ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing:
branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 1583 by gezelter, Thu Jun 16 22:00:08 2011 UTC vs.
trunk/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 1895 by gezelter, Mon Jul 1 21:09:37 2013 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42   #include "parallel/ForceMatrixDecomposition.hpp"
43   #include "math/SquareMatrix3.hpp"
# Line 47 | Line 48 | namespace OpenMD {
48   using namespace std;
49   namespace OpenMD {
50  
51 +  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52 +
53 +    // In a parallel computation, row and colum scans must visit all
54 +    // surrounding cells (not just the 14 upper triangular blocks that
55 +    // are used when the processor can see all pairs)
56 + #ifdef IS_MPI
57 +    cellOffsets_.clear();
58 +    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59 +    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60 +    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                          
61 +    cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62 +    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63 +    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64 +    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65 +    cellOffsets_.push_back( Vector3i( 0, 1,-1) );      
66 +    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 +    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68 +    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69 +    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 +    cellOffsets_.push_back( Vector3i(-1, 0, 0) );      
71 +    cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72 +    cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73 +    cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74 +    cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75 +    cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76 +    cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77 +    cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78 +    cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 +    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 +    cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81 +    cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82 +    cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83 +    cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84 +    cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 + #endif    
86 +  }
87 +
88 +
89    /**
90     * distributeInitialData is essentially a copy of the older fortran
91     * SimulationSetup
92     */
54  
93    void ForceMatrixDecomposition::distributeInitialData() {
94      snap_ = sman_->getCurrentSnapshot();
95      storageLayout_ = sman_->getStorageLayout();
96      ff_ = info_->getForceField();
97      nLocal_ = snap_->getNumberOfAtoms();
98 <
98 >  
99      nGroups_ = info_->getNLocalCutoffGroups();
62    cerr << "in dId, nGroups = " << nGroups_ << "\n";
100      // gather the information for atomtype IDs (atids):
101      idents = info_->getIdentArray();
102      AtomLocalToGlobal = info_->getGlobalAtomIndices();
103      cgLocalToGlobal = info_->getGlobalGroupIndices();
104      vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
105 +
106      massFactors = info_->getMassFactors();
69    PairList excludes = info_->getExcludedInteractions();
70    PairList oneTwo = info_->getOneTwoInteractions();
71    PairList oneThree = info_->getOneThreeInteractions();
72    PairList oneFour = info_->getOneFourInteractions();
107  
108 +    PairList* excludes = info_->getExcludedInteractions();
109 +    PairList* oneTwo = info_->getOneTwoInteractions();
110 +    PairList* oneThree = info_->getOneThreeInteractions();
111 +    PairList* oneFour = info_->getOneFourInteractions();
112 +    
113 +    if (needVelocities_)
114 +      snap_->cgData.setStorageLayout(DataStorage::dslPosition |
115 +                                     DataStorage::dslVelocity);
116 +    else
117 +      snap_->cgData.setStorageLayout(DataStorage::dslPosition);
118 +    
119   #ifdef IS_MPI
120  
121 <    AtomCommIntRow = new Communicator<Row,int>(nLocal_);
122 <    AtomCommRealRow = new Communicator<Row,RealType>(nLocal_);
78 <    AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_);
79 <    AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_);
80 <    AtomCommPotRow = new Communicator<Row,potVec>(nLocal_);
121 >    MPI::Intracomm row = rowComm.getComm();
122 >    MPI::Intracomm col = colComm.getComm();
123  
124 <    AtomCommIntColumn = new Communicator<Column,int>(nLocal_);
125 <    AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_);
126 <    AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_);
127 <    AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_);
128 <    AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_);
124 >    AtomPlanIntRow = new Plan<int>(row, nLocal_);
125 >    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
126 >    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
127 >    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
128 >    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
129  
130 <    cgCommIntRow = new Communicator<Row,int>(nGroups_);
131 <    cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_);
132 <    cgCommIntColumn = new Communicator<Column,int>(nGroups_);
133 <    cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_);
130 >    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
131 >    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
132 >    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
133 >    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
134 >    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
135  
136 <    nAtomsInRow_ = AtomCommIntRow->getSize();
137 <    nAtomsInCol_ = AtomCommIntColumn->getSize();
138 <    nGroupsInRow_ = cgCommIntRow->getSize();
139 <    nGroupsInCol_ = cgCommIntColumn->getSize();
136 >    cgPlanIntRow = new Plan<int>(row, nGroups_);
137 >    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
138 >    cgPlanIntColumn = new Plan<int>(col, nGroups_);
139 >    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
140  
141 +    nAtomsInRow_ = AtomPlanIntRow->getSize();
142 +    nAtomsInCol_ = AtomPlanIntColumn->getSize();
143 +    nGroupsInRow_ = cgPlanIntRow->getSize();
144 +    nGroupsInCol_ = cgPlanIntColumn->getSize();
145 +
146      // Modify the data storage objects with the correct layouts and sizes:
147      atomRowData.resize(nAtomsInRow_);
148      atomRowData.setStorageLayout(storageLayout_);
# Line 103 | Line 151 | namespace OpenMD {
151      cgRowData.resize(nGroupsInRow_);
152      cgRowData.setStorageLayout(DataStorage::dslPosition);
153      cgColData.resize(nGroupsInCol_);
154 <    cgColData.setStorageLayout(DataStorage::dslPosition);
155 <        
154 >    if (needVelocities_)
155 >      // we only need column velocities if we need them.
156 >      cgColData.setStorageLayout(DataStorage::dslPosition |
157 >                                 DataStorage::dslVelocity);
158 >    else    
159 >      cgColData.setStorageLayout(DataStorage::dslPosition);
160 >      
161      identsRow.resize(nAtomsInRow_);
162      identsCol.resize(nAtomsInCol_);
163      
164 <    AtomCommIntRow->gather(idents, identsRow);
165 <    AtomCommIntColumn->gather(idents, identsCol);
164 >    AtomPlanIntRow->gather(idents, identsRow);
165 >    AtomPlanIntColumn->gather(idents, identsCol);
166      
167 <    AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
168 <    AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
169 <    
117 <    cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
118 <    cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
167 >    // allocate memory for the parallel objects
168 >    atypesRow.resize(nAtomsInRow_);
169 >    atypesCol.resize(nAtomsInCol_);
170  
171 <    AtomCommRealRow->gather(massFactors, massFactorsRow);
172 <    AtomCommRealColumn->gather(massFactors, massFactorsCol);
171 >    for (int i = 0; i < nAtomsInRow_; i++)
172 >      atypesRow[i] = ff_->getAtomType(identsRow[i]);
173 >    for (int i = 0; i < nAtomsInCol_; i++)
174 >      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
175  
176 +    pot_row.resize(nAtomsInRow_);
177 +    pot_col.resize(nAtomsInCol_);
178 +
179 +    expot_row.resize(nAtomsInRow_);
180 +    expot_col.resize(nAtomsInCol_);
181 +
182 +    AtomRowToGlobal.resize(nAtomsInRow_);
183 +    AtomColToGlobal.resize(nAtomsInCol_);
184 +    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
185 +    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
186 +
187 +    cgRowToGlobal.resize(nGroupsInRow_);
188 +    cgColToGlobal.resize(nGroupsInCol_);
189 +    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
190 +    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
191 +
192 +    massFactorsRow.resize(nAtomsInRow_);
193 +    massFactorsCol.resize(nAtomsInCol_);
194 +    AtomPlanRealRow->gather(massFactors, massFactorsRow);
195 +    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
196 +
197      groupListRow_.clear();
198      groupListRow_.resize(nGroupsInRow_);
199      for (int i = 0; i < nGroupsInRow_; i++) {
# Line 142 | Line 216 | namespace OpenMD {
216        }      
217      }
218  
219 <    skipsForAtom.clear();
220 <    skipsForAtom.resize(nAtomsInRow_);
219 >    excludesForAtom.clear();
220 >    excludesForAtom.resize(nAtomsInRow_);
221      toposForAtom.clear();
222      toposForAtom.resize(nAtomsInRow_);
223      topoDist.clear();
# Line 154 | Line 228 | namespace OpenMD {
228        for (int j = 0; j < nAtomsInCol_; j++) {
229          int jglob = AtomColToGlobal[j];
230  
231 <        if (excludes.hasPair(iglob, jglob))
232 <          skipsForAtom[i].push_back(j);      
231 >        if (excludes->hasPair(iglob, jglob))
232 >          excludesForAtom[i].push_back(j);      
233          
234 <        if (oneTwo.hasPair(iglob, jglob)) {
234 >        if (oneTwo->hasPair(iglob, jglob)) {
235            toposForAtom[i].push_back(j);
236            topoDist[i].push_back(1);
237          } else {
238 <          if (oneThree.hasPair(iglob, jglob)) {
238 >          if (oneThree->hasPair(iglob, jglob)) {
239              toposForAtom[i].push_back(j);
240              topoDist[i].push_back(2);
241            } else {
242 <            if (oneFour.hasPair(iglob, jglob)) {
242 >            if (oneFour->hasPair(iglob, jglob)) {
243                toposForAtom[i].push_back(j);
244                topoDist[i].push_back(3);
245              }
# Line 174 | Line 248 | namespace OpenMD {
248        }      
249      }
250  
251 < #endif
252 <
253 <    groupList_.clear();
180 <    groupList_.resize(nGroups_);
181 <    for (int i = 0; i < nGroups_; i++) {
182 <      int gid = cgLocalToGlobal[i];
183 <      for (int j = 0; j < nLocal_; j++) {
184 <        int aid = AtomLocalToGlobal[j];
185 <        if (globalGroupMembership[aid] == gid) {
186 <          groupList_[i].push_back(j);
187 <        }
188 <      }      
189 <    }
190 <
191 <    skipsForAtom.clear();
192 <    skipsForAtom.resize(nLocal_);
251 > #else
252 >    excludesForAtom.clear();
253 >    excludesForAtom.resize(nLocal_);
254      toposForAtom.clear();
255      toposForAtom.resize(nLocal_);
256      topoDist.clear();
# Line 201 | Line 262 | namespace OpenMD {
262        for (int j = 0; j < nLocal_; j++) {
263          int jglob = AtomLocalToGlobal[j];
264  
265 <        if (excludes.hasPair(iglob, jglob))
266 <          skipsForAtom[i].push_back(j);              
265 >        if (excludes->hasPair(iglob, jglob))
266 >          excludesForAtom[i].push_back(j);              
267          
268 <        if (oneTwo.hasPair(iglob, jglob)) {
268 >        if (oneTwo->hasPair(iglob, jglob)) {
269            toposForAtom[i].push_back(j);
270            topoDist[i].push_back(1);
271          } else {
272 <          if (oneThree.hasPair(iglob, jglob)) {
272 >          if (oneThree->hasPair(iglob, jglob)) {
273              toposForAtom[i].push_back(j);
274              topoDist[i].push_back(2);
275            } else {
276 <            if (oneFour.hasPair(iglob, jglob)) {
276 >            if (oneFour->hasPair(iglob, jglob)) {
277                toposForAtom[i].push_back(j);
278                topoDist[i].push_back(3);
279              }
# Line 220 | Line 281 | namespace OpenMD {
281          }
282        }      
283      }
284 <    
284 > #endif
285 >
286 >    // allocate memory for the parallel objects
287 >    atypesLocal.resize(nLocal_);
288 >
289 >    for (int i = 0; i < nLocal_; i++)
290 >      atypesLocal[i] = ff_->getAtomType(idents[i]);
291 >
292 >    groupList_.clear();
293 >    groupList_.resize(nGroups_);
294 >    for (int i = 0; i < nGroups_; i++) {
295 >      int gid = cgLocalToGlobal[i];
296 >      for (int j = 0; j < nLocal_; j++) {
297 >        int aid = AtomLocalToGlobal[j];
298 >        if (globalGroupMembership[aid] == gid) {
299 >          groupList_[i].push_back(j);
300 >        }
301 >      }      
302 >    }
303 >
304 >
305      createGtypeCutoffMap();
306 +
307    }
308    
309    void ForceMatrixDecomposition::createGtypeCutoffMap() {
310 <
310 >    
311      RealType tol = 1e-6;
312 <    RealType rc;
312 >    largestRcut_ = 0.0;
313      int atid;
314      set<AtomType*> atypes = info_->getSimulatedAtomTypes();
315 <    vector<RealType> atypeCutoff;
316 <    atypeCutoff.resize( atypes.size() );
315 >    
316 >    map<int, RealType> atypeCutoff;
317        
318      for (set<AtomType*>::iterator at = atypes.begin();
319           at != atypes.end(); ++at){
320        atid = (*at)->getIdent();
321 <
240 <      if (userChoseCutoff_)
321 >      if (userChoseCutoff_)
322          atypeCutoff[atid] = userCutoff_;
323        else
324          atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
325      }
326 <
326 >    
327      vector<RealType> gTypeCutoffs;
247
328      // first we do a single loop over the cutoff groups to find the
329      // largest cutoff for any atypes present in this group.
330   #ifdef IS_MPI
# Line 302 | Line 382 | namespace OpenMD {
382  
383      vector<RealType> groupCutoff(nGroups_, 0.0);
384      groupToGtype.resize(nGroups_);
305
306    cerr << "nGroups = " << nGroups_ << "\n";
385      for (int cg1 = 0; cg1 < nGroups_; cg1++) {
308
386        groupCutoff[cg1] = 0.0;
387        vector<int> atomList = getAtomsInGroupRow(cg1);
311
388        for (vector<int>::iterator ia = atomList.begin();
389             ia != atomList.end(); ++ia) {            
390          int atom1 = (*ia);
391          atid = idents[atom1];
392 <        if (atypeCutoff[atid] > groupCutoff[cg1]) {
392 >        if (atypeCutoff[atid] > groupCutoff[cg1])
393            groupCutoff[cg1] = atypeCutoff[atid];
318        }
394        }
395 <
395 >      
396        bool gTypeFound = false;
397 <      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
397 >      for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) {
398          if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
399            groupToGtype[cg1] = gt;
400            gTypeFound = true;
401          }
402        }
403 <      if (!gTypeFound) {
403 >      if (!gTypeFound) {      
404          gTypeCutoffs.push_back( groupCutoff[cg1] );
405          groupToGtype[cg1] = gTypeCutoffs.size() - 1;
406        }      
407      }
408   #endif
409  
335    cerr << "gTypeCutoffs.size() = " << gTypeCutoffs.size() << "\n";
410      // Now we find the maximum group cutoff value present in the simulation
411  
412 <    RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end());
412 >    RealType groupMax = *max_element(gTypeCutoffs.begin(),
413 >                                     gTypeCutoffs.end());
414  
415   #ifdef IS_MPI
416 <    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX);
416 >    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
417 >                              MPI::MAX);
418   #endif
419      
420      RealType tradRcut = groupMax;
421  
422 <    for (int i = 0; i < gTypeCutoffs.size();  i++) {
423 <      for (int j = 0; j < gTypeCutoffs.size();  j++) {      
422 >    for (unsigned int i = 0; i < gTypeCutoffs.size();  i++) {
423 >      for (unsigned int j = 0; j < gTypeCutoffs.size();  j++) {      
424          RealType thisRcut;
425          switch(cutoffPolicy_) {
426          case TRADITIONAL:
# Line 368 | Line 444 | namespace OpenMD {
444  
445          pair<int,int> key = make_pair(i,j);
446          gTypeCutoffMap[key].first = thisRcut;
371
447          if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
373
448          gTypeCutoffMap[key].second = thisRcut*thisRcut;
375        
449          gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
377
450          // sanity check
451          
452          if (userChoseCutoff_) {
# Line 391 | Line 463 | namespace OpenMD {
463      }
464    }
465  
394
466    groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
467      int i, j;  
468   #ifdef IS_MPI
# Line 405 | Line 476 | namespace OpenMD {
476    }
477  
478    int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
479 <    for (int j = 0; j < toposForAtom[atom1].size(); j++) {
479 >    for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) {
480        if (toposForAtom[atom1][j] == atom2)
481          return topoDist[atom1][j];
482 <    }
482 >    }                                          
483      return 0;
484    }
485  
486    void ForceMatrixDecomposition::zeroWorkArrays() {
487      pairwisePot = 0.0;
488      embeddingPot = 0.0;
489 +    excludedPot = 0.0;
490 +    excludedSelfPot = 0.0;
491  
492   #ifdef IS_MPI
493      if (storageLayout_ & DataStorage::dslForce) {
# Line 433 | Line 506 | namespace OpenMD {
506      fill(pot_col.begin(), pot_col.end(),
507           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
508  
509 +    fill(expot_row.begin(), expot_row.end(),
510 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
511 +
512 +    fill(expot_col.begin(), expot_col.end(),
513 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
514 +
515      if (storageLayout_ & DataStorage::dslParticlePot) {    
516 <      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0);
517 <      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0);
516 >      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
517 >           0.0);
518 >      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
519 >           0.0);
520      }
521  
522      if (storageLayout_ & DataStorage::dslDensity) {      
# Line 444 | Line 525 | namespace OpenMD {
525      }
526  
527      if (storageLayout_ & DataStorage::dslFunctional) {  
528 <      fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0);
529 <      fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0);
528 >      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
529 >           0.0);
530 >      fill(atomColData.functional.begin(), atomColData.functional.end(),
531 >           0.0);
532      }
533  
534      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
# Line 455 | Line 538 | namespace OpenMD {
538             atomColData.functionalDerivative.end(), 0.0);
539      }
540  
541 < #else
542 <    
541 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
542 >      fill(atomRowData.skippedCharge.begin(),
543 >           atomRowData.skippedCharge.end(), 0.0);
544 >      fill(atomColData.skippedCharge.begin(),
545 >           atomColData.skippedCharge.end(), 0.0);
546 >    }
547 >
548 >    if (storageLayout_ & DataStorage::dslFlucQForce) {      
549 >      fill(atomRowData.flucQFrc.begin(),
550 >           atomRowData.flucQFrc.end(), 0.0);
551 >      fill(atomColData.flucQFrc.begin(),
552 >           atomColData.flucQFrc.end(), 0.0);
553 >    }
554 >
555 >    if (storageLayout_ & DataStorage::dslElectricField) {    
556 >      fill(atomRowData.electricField.begin(),
557 >           atomRowData.electricField.end(), V3Zero);
558 >      fill(atomColData.electricField.begin(),
559 >           atomColData.electricField.end(), V3Zero);
560 >    }
561 >
562 > #endif
563 >    // even in parallel, we need to zero out the local arrays:
564 >
565      if (storageLayout_ & DataStorage::dslParticlePot) {      
566        fill(snap_->atomData.particlePot.begin(),
567             snap_->atomData.particlePot.end(), 0.0);
# Line 466 | Line 571 | namespace OpenMD {
571        fill(snap_->atomData.density.begin(),
572             snap_->atomData.density.end(), 0.0);
573      }
574 +
575      if (storageLayout_ & DataStorage::dslFunctional) {
576        fill(snap_->atomData.functional.begin(),
577             snap_->atomData.functional.end(), 0.0);
578      }
579 +
580      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
581        fill(snap_->atomData.functionalDerivative.begin(),
582             snap_->atomData.functionalDerivative.end(), 0.0);
583      }
584 < #endif
585 <    
584 >
585 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
586 >      fill(snap_->atomData.skippedCharge.begin(),
587 >           snap_->atomData.skippedCharge.end(), 0.0);
588 >    }
589 >
590 >    if (storageLayout_ & DataStorage::dslElectricField) {      
591 >      fill(snap_->atomData.electricField.begin(),
592 >           snap_->atomData.electricField.end(), V3Zero);
593 >    }
594    }
595  
596  
# Line 485 | Line 600 | namespace OpenMD {
600   #ifdef IS_MPI
601      
602      // gather up the atomic positions
603 <    AtomCommVectorRow->gather(snap_->atomData.position,
603 >    AtomPlanVectorRow->gather(snap_->atomData.position,
604                                atomRowData.position);
605 <    AtomCommVectorColumn->gather(snap_->atomData.position,
605 >    AtomPlanVectorColumn->gather(snap_->atomData.position,
606                                   atomColData.position);
607      
608      // gather up the cutoff group positions
609 <    cgCommVectorRow->gather(snap_->cgData.position,
609 >
610 >    cgPlanVectorRow->gather(snap_->cgData.position,
611                              cgRowData.position);
612 <    cgCommVectorColumn->gather(snap_->cgData.position,
612 >
613 >    cgPlanVectorColumn->gather(snap_->cgData.position,
614                                 cgColData.position);
615 +
616 +
617 +
618 +    if (needVelocities_) {
619 +      // gather up the atomic velocities
620 +      AtomPlanVectorColumn->gather(snap_->atomData.velocity,
621 +                                   atomColData.velocity);
622 +      
623 +      cgPlanVectorColumn->gather(snap_->cgData.velocity,
624 +                                 cgColData.velocity);
625 +    }
626 +
627      
628      // if needed, gather the atomic rotation matrices
629      if (storageLayout_ & DataStorage::dslAmat) {
630 <      AtomCommMatrixRow->gather(snap_->atomData.aMat,
630 >      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
631                                  atomRowData.aMat);
632 <      AtomCommMatrixColumn->gather(snap_->atomData.aMat,
632 >      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
633                                     atomColData.aMat);
634      }
635 <    
636 <    // if needed, gather the atomic eletrostatic frames
637 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
638 <      AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
639 <                                atomRowData.electroFrame);
640 <      AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
641 <                                   atomColData.electroFrame);
635 >
636 >    // if needed, gather the atomic eletrostatic information
637 >    if (storageLayout_ & DataStorage::dslDipole) {
638 >      AtomPlanVectorRow->gather(snap_->atomData.dipole,
639 >                                atomRowData.dipole);
640 >      AtomPlanVectorColumn->gather(snap_->atomData.dipole,
641 >                                   atomColData.dipole);
642      }
643 +
644 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
645 +      AtomPlanMatrixRow->gather(snap_->atomData.quadrupole,
646 +                                atomRowData.quadrupole);
647 +      AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole,
648 +                                   atomColData.quadrupole);
649 +    }
650 +        
651 +    // if needed, gather the atomic fluctuating charge values
652 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {
653 +      AtomPlanRealRow->gather(snap_->atomData.flucQPos,
654 +                              atomRowData.flucQPos);
655 +      AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
656 +                                 atomColData.flucQPos);
657 +    }
658 +
659   #endif      
660    }
661    
# Line 524 | Line 669 | namespace OpenMD {
669      
670      if (storageLayout_ & DataStorage::dslDensity) {
671        
672 <      AtomCommRealRow->scatter(atomRowData.density,
672 >      AtomPlanRealRow->scatter(atomRowData.density,
673                                 snap_->atomData.density);
674        
675        int n = snap_->atomData.density.size();
676        vector<RealType> rho_tmp(n, 0.0);
677 <      AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
677 >      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
678        for (int i = 0; i < n; i++)
679          snap_->atomData.density[i] += rho_tmp[i];
680      }
681 +
682 +    // this isn't necessary if we don't have polarizable atoms, but
683 +    // we'll leave it here for now.
684 +    if (storageLayout_ & DataStorage::dslElectricField) {
685 +      
686 +      AtomPlanVectorRow->scatter(atomRowData.electricField,
687 +                                 snap_->atomData.electricField);
688 +      
689 +      int n = snap_->atomData.electricField.size();
690 +      vector<Vector3d> field_tmp(n, V3Zero);
691 +      AtomPlanVectorColumn->scatter(atomColData.electricField,
692 +                                    field_tmp);
693 +      for (int i = 0; i < n; i++)
694 +        snap_->atomData.electricField[i] += field_tmp[i];
695 +    }
696   #endif
697    }
698  
# Line 545 | Line 705 | namespace OpenMD {
705      storageLayout_ = sman_->getStorageLayout();
706   #ifdef IS_MPI
707      if (storageLayout_ & DataStorage::dslFunctional) {
708 <      AtomCommRealRow->gather(snap_->atomData.functional,
708 >      AtomPlanRealRow->gather(snap_->atomData.functional,
709                                atomRowData.functional);
710 <      AtomCommRealColumn->gather(snap_->atomData.functional,
710 >      AtomPlanRealColumn->gather(snap_->atomData.functional,
711                                   atomColData.functional);
712      }
713      
714      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
715 <      AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
715 >      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
716                                atomRowData.functionalDerivative);
717 <      AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
717 >      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
718                                   atomColData.functionalDerivative);
719      }
720   #endif
# Line 568 | Line 728 | namespace OpenMD {
728      int n = snap_->atomData.force.size();
729      vector<Vector3d> frc_tmp(n, V3Zero);
730      
731 <    AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
731 >    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
732      for (int i = 0; i < n; i++) {
733        snap_->atomData.force[i] += frc_tmp[i];
734        frc_tmp[i] = 0.0;
735      }
736      
737 <    AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
738 <    for (int i = 0; i < n; i++)
737 >    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
738 >    for (int i = 0; i < n; i++) {
739        snap_->atomData.force[i] += frc_tmp[i];
740 <    
741 <    
740 >    }
741 >        
742      if (storageLayout_ & DataStorage::dslTorque) {
743  
744 <      int nt = snap_->atomData.force.size();
744 >      int nt = snap_->atomData.torque.size();
745        vector<Vector3d> trq_tmp(nt, V3Zero);
746  
747 <      AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
748 <      for (int i = 0; i < n; i++) {
747 >      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
748 >      for (int i = 0; i < nt; i++) {
749          snap_->atomData.torque[i] += trq_tmp[i];
750          trq_tmp[i] = 0.0;
751        }
752        
753 <      AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
754 <      for (int i = 0; i < n; i++)
753 >      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
754 >      for (int i = 0; i < nt; i++)
755          snap_->atomData.torque[i] += trq_tmp[i];
756      }
757 +
758 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
759 +
760 +      int ns = snap_->atomData.skippedCharge.size();
761 +      vector<RealType> skch_tmp(ns, 0.0);
762 +
763 +      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
764 +      for (int i = 0; i < ns; i++) {
765 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
766 +        skch_tmp[i] = 0.0;
767 +      }
768 +      
769 +      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
770 +      for (int i = 0; i < ns; i++)
771 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
772 +            
773 +    }
774      
775 +    if (storageLayout_ & DataStorage::dslFlucQForce) {
776 +
777 +      int nq = snap_->atomData.flucQFrc.size();
778 +      vector<RealType> fqfrc_tmp(nq, 0.0);
779 +
780 +      AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
781 +      for (int i = 0; i < nq; i++) {
782 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
783 +        fqfrc_tmp[i] = 0.0;
784 +      }
785 +      
786 +      AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
787 +      for (int i = 0; i < nq; i++)
788 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
789 +            
790 +    }
791 +
792 +    if (storageLayout_ & DataStorage::dslElectricField) {
793 +
794 +      int nef = snap_->atomData.electricField.size();
795 +      vector<Vector3d> efield_tmp(nef, V3Zero);
796 +
797 +      AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp);
798 +      for (int i = 0; i < nef; i++) {
799 +        snap_->atomData.electricField[i] += efield_tmp[i];
800 +        efield_tmp[i] = 0.0;
801 +      }
802 +      
803 +      AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp);
804 +      for (int i = 0; i < nef; i++)
805 +        snap_->atomData.electricField[i] += efield_tmp[i];
806 +    }
807 +
808 +
809      nLocal_ = snap_->getNumberOfAtoms();
810  
811      vector<potVec> pot_temp(nLocal_,
812                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
813 +    vector<potVec> expot_temp(nLocal_,
814 +                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
815  
816      // scatter/gather pot_row into the members of my column
817            
818 <    AtomCommPotRow->scatter(pot_row, pot_temp);
818 >    AtomPlanPotRow->scatter(pot_row, pot_temp);
819 >    AtomPlanPotRow->scatter(expot_row, expot_temp);
820  
821 <    for (int ii = 0;  ii < pot_temp.size(); ii++ )
821 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
822        pairwisePot += pot_temp[ii];
823 <    
823 >
824 >    for (int ii = 0;  ii < expot_temp.size(); ii++ )
825 >      excludedPot += expot_temp[ii];
826 >        
827 >    if (storageLayout_ & DataStorage::dslParticlePot) {
828 >      // This is the pairwise contribution to the particle pot.  The
829 >      // embedding contribution is added in each of the low level
830 >      // non-bonded routines.  In single processor, this is done in
831 >      // unpackInteractionData, not in collectData.
832 >      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
833 >        for (int i = 0; i < nLocal_; i++) {
834 >          // factor of two is because the total potential terms are divided
835 >          // by 2 in parallel due to row/ column scatter      
836 >          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
837 >        }
838 >      }
839 >    }
840 >
841      fill(pot_temp.begin(), pot_temp.end(),
842           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
843 +    fill(expot_temp.begin(), expot_temp.end(),
844 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
845        
846 <    AtomCommPotColumn->scatter(pot_col, pot_temp);    
846 >    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
847 >    AtomPlanPotColumn->scatter(expot_col, expot_temp);    
848      
849      for (int ii = 0;  ii < pot_temp.size(); ii++ )
850        pairwisePot += pot_temp[ii];    
851 +
852 +    for (int ii = 0;  ii < expot_temp.size(); ii++ )
853 +      excludedPot += expot_temp[ii];    
854 +
855 +    if (storageLayout_ & DataStorage::dslParticlePot) {
856 +      // This is the pairwise contribution to the particle pot.  The
857 +      // embedding contribution is added in each of the low level
858 +      // non-bonded routines.  In single processor, this is done in
859 +      // unpackInteractionData, not in collectData.
860 +      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
861 +        for (int i = 0; i < nLocal_; i++) {
862 +          // factor of two is because the total potential terms are divided
863 +          // by 2 in parallel due to row/ column scatter      
864 +          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
865 +        }
866 +      }
867 +    }
868 +    
869 +    if (storageLayout_ & DataStorage::dslParticlePot) {
870 +      int npp = snap_->atomData.particlePot.size();
871 +      vector<RealType> ppot_temp(npp, 0.0);
872 +
873 +      // This is the direct or embedding contribution to the particle
874 +      // pot.
875 +      
876 +      AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
877 +      for (int i = 0; i < npp; i++) {
878 +        snap_->atomData.particlePot[i] += ppot_temp[i];
879 +      }
880 +
881 +      fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
882 +      
883 +      AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
884 +      for (int i = 0; i < npp; i++) {
885 +        snap_->atomData.particlePot[i] += ppot_temp[i];
886 +      }
887 +    }
888 +
889 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
890 +      RealType ploc1 = pairwisePot[ii];
891 +      RealType ploc2 = 0.0;
892 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
893 +      pairwisePot[ii] = ploc2;
894 +    }
895 +
896 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
897 +      RealType ploc1 = excludedPot[ii];
898 +      RealType ploc2 = 0.0;
899 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
900 +      excludedPot[ii] = ploc2;
901 +    }
902 +
903 +    // Here be dragons.
904 +    MPI::Intracomm col = colComm.getComm();
905 +
906 +    col.Allreduce(MPI::IN_PLACE,
907 +                  &snap_->frameData.conductiveHeatFlux[0], 3,
908 +                  MPI::REALTYPE, MPI::SUM);
909 +
910 +
911   #endif
912  
913    }
914  
915 <  int ForceMatrixDecomposition::getNAtomsInRow() {  
915 >  /**
916 >   * Collects information obtained during the post-pair (and embedding
917 >   * functional) loops onto local data structures.
918 >   */
919 >  void ForceMatrixDecomposition::collectSelfData() {
920 >    snap_ = sman_->getCurrentSnapshot();
921 >    storageLayout_ = sman_->getStorageLayout();
922 >
923   #ifdef IS_MPI
924 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
925 +      RealType ploc1 = embeddingPot[ii];
926 +      RealType ploc2 = 0.0;
927 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
928 +      embeddingPot[ii] = ploc2;
929 +    }    
930 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
931 +      RealType ploc1 = excludedSelfPot[ii];
932 +      RealType ploc2 = 0.0;
933 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
934 +      excludedSelfPot[ii] = ploc2;
935 +    }    
936 + #endif
937 +    
938 +  }
939 +
940 +
941 +
942 +  int& ForceMatrixDecomposition::getNAtomsInRow() {  
943 + #ifdef IS_MPI
944      return nAtomsInRow_;
945   #else
946      return nLocal_;
# Line 629 | Line 950 | namespace OpenMD {
950    /**
951     * returns the list of atoms belonging to this group.  
952     */
953 <  vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
953 >  vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
954   #ifdef IS_MPI
955      return groupListRow_[cg1];
956   #else
# Line 637 | Line 958 | namespace OpenMD {
958   #endif
959    }
960  
961 <  vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
961 >  vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
962   #ifdef IS_MPI
963      return groupListCol_[cg2];
964   #else
# Line 654 | Line 975 | namespace OpenMD {
975      d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
976   #endif
977      
978 <    snap_->wrapVector(d);
978 >    if (usePeriodicBoundaryConditions_) {
979 >      snap_->wrapVector(d);
980 >    }
981      return d;    
982    }
983  
984 +  Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
985 + #ifdef IS_MPI
986 +    return cgColData.velocity[cg2];
987 + #else
988 +    return snap_->cgData.velocity[cg2];
989 + #endif
990 +  }
991  
992 +  Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
993 + #ifdef IS_MPI
994 +    return atomColData.velocity[atom2];
995 + #else
996 +    return snap_->atomData.velocity[atom2];
997 + #endif
998 +  }
999 +
1000 +
1001    Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
1002  
1003      Vector3d d;
# Line 668 | Line 1007 | namespace OpenMD {
1007   #else
1008      d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
1009   #endif
1010 <
1011 <    snap_->wrapVector(d);
1010 >    if (usePeriodicBoundaryConditions_) {
1011 >      snap_->wrapVector(d);
1012 >    }
1013      return d;    
1014    }
1015    
# Line 681 | Line 1021 | namespace OpenMD {
1021   #else
1022      d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
1023   #endif
1024 <    
1025 <    snap_->wrapVector(d);
1024 >    if (usePeriodicBoundaryConditions_) {
1025 >      snap_->wrapVector(d);
1026 >    }
1027      return d;    
1028    }
1029  
1030 <  RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
1030 >  RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) {
1031   #ifdef IS_MPI
1032      return massFactorsRow[atom1];
1033   #else
# Line 694 | Line 1035 | namespace OpenMD {
1035   #endif
1036    }
1037  
1038 <  RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
1038 >  RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
1039   #ifdef IS_MPI
1040      return massFactorsCol[atom2];
1041   #else
# Line 711 | Line 1052 | namespace OpenMD {
1052   #else
1053      d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
1054   #endif
1055 <
1056 <    snap_->wrapVector(d);
1055 >    if (usePeriodicBoundaryConditions_) {
1056 >      snap_->wrapVector(d);
1057 >    }
1058      return d;    
1059    }
1060  
1061 <  vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) {
1062 <    return skipsForAtom[atom1];
1061 >  vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
1062 >    return excludesForAtom[atom1];
1063    }
1064  
1065    /**
1066 <   * There are a number of reasons to skip a pair or a
725 <   * particle. Mostly we do this to exclude atoms who are involved in
726 <   * short range interactions (bonds, bends, torsions), but we also
727 <   * need to exclude some overcounted interactions that result from
1066 >   * We need to exclude some overcounted interactions that result from
1067     * the parallel decomposition.
1068     */
1069 <  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
1069 >  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) {
1070      int unique_id_1, unique_id_2;
1071 <
1071 >        
1072   #ifdef IS_MPI
1073      // in MPI, we have to look up the unique IDs for each atom
1074      unique_id_1 = AtomRowToGlobal[atom1];
1075      unique_id_2 = AtomColToGlobal[atom2];
1076 +    // group1 = cgRowToGlobal[cg1];
1077 +    // group2 = cgColToGlobal[cg2];
1078 + #else
1079 +    unique_id_1 = AtomLocalToGlobal[atom1];
1080 +    unique_id_2 = AtomLocalToGlobal[atom2];
1081 +    int group1 = cgLocalToGlobal[cg1];
1082 +    int group2 = cgLocalToGlobal[cg2];
1083 + #endif  
1084  
738    // this situation should only arise in MPI simulations
1085      if (unique_id_1 == unique_id_2) return true;
1086 <    
1086 >
1087 > #ifdef IS_MPI
1088      // this prevents us from doing the pair on multiple processors
1089      if (unique_id_1 < unique_id_2) {
1090        if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
1091      } else {
1092 <      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1092 >      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1093      }
1094 < #else
1095 <    // in the normal loop, the atom numbers are unique
1096 <    unique_id_1 = atom1;
1097 <    unique_id_2 = atom2;
1094 > #endif    
1095 >
1096 > #ifndef IS_MPI
1097 >    if (group1 == group2) {
1098 >      if (unique_id_1 < unique_id_2) return true;
1099 >    }
1100   #endif
1101      
1102 <    for (vector<int>::iterator i = skipsForAtom[atom1].begin();
1103 <         i != skipsForAtom[atom1].end(); ++i) {
1104 <      if ( (*i) == unique_id_2 ) return true;
1102 >    return false;
1103 >  }
1104 >
1105 >  /**
1106 >   * We need to handle the interactions for atoms who are involved in
1107 >   * the same rigid body as well as some short range interactions
1108 >   * (bonds, bends, torsions) differently from other interactions.
1109 >   * We'll still visit the pairwise routines, but with a flag that
1110 >   * tells those routines to exclude the pair from direct long range
1111 >   * interactions.  Some indirect interactions (notably reaction
1112 >   * field) must still be handled for these pairs.
1113 >   */
1114 >  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
1115 >
1116 >    // excludesForAtom was constructed to use row/column indices in the MPI
1117 >    // version, and to use local IDs in the non-MPI version:
1118 >    
1119 >    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
1120 >         i != excludesForAtom[atom1].end(); ++i) {
1121 >      if ( (*i) == atom2 ) return true;
1122      }
1123  
1124      return false;
# Line 777 | Line 1143 | namespace OpenMD {
1143  
1144      // filling interaction blocks with pointers
1145    void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1146 <                                                     int atom1, int atom2) {    
1146 >                                                     int atom1, int atom2) {
1147 >
1148 >    idat.excluded = excludeAtomPair(atom1, atom2);
1149 >  
1150   #ifdef IS_MPI
1151 +    idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
1152 +    idat.atid1 = identsRow[atom1];
1153 +    idat.atid2 = identsCol[atom2];
1154 +    //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
1155 +    //                         ff_->getAtomType(identsCol[atom2]) );
1156      
783    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
784                             ff_->getAtomType(identsCol[atom2]) );
785    
1157      if (storageLayout_ & DataStorage::dslAmat) {
1158        idat.A1 = &(atomRowData.aMat[atom1]);
1159        idat.A2 = &(atomColData.aMat[atom2]);
1160      }
1161      
791    if (storageLayout_ & DataStorage::dslElectroFrame) {
792      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
793      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
794    }
795
1162      if (storageLayout_ & DataStorage::dslTorque) {
1163        idat.t1 = &(atomRowData.torque[atom1]);
1164        idat.t2 = &(atomColData.torque[atom2]);
1165      }
1166  
1167 +    if (storageLayout_ & DataStorage::dslDipole) {
1168 +      idat.dipole1 = &(atomRowData.dipole[atom1]);
1169 +      idat.dipole2 = &(atomColData.dipole[atom2]);
1170 +    }
1171 +
1172 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1173 +      idat.quadrupole1 = &(atomRowData.quadrupole[atom1]);
1174 +      idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1175 +    }
1176 +
1177      if (storageLayout_ & DataStorage::dslDensity) {
1178        idat.rho1 = &(atomRowData.density[atom1]);
1179        idat.rho2 = &(atomColData.density[atom2]);
# Line 818 | Line 1194 | namespace OpenMD {
1194        idat.particlePot2 = &(atomColData.particlePot[atom2]);
1195      }
1196  
1197 < #else
1197 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1198 >      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1199 >      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1200 >    }
1201  
1202 <    idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
1203 <                             ff_->getAtomType(idents[atom2]) );
1202 >    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1203 >      idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1204 >      idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1205 >    }
1206  
1207 + #else
1208 +    
1209 +    idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
1210 +    idat.atid1 = idents[atom1];
1211 +    idat.atid2 = idents[atom2];
1212 +
1213      if (storageLayout_ & DataStorage::dslAmat) {
1214        idat.A1 = &(snap_->atomData.aMat[atom1]);
1215        idat.A2 = &(snap_->atomData.aMat[atom2]);
1216      }
1217  
831    if (storageLayout_ & DataStorage::dslElectroFrame) {
832      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
833      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
834    }
835
1218      if (storageLayout_ & DataStorage::dslTorque) {
1219        idat.t1 = &(snap_->atomData.torque[atom1]);
1220        idat.t2 = &(snap_->atomData.torque[atom2]);
1221      }
1222  
1223 +    if (storageLayout_ & DataStorage::dslDipole) {
1224 +      idat.dipole1 = &(snap_->atomData.dipole[atom1]);
1225 +      idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1226 +    }
1227 +
1228 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1229 +      idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]);
1230 +      idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1231 +    }
1232 +
1233      if (storageLayout_ & DataStorage::dslDensity) {    
1234        idat.rho1 = &(snap_->atomData.density[atom1]);
1235        idat.rho2 = &(snap_->atomData.density[atom2]);
# Line 858 | Line 1250 | namespace OpenMD {
1250        idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1251      }
1252  
1253 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
1254 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1255 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1256 +    }
1257 +
1258 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1259 +      idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1260 +      idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1261 +    }
1262 +
1263   #endif
1264    }
1265  
1266    
1267    void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
1268   #ifdef IS_MPI
1269 <    pot_row[atom1] += 0.5 *  *(idat.pot);
1270 <    pot_col[atom2] += 0.5 *  *(idat.pot);
1269 >    pot_row[atom1] += RealType(0.5) *  *(idat.pot);
1270 >    pot_col[atom2] += RealType(0.5) *  *(idat.pot);
1271 >    expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot);
1272 >    expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot);
1273  
1274      atomRowData.force[atom1] += *(idat.f1);
1275      atomColData.force[atom2] -= *(idat.f1);
1276 +
1277 +    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1278 +      atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1279 +      atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1280 +    }
1281 +
1282 +    if (storageLayout_ & DataStorage::dslElectricField) {              
1283 +      atomRowData.electricField[atom1] += *(idat.eField1);
1284 +      atomColData.electricField[atom2] += *(idat.eField2);
1285 +    }
1286 +
1287   #else
1288      pairwisePot += *(idat.pot);
1289 +    excludedPot += *(idat.excludedPot);
1290  
1291      snap_->atomData.force[atom1] += *(idat.f1);
1292      snap_->atomData.force[atom2] -= *(idat.f1);
877 #endif
1293  
1294 <  }
1295 <
1296 <
1297 <  void ForceMatrixDecomposition::fillSkipData(InteractionData &idat,
1298 <                                              int atom1, int atom2) {
1299 <    // Still Missing:: skippedCharge fill must be added to DataStorage
1300 < #ifdef IS_MPI
886 <    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
887 <                             ff_->getAtomType(identsCol[atom2]) );
888 <
889 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
890 <      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
891 <      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
1294 >    if (idat.doParticlePot) {
1295 >      // This is the pairwise contribution to the particle pot.  The
1296 >      // embedding contribution is added in each of the low level
1297 >      // non-bonded routines.  In parallel, this calculation is done
1298 >      // in collectData, not in unpackInteractionData.
1299 >      snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1300 >      snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1301      }
1302 <    if (storageLayout_ & DataStorage::dslTorque) {
1303 <      idat.t1 = &(atomRowData.torque[atom1]);
1304 <      idat.t2 = &(atomColData.torque[atom2]);
1302 >    
1303 >    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1304 >      snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1305 >      snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1306      }
897 #else
898    idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
899                             ff_->getAtomType(idents[atom2]) );
1307  
1308 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
1309 <      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
1310 <      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
1308 >    if (storageLayout_ & DataStorage::dslElectricField) {              
1309 >      snap_->atomData.electricField[atom1] += *(idat.eField1);
1310 >      snap_->atomData.electricField[atom2] += *(idat.eField2);
1311      }
905    if (storageLayout_ & DataStorage::dslTorque) {
906      idat.t1 = &(snap_->atomData.torque[atom1]);
907      idat.t2 = &(snap_->atomData.torque[atom2]);
908    }
909 #endif    
910  }
1312  
912
913  void ForceMatrixDecomposition::unpackSkipData(InteractionData &idat, int atom1, int atom2) {    
914 #ifdef IS_MPI
915    pot_row[atom1] += 0.5 *  *(idat.pot);
916    pot_col[atom2] += 0.5 *  *(idat.pot);
917 #else
918    pairwisePot += *(idat.pot);  
1313   #endif
1314 <
1314 >    
1315    }
1316  
923
1317    /*
1318     * buildNeighborList
1319     *
1320     * first element of pair is row-indexed CutoffGroup
1321     * second element of pair is column-indexed CutoffGroup
1322     */
1323 <  vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1324 <      
1325 <    vector<pair<int, int> > neighborList;
1323 >  void ForceMatrixDecomposition::buildNeighborList(vector<pair<int,int> >& neighborList) {
1324 >    
1325 >    neighborList.clear();
1326      groupCutoffs cuts;
1327 < #ifdef IS_MPI
935 <    cellListRow_.clear();
936 <    cellListCol_.clear();
937 < #else
938 <    cellList_.clear();
939 < #endif
1327 >    bool doAllPairs = false;
1328  
1329      RealType rList_ = (largestRcut_ + skinThickness_);
942    RealType rl2 = rList_ * rList_;
1330      Snapshot* snap_ = sman_->getCurrentSnapshot();
1331 <    Mat3x3d Hmat = snap_->getHmat();
1332 <    Vector3d Hx = Hmat.getColumn(0);
946 <    Vector3d Hy = Hmat.getColumn(1);
947 <    Vector3d Hz = Hmat.getColumn(2);
1331 >    Mat3x3d box;
1332 >    Mat3x3d invBox;
1333  
949    nCells_.x() = (int) ( Hx.length() )/ rList_;
950    nCells_.y() = (int) ( Hy.length() )/ rList_;
951    nCells_.z() = (int) ( Hz.length() )/ rList_;
952
953    Mat3x3d invHmat = snap_->getInvHmat();
1334      Vector3d rs, scaled, dr;
1335      Vector3i whichCell;
1336      int cellIndex;
957    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1337  
1338   #ifdef IS_MPI
1339 +    cellListRow_.clear();
1340 +    cellListCol_.clear();
1341 + #else
1342 +    cellList_.clear();
1343 + #endif
1344 +    
1345 +    if (!usePeriodicBoundaryConditions_) {
1346 +      box = snap_->getBoundingBox();
1347 +      invBox = snap_->getInvBoundingBox();
1348 +    } else {
1349 +      box = snap_->getHmat();
1350 +      invBox = snap_->getInvHmat();
1351 +    }
1352 +    
1353 +    Vector3d boxX = box.getColumn(0);
1354 +    Vector3d boxY = box.getColumn(1);
1355 +    Vector3d boxZ = box.getColumn(2);
1356 +    
1357 +    nCells_.x() = (int) ( boxX.length() )/ rList_;
1358 +    nCells_.y() = (int) ( boxY.length() )/ rList_;
1359 +    nCells_.z() = (int) ( boxZ.length() )/ rList_;
1360 +    
1361 +    // handle small boxes where the cell offsets can end up repeating cells
1362 +    
1363 +    if (nCells_.x() < 3) doAllPairs = true;
1364 +    if (nCells_.y() < 3) doAllPairs = true;
1365 +    if (nCells_.z() < 3) doAllPairs = true;
1366 +    
1367 +    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1368 +    
1369 + #ifdef IS_MPI
1370      cellListRow_.resize(nCtot);
1371      cellListCol_.resize(nCtot);
1372   #else
1373      cellList_.resize(nCtot);
1374   #endif
1375 <
1375 >    
1376 >    if (!doAllPairs) {
1377   #ifdef IS_MPI
1378 <    for (int i = 0; i < nGroupsInRow_; i++) {
1379 <      rs = cgRowData.position[i];
1380 <
1381 <      // scaled positions relative to the box vectors
1382 <      scaled = invHmat * rs;
1383 <
1384 <      // wrap the vector back into the unit box by subtracting integer box
1385 <      // numbers
1386 <      for (int j = 0; j < 3; j++) {
1387 <        scaled[j] -= roundMe(scaled[j]);
1388 <        scaled[j] += 0.5;
1378 >      
1379 >      for (int i = 0; i < nGroupsInRow_; i++) {
1380 >        rs = cgRowData.position[i];
1381 >        
1382 >        // scaled positions relative to the box vectors
1383 >        scaled = invBox * rs;
1384 >        
1385 >        // wrap the vector back into the unit box by subtracting integer box
1386 >        // numbers
1387 >        for (int j = 0; j < 3; j++) {
1388 >          scaled[j] -= roundMe(scaled[j]);
1389 >          scaled[j] += 0.5;
1390 >          // Handle the special case when an object is exactly on the
1391 >          // boundary (a scaled coordinate of 1.0 is the same as
1392 >          // scaled coordinate of 0.0)
1393 >          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1394 >        }
1395 >        
1396 >        // find xyz-indices of cell that cutoffGroup is in.
1397 >        whichCell.x() = nCells_.x() * scaled.x();
1398 >        whichCell.y() = nCells_.y() * scaled.y();
1399 >        whichCell.z() = nCells_.z() * scaled.z();
1400 >        
1401 >        // find single index of this cell:
1402 >        cellIndex = Vlinear(whichCell, nCells_);
1403 >        
1404 >        // add this cutoff group to the list of groups in this cell;
1405 >        cellListRow_[cellIndex].push_back(i);
1406        }
1407 <    
1408 <      // find xyz-indices of cell that cutoffGroup is in.
1409 <      whichCell.x() = nCells_.x() * scaled.x();
1410 <      whichCell.y() = nCells_.y() * scaled.y();
1411 <      whichCell.z() = nCells_.z() * scaled.z();
1412 <
1413 <      // find single index of this cell:
1414 <      cellIndex = Vlinear(whichCell, nCells_);
1415 <
1416 <      // add this cutoff group to the list of groups in this cell;
1417 <      cellListRow_[cellIndex].push_back(i);
1418 <    }
1419 <
1420 <    for (int i = 0; i < nGroupsInCol_; i++) {
1421 <      rs = cgColData.position[i];
1422 <
1423 <      // scaled positions relative to the box vectors
1424 <      scaled = invHmat * rs;
1425 <
1426 <      // wrap the vector back into the unit box by subtracting integer box
1427 <      // numbers
1428 <      for (int j = 0; j < 3; j++) {
1429 <        scaled[j] -= roundMe(scaled[j]);
1430 <        scaled[j] += 0.5;
1407 >      for (int i = 0; i < nGroupsInCol_; i++) {
1408 >        rs = cgColData.position[i];
1409 >        
1410 >        // scaled positions relative to the box vectors
1411 >        scaled = invBox * rs;
1412 >        
1413 >        // wrap the vector back into the unit box by subtracting integer box
1414 >        // numbers
1415 >        for (int j = 0; j < 3; j++) {
1416 >          scaled[j] -= roundMe(scaled[j]);
1417 >          scaled[j] += 0.5;
1418 >          // Handle the special case when an object is exactly on the
1419 >          // boundary (a scaled coordinate of 1.0 is the same as
1420 >          // scaled coordinate of 0.0)
1421 >          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1422 >        }
1423 >        
1424 >        // find xyz-indices of cell that cutoffGroup is in.
1425 >        whichCell.x() = nCells_.x() * scaled.x();
1426 >        whichCell.y() = nCells_.y() * scaled.y();
1427 >        whichCell.z() = nCells_.z() * scaled.z();
1428 >        
1429 >        // find single index of this cell:
1430 >        cellIndex = Vlinear(whichCell, nCells_);
1431 >        
1432 >        // add this cutoff group to the list of groups in this cell;
1433 >        cellListCol_[cellIndex].push_back(i);
1434        }
1435 <
1005 <      // find xyz-indices of cell that cutoffGroup is in.
1006 <      whichCell.x() = nCells_.x() * scaled.x();
1007 <      whichCell.y() = nCells_.y() * scaled.y();
1008 <      whichCell.z() = nCells_.z() * scaled.z();
1009 <
1010 <      // find single index of this cell:
1011 <      cellIndex = Vlinear(whichCell, nCells_);
1012 <
1013 <      // add this cutoff group to the list of groups in this cell;
1014 <      cellListCol_[cellIndex].push_back(i);
1015 <    }
1435 >      
1436   #else
1437 <    for (int i = 0; i < nGroups_; i++) {
1438 <      rs = snap_->cgData.position[i];
1439 <
1440 <      // scaled positions relative to the box vectors
1441 <      scaled = invHmat * rs;
1442 <
1443 <      // wrap the vector back into the unit box by subtracting integer box
1444 <      // numbers
1445 <      for (int j = 0; j < 3; j++) {
1446 <        scaled[j] -= roundMe(scaled[j]);
1447 <        scaled[j] += 0.5;
1437 >      for (int i = 0; i < nGroups_; i++) {
1438 >        rs = snap_->cgData.position[i];
1439 >        
1440 >        // scaled positions relative to the box vectors
1441 >        scaled = invBox * rs;
1442 >        
1443 >        // wrap the vector back into the unit box by subtracting integer box
1444 >        // numbers
1445 >        for (int j = 0; j < 3; j++) {
1446 >          scaled[j] -= roundMe(scaled[j]);
1447 >          scaled[j] += 0.5;
1448 >          // Handle the special case when an object is exactly on the
1449 >          // boundary (a scaled coordinate of 1.0 is the same as
1450 >          // scaled coordinate of 0.0)
1451 >          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1452 >        }
1453 >        
1454 >        // find xyz-indices of cell that cutoffGroup is in.
1455 >        whichCell.x() = nCells_.x() * scaled.x();
1456 >        whichCell.y() = nCells_.y() * scaled.y();
1457 >        whichCell.z() = nCells_.z() * scaled.z();
1458 >        
1459 >        // find single index of this cell:
1460 >        cellIndex = Vlinear(whichCell, nCells_);
1461 >        
1462 >        // add this cutoff group to the list of groups in this cell;
1463 >        cellList_[cellIndex].push_back(i);
1464        }
1465  
1030      // find xyz-indices of cell that cutoffGroup is in.
1031      whichCell.x() = nCells_.x() * scaled.x();
1032      whichCell.y() = nCells_.y() * scaled.y();
1033      whichCell.z() = nCells_.z() * scaled.z();
1034
1035      // find single index of this cell:
1036      cellIndex = Vlinear(whichCell, nCells_);      
1037
1038      // add this cutoff group to the list of groups in this cell;
1039      cellList_[cellIndex].push_back(i);
1040    }
1466   #endif
1467  
1468 <    for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1469 <      for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1470 <        for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1471 <          Vector3i m1v(m1x, m1y, m1z);
1472 <          int m1 = Vlinear(m1v, nCells_);
1048 <
1049 <          for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1050 <               os != cellOffsets_.end(); ++os) {
1468 >      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1469 >        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1470 >          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1471 >            Vector3i m1v(m1x, m1y, m1z);
1472 >            int m1 = Vlinear(m1v, nCells_);
1473              
1474 <            Vector3i m2v = m1v + (*os);
1475 <            
1476 <            if (m2v.x() >= nCells_.x()) {
1477 <              m2v.x() = 0;          
1478 <            } else if (m2v.x() < 0) {
1057 <              m2v.x() = nCells_.x() - 1;
1058 <            }
1059 <            
1060 <            if (m2v.y() >= nCells_.y()) {
1061 <              m2v.y() = 0;          
1062 <            } else if (m2v.y() < 0) {
1063 <              m2v.y() = nCells_.y() - 1;
1064 <            }
1065 <            
1066 <            if (m2v.z() >= nCells_.z()) {
1067 <              m2v.z() = 0;          
1068 <            } else if (m2v.z() < 0) {
1069 <              m2v.z() = nCells_.z() - 1;
1070 <            }
1071 <            
1072 <            int m2 = Vlinear (m2v, nCells_);
1474 >            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1475 >                 os != cellOffsets_.end(); ++os) {
1476 >              
1477 >              Vector3i m2v = m1v + (*os);
1478 >            
1479  
1480 < #ifdef IS_MPI
1481 <            for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1482 <                 j1 != cellListRow_[m1].end(); ++j1) {
1483 <              for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1484 <                   j2 != cellListCol_[m2].end(); ++j2) {
1485 <                              
1486 <                // Always do this if we're in different cells or if
1487 <                // we're in the same cell and the global index of the
1488 <                // j2 cutoff group is less than the j1 cutoff group
1480 >              if (m2v.x() >= nCells_.x()) {
1481 >                m2v.x() = 0;          
1482 >              } else if (m2v.x() < 0) {
1483 >                m2v.x() = nCells_.x() - 1;
1484 >              }
1485 >              
1486 >              if (m2v.y() >= nCells_.y()) {
1487 >                m2v.y() = 0;          
1488 >              } else if (m2v.y() < 0) {
1489 >                m2v.y() = nCells_.y() - 1;
1490 >              }
1491 >              
1492 >              if (m2v.z() >= nCells_.z()) {
1493 >                m2v.z() = 0;          
1494 >              } else if (m2v.z() < 0) {
1495 >                m2v.z() = nCells_.z() - 1;
1496 >              }
1497  
1498 <                if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1498 >              int m2 = Vlinear (m2v, nCells_);
1499 >              
1500 > #ifdef IS_MPI
1501 >              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1502 >                   j1 != cellListRow_[m1].end(); ++j1) {
1503 >                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1504 >                     j2 != cellListCol_[m2].end(); ++j2) {
1505 >                  
1506 >                  // In parallel, we need to visit *all* pairs of row
1507 >                  // & column indicies and will divide labor in the
1508 >                  // force evaluation later.
1509                    dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1510 <                  snap_->wrapVector(dr);
1510 >                  if (usePeriodicBoundaryConditions_) {
1511 >                    snap_->wrapVector(dr);
1512 >                  }
1513                    cuts = getGroupCutoffs( (*j1), (*j2) );
1514                    if (dr.lengthSquare() < cuts.third) {
1515                      neighborList.push_back(make_pair((*j1), (*j2)));
1516 <                  }
1516 >                  }                  
1517                  }
1518                }
1093            }
1519   #else
1520 +              for (vector<int>::iterator j1 = cellList_[m1].begin();
1521 +                   j1 != cellList_[m1].end(); ++j1) {
1522 +                for (vector<int>::iterator j2 = cellList_[m2].begin();
1523 +                     j2 != cellList_[m2].end(); ++j2) {
1524 +    
1525 +                  // Always do this if we're in different cells or if
1526 +                  // we're in the same cell and the global index of
1527 +                  // the j2 cutoff group is greater than or equal to
1528 +                  // the j1 cutoff group.  Note that Rappaport's code
1529 +                  // has a "less than" conditional here, but that
1530 +                  // deals with atom-by-atom computation.  OpenMD
1531 +                  // allows atoms within a single cutoff group to
1532 +                  // interact with each other.
1533  
1534 <            for (vector<int>::iterator j1 = cellList_[m1].begin();
1097 <                 j1 != cellList_[m1].end(); ++j1) {
1098 <              for (vector<int>::iterator j2 = cellList_[m2].begin();
1099 <                   j2 != cellList_[m2].end(); ++j2) {
1534 >                  if (m2 != m1 || (*j2) >= (*j1) ) {
1535  
1536 <                // Always do this if we're in different cells or if
1537 <                // we're in the same cell and the global index of the
1538 <                // j2 cutoff group is less than the j1 cutoff group
1539 <
1540 <                if (m2 != m1 || (*j2) < (*j1)) {
1541 <                  dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1542 <                  snap_->wrapVector(dr);
1543 <                  cuts = getGroupCutoffs( (*j1), (*j2) );
1109 <                  if (dr.lengthSquare() < cuts.third) {
1110 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1536 >                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1537 >                    if (usePeriodicBoundaryConditions_) {
1538 >                      snap_->wrapVector(dr);
1539 >                    }
1540 >                    cuts = getGroupCutoffs( (*j1), (*j2) );
1541 >                    if (dr.lengthSquare() < cuts.third) {
1542 >                      neighborList.push_back(make_pair((*j1), (*j2)));
1543 >                    }
1544                    }
1545                  }
1546                }
1114            }
1547   #endif
1548 +            }
1549            }
1550          }
1551        }
1552 +    } else {
1553 +      // branch to do all cutoff group pairs
1554 + #ifdef IS_MPI
1555 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1556 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {    
1557 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1558 +          if (usePeriodicBoundaryConditions_) {
1559 +            snap_->wrapVector(dr);
1560 +          }
1561 +          cuts = getGroupCutoffs( j1, j2 );
1562 +          if (dr.lengthSquare() < cuts.third) {
1563 +            neighborList.push_back(make_pair(j1, j2));
1564 +          }
1565 +        }
1566 +      }      
1567 + #else
1568 +      // include all groups here.
1569 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1570 +        // include self group interactions j2 == j1
1571 +        for (int j2 = j1; j2 < nGroups_; j2++) {
1572 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1573 +          if (usePeriodicBoundaryConditions_) {
1574 +            snap_->wrapVector(dr);
1575 +          }
1576 +          cuts = getGroupCutoffs( j1, j2 );
1577 +          if (dr.lengthSquare() < cuts.third) {
1578 +            neighborList.push_back(make_pair(j1, j2));
1579 +          }
1580 +        }    
1581 +      }
1582 + #endif
1583      }
1584 <    
1584 >      
1585      // save the local cutoff group positions for the check that is
1586      // done on each loop:
1587      saved_CG_positions_.clear();
1588      for (int i = 0; i < nGroups_; i++)
1589        saved_CG_positions_.push_back(snap_->cgData.position[i]);
1126  
1127    return neighborList;
1590    }
1591   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines