ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing:
branches/development/src/parallel/ForceDecomposition.cpp (file contents), Revision 1538 by chuckv, Tue Jan 11 18:58:12 2011 UTC vs.
branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 1570 by gezelter, Thu May 26 21:56:04 2011 UTC

# Line 1 | Line 1
1 < /**
2 < * @file ForceDecomposition.cpp
3 < * @author Charles Vardeman <cvardema.at.nd.edu>
4 < * @date 08/18/2010
5 < * @time 11:56am
6 < * @version 1.0
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
8 * @section LICENSE
9 * Copyright (c) 2010 The University of Notre Dame. All Rights Reserved.
10 *
4   * The University of Notre Dame grants you ("Licensee") a
5   * non-exclusive, royalty free, license to use, modify and
6   * redistribute this software in source and binary code form, provided
# Line 45 | Line 38
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39   * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41 + #include "parallel/ForceMatrixDecomposition.hpp"
42 + #include "math/SquareMatrix3.hpp"
43 + #include "nonbonded/NonBondedInteraction.hpp"
44 + #include "brains/SnapshotManager.hpp"
45 + #include "brains/PairList.hpp"
46  
47 + using namespace std;
48 + namespace OpenMD {
49  
50 +  /**
51 +   * distributeInitialData is essentially a copy of the older fortran
52 +   * SimulationSetup
53 +   */
54 +  
55 +  void ForceMatrixDecomposition::distributeInitialData() {
56 +    snap_ = sman_->getCurrentSnapshot();
57 +    storageLayout_ = sman_->getStorageLayout();
58 +    nLocal_ = snap_->getNumberOfAtoms();
59 +    nGroups_ = snap_->getNumberOfCutoffGroups();
60  
61 < /*  -*- c++ -*-  */
62 < #include "config.h"
63 < #include <stdlib.h>
61 >    // gather the information for atomtype IDs (atids):
62 >    vector<int> identsLocal = info_->getIdentArray();
63 >    AtomLocalToGlobal = info_->getGlobalAtomIndices();
64 >    cgLocalToGlobal = info_->getGlobalGroupIndices();
65 >    vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
66 >    vector<RealType> massFactorsLocal = info_->getMassFactors();
67 >    PairList excludes = info_->getExcludedInteractions();
68 >    PairList oneTwo = info_->getOneTwoInteractions();
69 >    PairList oneThree = info_->getOneThreeInteractions();
70 >    PairList oneFour = info_->getOneFourInteractions();
71 >    vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0);
72 >
73   #ifdef IS_MPI
74 < #include <mpi.h>
75 < #endif
74 >
75 >    AtomCommIntRow = new Communicator<Row,int>(nLocal_);
76 >    AtomCommRealRow = new Communicator<Row,RealType>(nLocal_);
77 >    AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_);
78 >    AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_);
79  
80 < #include <iostream>
81 < #include <vector>
82 < #include <algorithm>
83 < #include <cmath>
62 < #include "parallel/ForceDecomposition.hpp"
80 >    AtomCommIntColumn = new Communicator<Column,int>(nLocal_);
81 >    AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_);
82 >    AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_);
83 >    AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_);
84  
85 +    cgCommIntRow = new Communicator<Row,int>(nGroups_);
86 +    cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_);
87 +    cgCommIntColumn = new Communicator<Column,int>(nGroups_);
88 +    cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_);
89  
90 < using namespace std;
91 < using namespace OpenMD;
90 >    nAtomsInRow_ = AtomCommIntRow->getSize();
91 >    nAtomsInCol_ = AtomCommIntColumn->getSize();
92 >    nGroupsInRow_ = cgCommIntRow->getSize();
93 >    nGroupsInCol_ = cgCommIntColumn->getSize();
94  
95 < //__static
96 < #ifdef IS_MPI
97 < static vector<MPI:Comm> communictors;
98 < #endif
95 >    // Modify the data storage objects with the correct layouts and sizes:
96 >    atomRowData.resize(nAtomsInRow_);
97 >    atomRowData.setStorageLayout(storageLayout_);
98 >    atomColData.resize(nAtomsInCol_);
99 >    atomColData.setStorageLayout(storageLayout_);
100 >    cgRowData.resize(nGroupsInRow_);
101 >    cgRowData.setStorageLayout(DataStorage::dslPosition);
102 >    cgColData.resize(nGroupsInCol_);
103 >    cgColData.setStorageLayout(DataStorage::dslPosition);
104 >    
105 >    vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES,
106 >                                      vector<RealType> (nAtomsInRow_, 0.0));
107 >    vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES,
108 >                                      vector<RealType> (nAtomsInCol_, 0.0));
109 >    
110 >    identsRow.reserve(nAtomsInRow_);
111 >    identsCol.reserve(nAtomsInCol_);
112 >    
113 >    AtomCommIntRow->gather(identsLocal, identsRow);
114 >    AtomCommIntColumn->gather(identsLocal, identsCol);
115 >    
116 >    AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
117 >    AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
118 >    
119 >    cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
120 >    cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
121  
122 < //____ MPITypeTraits
123 < template<typename T>
75 < struct MPITypeTraits;
122 >    AtomCommRealRow->gather(massFactorsLocal, massFactorsRow);
123 >    AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol);
124  
125 < #ifdef IS_MPI
126 < template<>
127 < struct MPITypeTraits<RealType> {
128 <  static const MPI::Datatype datatype;
129 < };
130 < const MPI_Datatype MPITypeTraits<RealType>::datatype = MY_MPI_REAL;
125 >    groupListRow_.clear();
126 >    groupListRow_.reserve(nGroupsInRow_);
127 >    for (int i = 0; i < nGroupsInRow_; i++) {
128 >      int gid = cgRowToGlobal[i];
129 >      for (int j = 0; j < nAtomsInRow_; j++) {
130 >        int aid = AtomRowToGlobal[j];
131 >        if (globalGroupMembership[aid] == gid)
132 >          groupListRow_[i].push_back(j);
133 >      }      
134 >    }
135  
136 < template<>
137 < struct MPITypeTraits<int> {
138 <  static const MPI::Datatype datatype;
139 < };
140 < const MPI::Datatype MPITypeTraits<int>::datatype = MPI_INT;
136 >    groupListCol_.clear();
137 >    groupListCol_.reserve(nGroupsInCol_);
138 >    for (int i = 0; i < nGroupsInCol_; i++) {
139 >      int gid = cgColToGlobal[i];
140 >      for (int j = 0; j < nAtomsInCol_; j++) {
141 >        int aid = AtomColToGlobal[j];
142 >        if (globalGroupMembership[aid] == gid)
143 >          groupListCol_[i].push_back(j);
144 >      }      
145 >    }
146 >
147 >    skipsForRowAtom.clear();
148 >    skipsForRowAtom.reserve(nAtomsInRow_);
149 >    for (int i = 0; i < nAtomsInRow_; i++) {
150 >      int iglob = AtomColToGlobal[i];
151 >      for (int j = 0; j < nAtomsInCol_; j++) {
152 >        int jglob = AtomRowToGlobal[j];        
153 >        if (excludes.hasPair(iglob, jglob))
154 >          skipsForRowAtom[i].push_back(j);      
155 >      }      
156 >    }
157 >
158 >    toposForRowAtom.clear();
159 >    toposForRowAtom.reserve(nAtomsInRow_);
160 >    for (int i = 0; i < nAtomsInRow_; i++) {
161 >      int iglob = AtomColToGlobal[i];
162 >      int nTopos = 0;
163 >      for (int j = 0; j < nAtomsInCol_; j++) {
164 >        int jglob = AtomRowToGlobal[j];        
165 >        if (oneTwo.hasPair(iglob, jglob)) {
166 >          toposForRowAtom[i].push_back(j);
167 >          topoDistRow[i][nTopos] = 1;
168 >          nTopos++;
169 >        }
170 >        if (oneThree.hasPair(iglob, jglob)) {
171 >          toposForRowAtom[i].push_back(j);
172 >          topoDistRow[i][nTopos] = 2;
173 >          nTopos++;
174 >        }
175 >        if (oneFour.hasPair(iglob, jglob)) {
176 >          toposForRowAtom[i].push_back(j);
177 >          topoDistRow[i][nTopos] = 3;
178 >          nTopos++;
179 >        }
180 >      }      
181 >    }
182 >
183   #endif
184  
185 < /**
186 < * Constructor for ForceDecomposition Parallel Decomposition Method
187 < * Will try to construct a symmetric grid of processors. Ideally, the
188 < * number of processors will be a square ex: 4, 9, 16, 25.
189 < *
190 < */
185 >    groupList_.clear();
186 >    groupList_.reserve(nGroups_);
187 >    for (int i = 0; i < nGroups_; i++) {
188 >      int gid = cgLocalToGlobal[i];
189 >      for (int j = 0; j < nLocal_; j++) {
190 >        int aid = AtomLocalToGlobal[j];
191 >        if (globalGroupMembership[aid] == gid)
192 >          groupList_[i].push_back(j);
193 >      }      
194 >    }
195  
196 < ForceDecomposition::ForceDecomposition() {
196 >    skipsForLocalAtom.clear();
197 >    skipsForLocalAtom.reserve(nLocal_);
198  
199 +    for (int i = 0; i < nLocal_; i++) {
200 +      int iglob = AtomLocalToGlobal[i];
201 +      for (int j = 0; j < nLocal_; j++) {
202 +        int jglob = AtomLocalToGlobal[j];        
203 +        if (excludes.hasPair(iglob, jglob))
204 +          skipsForLocalAtom[i].push_back(j);      
205 +      }      
206 +    }
207 +
208 +    toposForLocalAtom.clear();
209 +    toposForLocalAtom.reserve(nLocal_);
210 +    for (int i = 0; i < nLocal_; i++) {
211 +      int iglob = AtomLocalToGlobal[i];
212 +      int nTopos = 0;
213 +      for (int j = 0; j < nLocal_; j++) {
214 +        int jglob = AtomLocalToGlobal[j];        
215 +        if (oneTwo.hasPair(iglob, jglob)) {
216 +          toposForLocalAtom[i].push_back(j);
217 +          topoDistLocal[i][nTopos] = 1;
218 +          nTopos++;
219 +        }
220 +        if (oneThree.hasPair(iglob, jglob)) {
221 +          toposForLocalAtom[i].push_back(j);
222 +          topoDistLocal[i][nTopos] = 2;
223 +          nTopos++;
224 +        }
225 +        if (oneFour.hasPair(iglob, jglob)) {
226 +          toposForLocalAtom[i].push_back(j);
227 +          topoDistLocal[i][nTopos] = 3;
228 +          nTopos++;
229 +        }
230 +      }      
231 +    }
232 +  }
233 +  
234 +  void ForceMatrixDecomposition::distributeData()  {
235 +    snap_ = sman_->getCurrentSnapshot();
236 +    storageLayout_ = sman_->getStorageLayout();
237   #ifdef IS_MPI
238 <  int nProcs = MPI::COMM_WORLD.Get_size();
239 <  int worldRank = MPI::COMM_WORLD.Get_rank();
240 < #endif
241 <
242 <  // First time through, construct column stride.
243 <  if (communicators.size() == 0)
244 <  {
245 <    int nColumnsMax = (int) round(sqrt((float) nProcs));
246 <    for (int i = 0; i < nProcs; ++i)
247 <    {
248 <      if (nProcs%i==0) nColumns=i;
238 >    
239 >    // gather up the atomic positions
240 >    AtomCommVectorRow->gather(snap_->atomData.position,
241 >                              atomRowData.position);
242 >    AtomCommVectorColumn->gather(snap_->atomData.position,
243 >                                 atomColData.position);
244 >    
245 >    // gather up the cutoff group positions
246 >    cgCommVectorRow->gather(snap_->cgData.position,
247 >                            cgRowData.position);
248 >    cgCommVectorColumn->gather(snap_->cgData.position,
249 >                               cgColData.position);
250 >    
251 >    // if needed, gather the atomic rotation matrices
252 >    if (storageLayout_ & DataStorage::dslAmat) {
253 >      AtomCommMatrixRow->gather(snap_->atomData.aMat,
254 >                                atomRowData.aMat);
255 >      AtomCommMatrixColumn->gather(snap_->atomData.aMat,
256 >                                   atomColData.aMat);
257      }
258 <
259 <    int nRows = nProcs/nColumns;    
260 <    myRank_ = (int) worldRank%nColumns;
258 >    
259 >    // if needed, gather the atomic eletrostatic frames
260 >    if (storageLayout_ & DataStorage::dslElectroFrame) {
261 >      AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
262 >                                atomRowData.electroFrame);
263 >      AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
264 >                                   atomColData.electroFrame);
265 >    }
266 > #endif      
267    }
268 <  else
269 <  {
270 <    myRank_ = myRank/nColumns;
268 >  
269 >  void ForceMatrixDecomposition::collectIntermediateData() {
270 >    snap_ = sman_->getCurrentSnapshot();
271 >    storageLayout_ = sman_->getStorageLayout();
272 > #ifdef IS_MPI
273 >    
274 >    if (storageLayout_ & DataStorage::dslDensity) {
275 >      
276 >      AtomCommRealRow->scatter(atomRowData.density,
277 >                               snap_->atomData.density);
278 >      
279 >      int n = snap_->atomData.density.size();
280 >      std::vector<RealType> rho_tmp(n, 0.0);
281 >      AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
282 >      for (int i = 0; i < n; i++)
283 >        snap_->atomData.density[i] += rho_tmp[i];
284 >    }
285 > #endif
286    }
121  MPI::Comm newComm = MPI:COMM_WORLD.Split(myRank_,0);
287    
288 <  isColumn_ = false;
288 >  void ForceMatrixDecomposition::distributeIntermediateData() {
289 >    snap_ = sman_->getCurrentSnapshot();
290 >    storageLayout_ = sman_->getStorageLayout();
291 > #ifdef IS_MPI
292 >    if (storageLayout_ & DataStorage::dslFunctional) {
293 >      AtomCommRealRow->gather(snap_->atomData.functional,
294 >                              atomRowData.functional);
295 >      AtomCommRealColumn->gather(snap_->atomData.functional,
296 >                                 atomColData.functional);
297 >    }
298 >    
299 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
300 >      AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
301 >                              atomRowData.functionalDerivative);
302 >      AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
303 >                                 atomColData.functionalDerivative);
304 >    }
305 > #endif
306 >  }
307    
308 < }
308 >  
309 >  void ForceMatrixDecomposition::collectData() {
310 >    snap_ = sman_->getCurrentSnapshot();
311 >    storageLayout_ = sman_->getStorageLayout();
312 > #ifdef IS_MPI    
313 >    int n = snap_->atomData.force.size();
314 >    vector<Vector3d> frc_tmp(n, V3Zero);
315 >    
316 >    AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
317 >    for (int i = 0; i < n; i++) {
318 >      snap_->atomData.force[i] += frc_tmp[i];
319 >      frc_tmp[i] = 0.0;
320 >    }
321 >    
322 >    AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
323 >    for (int i = 0; i < n; i++)
324 >      snap_->atomData.force[i] += frc_tmp[i];
325 >    
326 >    
327 >    if (storageLayout_ & DataStorage::dslTorque) {
328  
329 < ForceDecomposition::gather(sendbuf, receivebuf){
330 <  communicators(myIndex_).Allgatherv();
129 < }
329 >      int nt = snap_->atomData.force.size();
330 >      vector<Vector3d> trq_tmp(nt, V3Zero);
331  
332 +      AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
333 +      for (int i = 0; i < n; i++) {
334 +        snap_->atomData.torque[i] += trq_tmp[i];
335 +        trq_tmp[i] = 0.0;
336 +      }
337 +      
338 +      AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
339 +      for (int i = 0; i < n; i++)
340 +        snap_->atomData.torque[i] += trq_tmp[i];
341 +    }
342 +    
343 +    nLocal_ = snap_->getNumberOfAtoms();
344  
345 +    vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES,
346 +                                       vector<RealType> (nLocal_, 0.0));
347 +    
348 +    for (int i = 0; i < N_INTERACTION_FAMILIES; i++) {
349 +      AtomCommRealRow->scatter(pot_row[i], pot_temp[i]);
350 +      for (int ii = 0;  ii < pot_temp[i].size(); ii++ ) {
351 +        pot_local[i] += pot_temp[i][ii];
352 +      }
353 +    }
354 + #endif
355 +  }
356  
357 < ForceDecomposition::scatter(sbuffer, rbuffer){
358 <  communicators(myIndex_).Reduce_scatter(sbuffer, recevbuf. recvcounts, MPI::DOUBLE, MPI::SUM);
359 < }
357 >  int ForceMatrixDecomposition::getNAtomsInRow() {  
358 > #ifdef IS_MPI
359 >    return nAtomsInRow_;
360 > #else
361 >    return nLocal_;
362 > #endif
363 >  }
364  
365 +  /**
366 +   * returns the list of atoms belonging to this group.  
367 +   */
368 +  vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
369 + #ifdef IS_MPI
370 +    return groupListRow_[cg1];
371 + #else
372 +    return groupList_[cg1];
373 + #endif
374 +  }
375  
376 +  vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
377 + #ifdef IS_MPI
378 +    return groupListCol_[cg2];
379 + #else
380 +    return groupList_[cg2];
381 + #endif
382 +  }
383 +  
384 +  Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
385 +    Vector3d d;
386 +    
387 + #ifdef IS_MPI
388 +    d = cgColData.position[cg2] - cgRowData.position[cg1];
389 + #else
390 +    d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
391 + #endif
392 +    
393 +    snap_->wrapVector(d);
394 +    return d;    
395 +  }
396 +
397 +
398 +  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
399 +
400 +    Vector3d d;
401 +    
402 + #ifdef IS_MPI
403 +    d = cgRowData.position[cg1] - atomRowData.position[atom1];
404 + #else
405 +    d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
406 + #endif
407 +
408 +    snap_->wrapVector(d);
409 +    return d;    
410 +  }
411 +  
412 +  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
413 +    Vector3d d;
414 +    
415 + #ifdef IS_MPI
416 +    d = cgColData.position[cg2] - atomColData.position[atom2];
417 + #else
418 +    d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
419 + #endif
420 +    
421 +    snap_->wrapVector(d);
422 +    return d;    
423 +  }
424 +
425 +  RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
426 + #ifdef IS_MPI
427 +    return massFactorsRow[atom1];
428 + #else
429 +    return massFactorsLocal[atom1];
430 + #endif
431 +  }
432 +
433 +  RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
434 + #ifdef IS_MPI
435 +    return massFactorsCol[atom2];
436 + #else
437 +    return massFactorsLocal[atom2];
438 + #endif
439 +
440 +  }
441 +    
442 +  Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
443 +    Vector3d d;
444 +    
445 + #ifdef IS_MPI
446 +    d = atomColData.position[atom2] - atomRowData.position[atom1];
447 + #else
448 +    d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
449 + #endif
450 +
451 +    snap_->wrapVector(d);
452 +    return d;    
453 +  }
454 +
455 +  vector<int> ForceMatrixDecomposition::getSkipsForRowAtom(int atom1) {
456 + #ifdef IS_MPI
457 +    return skipsForRowAtom[atom1];
458 + #else
459 +    return skipsForLocalAtom[atom1];
460 + #endif
461 +  }
462 +
463 +  /**
464 +   * there are a number of reasons to skip a pair or a particle mostly
465 +   * we do this to exclude atoms who are involved in short range
466 +   * interactions (bonds, bends, torsions), but we also need to
467 +   * exclude some overcounted interactions that result from the
468 +   * parallel decomposition.
469 +   */
470 +  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
471 +    int unique_id_1, unique_id_2;
472 +
473 + #ifdef IS_MPI
474 +    // in MPI, we have to look up the unique IDs for each atom
475 +    unique_id_1 = AtomRowToGlobal[atom1];
476 +    unique_id_2 = AtomColToGlobal[atom2];
477 +
478 +    // this situation should only arise in MPI simulations
479 +    if (unique_id_1 == unique_id_2) return true;
480 +    
481 +    // this prevents us from doing the pair on multiple processors
482 +    if (unique_id_1 < unique_id_2) {
483 +      if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
484 +    } else {
485 +      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
486 +    }
487 + #else
488 +    // in the normal loop, the atom numbers are unique
489 +    unique_id_1 = atom1;
490 +    unique_id_2 = atom2;
491 + #endif
492 +    
493 + #ifdef IS_MPI
494 +    for (vector<int>::iterator i = skipsForRowAtom[atom1].begin();
495 +         i != skipsForRowAtom[atom1].end(); ++i) {
496 +      if ( (*i) == unique_id_2 ) return true;
497 +    }    
498 + #else
499 +    for (vector<int>::iterator i = skipsForLocalAtom[atom1].begin();
500 +         i != skipsForLocalAtom[atom1].end(); ++i) {
501 +      if ( (*i) == unique_id_2 ) return true;
502 +    }    
503 + #endif
504 +  }
505 +
506 +  int ForceMatrixDecomposition::getTopoDistance(int atom1, int atom2) {
507 +    
508 + #ifdef IS_MPI
509 +    for (int i = 0; i < toposForRowAtom[atom1].size(); i++) {
510 +      if ( toposForRowAtom[atom1][i] == atom2 ) return topoDistRow[atom1][i];
511 +    }
512 + #else
513 +    for (int i = 0; i < toposForLocalAtom[atom1].size(); i++) {
514 +      if ( toposForLocalAtom[atom1][i] == atom2 ) return topoDistLocal[atom1][i];
515 +    }
516 + #endif
517 +
518 +    // zero is default for unconnected (i.e. normal) pair interactions
519 +    return 0;
520 +  }
521 +
522 +  void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
523 + #ifdef IS_MPI
524 +    atomRowData.force[atom1] += fg;
525 + #else
526 +    snap_->atomData.force[atom1] += fg;
527 + #endif
528 +  }
529 +
530 +  void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
531 + #ifdef IS_MPI
532 +    atomColData.force[atom2] += fg;
533 + #else
534 +    snap_->atomData.force[atom2] += fg;
535 + #endif
536 +  }
537 +
538 +    // filling interaction blocks with pointers
539 +  InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) {    
540 +    InteractionData idat;
541 +
542 + #ifdef IS_MPI
543 +    if (storageLayout_ & DataStorage::dslAmat) {
544 +      idat.A1 = &(atomRowData.aMat[atom1]);
545 +      idat.A2 = &(atomColData.aMat[atom2]);
546 +    }
547 +    
548 +    if (storageLayout_ & DataStorage::dslElectroFrame) {
549 +      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
550 +      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
551 +    }
552 +
553 +    if (storageLayout_ & DataStorage::dslTorque) {
554 +      idat.t1 = &(atomRowData.torque[atom1]);
555 +      idat.t2 = &(atomColData.torque[atom2]);
556 +    }
557 +
558 +    if (storageLayout_ & DataStorage::dslDensity) {
559 +      idat.rho1 = &(atomRowData.density[atom1]);
560 +      idat.rho2 = &(atomColData.density[atom2]);
561 +    }
562 +
563 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
564 +      idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
565 +      idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
566 +    }
567 +
568 + #else
569 +    if (storageLayout_ & DataStorage::dslAmat) {
570 +      idat.A1 = &(snap_->atomData.aMat[atom1]);
571 +      idat.A2 = &(snap_->atomData.aMat[atom2]);
572 +    }
573 +
574 +    if (storageLayout_ & DataStorage::dslElectroFrame) {
575 +      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
576 +      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
577 +    }
578 +
579 +    if (storageLayout_ & DataStorage::dslTorque) {
580 +      idat.t1 = &(snap_->atomData.torque[atom1]);
581 +      idat.t2 = &(snap_->atomData.torque[atom2]);
582 +    }
583 +
584 +    if (storageLayout_ & DataStorage::dslDensity) {
585 +      idat.rho1 = &(snap_->atomData.density[atom1]);
586 +      idat.rho2 = &(snap_->atomData.density[atom2]);
587 +    }
588 +
589 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
590 +      idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
591 +      idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
592 +    }
593 + #endif
594 +    return idat;
595 +  }
596 +
597 +  InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){
598 +
599 +    InteractionData idat;
600 + #ifdef IS_MPI
601 +    if (storageLayout_ & DataStorage::dslElectroFrame) {
602 +      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
603 +      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
604 +    }
605 +    if (storageLayout_ & DataStorage::dslTorque) {
606 +      idat.t1 = &(atomRowData.torque[atom1]);
607 +      idat.t2 = &(atomColData.torque[atom2]);
608 +    }
609 +    if (storageLayout_ & DataStorage::dslForce) {
610 +      idat.t1 = &(atomRowData.force[atom1]);
611 +      idat.t2 = &(atomColData.force[atom2]);
612 +    }
613 + #else
614 +    if (storageLayout_ & DataStorage::dslElectroFrame) {
615 +      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
616 +      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
617 +    }
618 +    if (storageLayout_ & DataStorage::dslTorque) {
619 +      idat.t1 = &(snap_->atomData.torque[atom1]);
620 +      idat.t2 = &(snap_->atomData.torque[atom2]);
621 +    }
622 +    if (storageLayout_ & DataStorage::dslForce) {
623 +      idat.t1 = &(snap_->atomData.force[atom1]);
624 +      idat.t2 = &(snap_->atomData.force[atom2]);
625 +    }
626 + #endif
627 +    
628 +  }
629 +
630 +
631 +
632 +
633 +  /*
634 +   * buildNeighborList
635 +   *
636 +   * first element of pair is row-indexed CutoffGroup
637 +   * second element of pair is column-indexed CutoffGroup
638 +   */
639 +  vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
640 +      
641 +    vector<pair<int, int> > neighborList;
642 + #ifdef IS_MPI
643 +    cellListRow_.clear();
644 +    cellListCol_.clear();
645 + #else
646 +    cellList_.clear();
647 + #endif
648 +
649 +    // dangerous to not do error checking.
650 +    RealType rCut_;
651 +
652 +    RealType rList_ = (rCut_ + skinThickness_);
653 +    RealType rl2 = rList_ * rList_;
654 +    Snapshot* snap_ = sman_->getCurrentSnapshot();
655 +    Mat3x3d Hmat = snap_->getHmat();
656 +    Vector3d Hx = Hmat.getColumn(0);
657 +    Vector3d Hy = Hmat.getColumn(1);
658 +    Vector3d Hz = Hmat.getColumn(2);
659 +
660 +    nCells_.x() = (int) ( Hx.length() )/ rList_;
661 +    nCells_.y() = (int) ( Hy.length() )/ rList_;
662 +    nCells_.z() = (int) ( Hz.length() )/ rList_;
663 +
664 +    Mat3x3d invHmat = snap_->getInvHmat();
665 +    Vector3d rs, scaled, dr;
666 +    Vector3i whichCell;
667 +    int cellIndex;
668 +
669 + #ifdef IS_MPI
670 +    for (int i = 0; i < nGroupsInRow_; i++) {
671 +      rs = cgRowData.position[i];
672 +      // scaled positions relative to the box vectors
673 +      scaled = invHmat * rs;
674 +      // wrap the vector back into the unit box by subtracting integer box
675 +      // numbers
676 +      for (int j = 0; j < 3; j++)
677 +        scaled[j] -= roundMe(scaled[j]);
678 +    
679 +      // find xyz-indices of cell that cutoffGroup is in.
680 +      whichCell.x() = nCells_.x() * scaled.x();
681 +      whichCell.y() = nCells_.y() * scaled.y();
682 +      whichCell.z() = nCells_.z() * scaled.z();
683 +
684 +      // find single index of this cell:
685 +      cellIndex = Vlinear(whichCell, nCells_);
686 +      // add this cutoff group to the list of groups in this cell;
687 +      cellListRow_[cellIndex].push_back(i);
688 +    }
689 +
690 +    for (int i = 0; i < nGroupsInCol_; i++) {
691 +      rs = cgColData.position[i];
692 +      // scaled positions relative to the box vectors
693 +      scaled = invHmat * rs;
694 +      // wrap the vector back into the unit box by subtracting integer box
695 +      // numbers
696 +      for (int j = 0; j < 3; j++)
697 +        scaled[j] -= roundMe(scaled[j]);
698 +
699 +      // find xyz-indices of cell that cutoffGroup is in.
700 +      whichCell.x() = nCells_.x() * scaled.x();
701 +      whichCell.y() = nCells_.y() * scaled.y();
702 +      whichCell.z() = nCells_.z() * scaled.z();
703 +
704 +      // find single index of this cell:
705 +      cellIndex = Vlinear(whichCell, nCells_);
706 +      // add this cutoff group to the list of groups in this cell;
707 +      cellListCol_[cellIndex].push_back(i);
708 +    }
709 + #else
710 +    for (int i = 0; i < nGroups_; i++) {
711 +      rs = snap_->cgData.position[i];
712 +      // scaled positions relative to the box vectors
713 +      scaled = invHmat * rs;
714 +      // wrap the vector back into the unit box by subtracting integer box
715 +      // numbers
716 +      for (int j = 0; j < 3; j++)
717 +        scaled[j] -= roundMe(scaled[j]);
718 +
719 +      // find xyz-indices of cell that cutoffGroup is in.
720 +      whichCell.x() = nCells_.x() * scaled.x();
721 +      whichCell.y() = nCells_.y() * scaled.y();
722 +      whichCell.z() = nCells_.z() * scaled.z();
723 +
724 +      // find single index of this cell:
725 +      cellIndex = Vlinear(whichCell, nCells_);
726 +      // add this cutoff group to the list of groups in this cell;
727 +      cellList_[cellIndex].push_back(i);
728 +    }
729 + #endif
730 +
731 +
732 +
733 +    for (int m1z = 0; m1z < nCells_.z(); m1z++) {
734 +      for (int m1y = 0; m1y < nCells_.y(); m1y++) {
735 +        for (int m1x = 0; m1x < nCells_.x(); m1x++) {
736 +          Vector3i m1v(m1x, m1y, m1z);
737 +          int m1 = Vlinear(m1v, nCells_);
738 +
739 +          for (vector<Vector3i>::iterator os = cellOffsets_.begin();
740 +               os != cellOffsets_.end(); ++os) {
741 +            
742 +            Vector3i m2v = m1v + (*os);
743 +            
744 +            if (m2v.x() >= nCells_.x()) {
745 +              m2v.x() = 0;          
746 +            } else if (m2v.x() < 0) {
747 +              m2v.x() = nCells_.x() - 1;
748 +            }
749 +            
750 +            if (m2v.y() >= nCells_.y()) {
751 +              m2v.y() = 0;          
752 +            } else if (m2v.y() < 0) {
753 +              m2v.y() = nCells_.y() - 1;
754 +            }
755 +            
756 +            if (m2v.z() >= nCells_.z()) {
757 +              m2v.z() = 0;          
758 +            } else if (m2v.z() < 0) {
759 +              m2v.z() = nCells_.z() - 1;
760 +            }
761 +            
762 +            int m2 = Vlinear (m2v, nCells_);
763 +
764 + #ifdef IS_MPI
765 +            for (vector<int>::iterator j1 = cellListRow_[m1].begin();
766 +                 j1 != cellListRow_[m1].end(); ++j1) {
767 +              for (vector<int>::iterator j2 = cellListCol_[m2].begin();
768 +                   j2 != cellListCol_[m2].end(); ++j2) {
769 +                              
770 +                // Always do this if we're in different cells or if
771 +                // we're in the same cell and the global index of the
772 +                // j2 cutoff group is less than the j1 cutoff group
773 +
774 +                if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
775 +                  dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
776 +                  snap_->wrapVector(dr);
777 +                  if (dr.lengthSquare() < rl2) {
778 +                    neighborList.push_back(make_pair((*j1), (*j2)));
779 +                  }
780 +                }
781 +              }
782 +            }
783 + #else
784 +            for (vector<int>::iterator j1 = cellList_[m1].begin();
785 +                 j1 != cellList_[m1].end(); ++j1) {
786 +              for (vector<int>::iterator j2 = cellList_[m2].begin();
787 +                   j2 != cellList_[m2].end(); ++j2) {
788 +                              
789 +                // Always do this if we're in different cells or if
790 +                // we're in the same cell and the global index of the
791 +                // j2 cutoff group is less than the j1 cutoff group
792 +
793 +                if (m2 != m1 || (*j2) < (*j1)) {
794 +                  dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
795 +                  snap_->wrapVector(dr);
796 +                  if (dr.lengthSquare() < rl2) {
797 +                    neighborList.push_back(make_pair((*j1), (*j2)));
798 +                  }
799 +                }
800 +              }
801 +            }
802 + #endif
803 +          }
804 +        }
805 +      }
806 +    }
807 +
808 +    // save the local cutoff group positions for the check that is
809 +    // done on each loop:
810 +    saved_CG_positions_.clear();
811 +    for (int i = 0; i < nGroups_; i++)
812 +      saved_CG_positions_.push_back(snap_->cgData.position[i]);
813 +
814 +    return neighborList;
815 +  }
816 + } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines