;
1082 +        cellList_[cellIndex].push_back(i);
1083 +      }
1084 + #endif
1085 +
1086 +      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1087 +        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1088 +          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1089 +            Vector3i m1v(m1x, m1y, m1z);
1090 +            int m1 = Vlinear(m1v, nCells_);
1091 +            
1092 +            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1093 +                 os != cellOffsets_.end(); ++os) {
1094 +              
1095 +              Vector3i m2v = m1v + (*os);
1096 +              
1097 +              if (m2v.x() >= nCells_.x()) {
1098 +                m2v.x() = 0;          
1099 +              } else if (m2v.x() < 0) {
1100 +                m2v.x() = nCells_.x() - 1;
1101 +              }
1102 +              
1103 +              if (m2v.y() >= nCells_.y()) {
1104 +                m2v.y() = 0;          
1105 +              } else if (m2v.y() < 0) {
1106 +                m2v.y() = nCells_.y() - 1;
1107 +              }
1108 +              
1109 +              if (m2v.z() >= nCells_.z()) {
1110 +                m2v.z() = 0;          
1111 +              } else if (m2v.z() < 0) {
1112 +                m2v.z() = nCells_.z() - 1;
1113 +              }
1114 +              
1115 +              int m2 = Vlinear (m2v, nCells_);
1116 +              
1117 + #ifdef IS_MPI
1118 +              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1119 +                   j1 != cellListRow_[m1].end(); ++j1) {
1120 +                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1121 +                     j2 != cellListCol_[m2].end(); ++j2) {
1122 +                  
1123 +                  // Always do this if we're in different cells or if
1124 +                  // we're in the same cell and the global index of the
1125 +                  // j2 cutoff group is less than the j1 cutoff group
1126 +                  
1127 +                  if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1128 +                    dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1129 +                    snap_->wrapVector(dr);
1130 +                    cuts = getGroupCutoffs( (*j1), (*j2) );
1131 +                    if (dr.lengthSquare() < cuts.third) {
1132 +                      neighborList.push_back(make_pair((*j1), (*j2)));
1133 +                    }
1134 +                  }
1135 +                }
1136 +              }
1137 + #else
1138 +              
1139 +              for (vector<int>::iterator j1 = cellList_[m1].begin();
1140 +                   j1 != cellList_[m1].end(); ++j1) {
1141 +                for (vector<int>::iterator j2 = cellList_[m2].begin();
1142 +                     j2 != cellList_[m2].end(); ++j2) {
1143 +                  
1144 +                  // Always do this if we're in different cells or if
1145 +                  // we're in the same cell and the global index of the
1146 +                  // j2 cutoff group is less than the j1 cutoff group
1147 +                  
1148 +                  if (m2 != m1 || (*j2) < (*j1)) {
1149 +                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1150 +                    snap_->wrapVector(dr);
1151 +                    cuts = getGroupCutoffs( (*j1), (*j2) );
1152 +                    if (dr.lengthSquare() < cuts.third) {
1153 +                      neighborList.push_back(make_pair((*j1), (*j2)));
1154 +                    }
1155 +                  }
1156 +                }
1157 +              }
1158 + #endif
1159 +            }
1160 +          }
1161 +        }
1162 +      }
1163 +    } else {
1164 +      // branch to do all cutoff group pairs
1165 + #ifdef IS_MPI
1166 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1167 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {      
1168 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1169 +          snap_->wrapVector(dr);
1170 +          cuts = getGroupCutoffs( j1, j2 );
1171 +          if (dr.lengthSquare() < cuts.third) {
1172 +            neighborList.push_back(make_pair(j1, j2));
1173 +          }
1174 +        }
1175 +      }
1176 + #else
1177 +      for (int j1 = 0; j1 < nGroups_ - 1; j1++) {
1178 +        for (int j2 = j1 + 1; j2 < nGroups_; j2++) {
1179 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1180 +          snap_->wrapVector(dr);
1181 +          cuts = getGroupCutoffs( j1, j2 );
1182 +          if (dr.lengthSquare() < cuts.third) {
1183 +            neighborList.push_back(make_pair(j1, j2));
1184 +          }
1185 +        }
1186 +      }        
1187 + #endif
1188 +    }
1189 +      
1190 +    // save the local cutoff group positions for the check that is
1191 +    // done on each loop:
1192 +    saved_CG_positions_.clear();
1193 +    for (int i = 0; i < nGroups_; i++)
1194 +      saved_CG_positions_.push_back(snap_->cgData.position[i]);
1195 +    
1196 +    return neighborList;
1197 +  }
1198   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines