ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
Revision: 1567
Committed: Tue May 24 21:24:45 2011 UTC (13 years, 11 months ago) by gezelter
Original Path: branches/development/src/parallel/ForceMatrixDecomposition.cpp
File size: 21025 byte(s)
Log Message:
Fixed some busted stuff in buildNeighborList

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41 #include "parallel/ForceMatrixDecomposition.hpp"
42 #include "math/SquareMatrix3.hpp"
43 #include "nonbonded/NonBondedInteraction.hpp"
44 #include "brains/SnapshotManager.hpp"
45
46 using namespace std;
47 namespace OpenMD {
48
49 /**
50 * distributeInitialData is essentially a copy of the older fortran
51 * SimulationSetup
52 */
53
54 void ForceMatrixDecomposition::distributeInitialData() {
55 snap_ = sman_->getCurrentSnapshot();
56 storageLayout_ = sman_->getStorageLayout();
57 nLocal_ = snap_->getNumberOfAtoms();
58 nGroups_ = snap_->getNumberOfCutoffGroups();
59
60 #ifdef IS_MPI
61
62 AtomCommIntRow = new Communicator<Row,int>(nLocal_);
63 AtomCommRealRow = new Communicator<Row,RealType>(nLocal_);
64 AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_);
65 AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_);
66
67 AtomCommIntColumn = new Communicator<Column,int>(nLocal_);
68 AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_);
69 AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_);
70 AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_);
71
72 cgCommIntRow = new Communicator<Row,int>(nGroups_);
73 cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_);
74 cgCommIntColumn = new Communicator<Column,int>(nGroups_);
75 cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_);
76
77 nAtomsInRow_ = AtomCommIntRow->getSize();
78 nAtomsInCol_ = AtomCommIntColumn->getSize();
79 nGroupsInRow_ = cgCommIntRow->getSize();
80 nGroupsInCol_ = cgCommIntColumn->getSize();
81
82 // Modify the data storage objects with the correct layouts and sizes:
83 atomRowData.resize(nAtomsInRow_);
84 atomRowData.setStorageLayout(storageLayout_);
85 atomColData.resize(nAtomsInCol_);
86 atomColData.setStorageLayout(storageLayout_);
87 cgRowData.resize(nGroupsInRow_);
88 cgRowData.setStorageLayout(DataStorage::dslPosition);
89 cgColData.resize(nGroupsInCol_);
90 cgColData.setStorageLayout(DataStorage::dslPosition);
91
92 vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES,
93 vector<RealType> (nAtomsInRow_, 0.0));
94 vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES,
95 vector<RealType> (nAtomsInCol_, 0.0));
96
97
98 vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0);
99
100 // gather the information for atomtype IDs (atids):
101 vector<int> identsLocal = info_->getIdentArray();
102 identsRow.reserve(nAtomsInRow_);
103 identsCol.reserve(nAtomsInCol_);
104
105 AtomCommIntRow->gather(identsLocal, identsRow);
106 AtomCommIntColumn->gather(identsLocal, identsCol);
107
108 AtomLocalToGlobal = info_->getGlobalAtomIndices();
109 AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
110 AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
111
112 cgLocalToGlobal = info_->getGlobalGroupIndices();
113 cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
114 cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
115
116 // still need:
117 // topoDist
118 // exclude
119 #endif
120 }
121
122
123
124 void ForceMatrixDecomposition::distributeData() {
125 snap_ = sman_->getCurrentSnapshot();
126 storageLayout_ = sman_->getStorageLayout();
127 #ifdef IS_MPI
128
129 // gather up the atomic positions
130 AtomCommVectorRow->gather(snap_->atomData.position,
131 atomRowData.position);
132 AtomCommVectorColumn->gather(snap_->atomData.position,
133 atomColData.position);
134
135 // gather up the cutoff group positions
136 cgCommVectorRow->gather(snap_->cgData.position,
137 cgRowData.position);
138 cgCommVectorColumn->gather(snap_->cgData.position,
139 cgColData.position);
140
141 // if needed, gather the atomic rotation matrices
142 if (storageLayout_ & DataStorage::dslAmat) {
143 AtomCommMatrixRow->gather(snap_->atomData.aMat,
144 atomRowData.aMat);
145 AtomCommMatrixColumn->gather(snap_->atomData.aMat,
146 atomColData.aMat);
147 }
148
149 // if needed, gather the atomic eletrostatic frames
150 if (storageLayout_ & DataStorage::dslElectroFrame) {
151 AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
152 atomRowData.electroFrame);
153 AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
154 atomColData.electroFrame);
155 }
156 #endif
157 }
158
159 void ForceMatrixDecomposition::collectIntermediateData() {
160 snap_ = sman_->getCurrentSnapshot();
161 storageLayout_ = sman_->getStorageLayout();
162 #ifdef IS_MPI
163
164 if (storageLayout_ & DataStorage::dslDensity) {
165
166 AtomCommRealRow->scatter(atomRowData.density,
167 snap_->atomData.density);
168
169 int n = snap_->atomData.density.size();
170 std::vector<RealType> rho_tmp(n, 0.0);
171 AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
172 for (int i = 0; i < n; i++)
173 snap_->atomData.density[i] += rho_tmp[i];
174 }
175 #endif
176 }
177
178 void ForceMatrixDecomposition::distributeIntermediateData() {
179 snap_ = sman_->getCurrentSnapshot();
180 storageLayout_ = sman_->getStorageLayout();
181 #ifdef IS_MPI
182 if (storageLayout_ & DataStorage::dslFunctional) {
183 AtomCommRealRow->gather(snap_->atomData.functional,
184 atomRowData.functional);
185 AtomCommRealColumn->gather(snap_->atomData.functional,
186 atomColData.functional);
187 }
188
189 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
190 AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
191 atomRowData.functionalDerivative);
192 AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
193 atomColData.functionalDerivative);
194 }
195 #endif
196 }
197
198
199 void ForceMatrixDecomposition::collectData() {
200 snap_ = sman_->getCurrentSnapshot();
201 storageLayout_ = sman_->getStorageLayout();
202 #ifdef IS_MPI
203 int n = snap_->atomData.force.size();
204 vector<Vector3d> frc_tmp(n, V3Zero);
205
206 AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
207 for (int i = 0; i < n; i++) {
208 snap_->atomData.force[i] += frc_tmp[i];
209 frc_tmp[i] = 0.0;
210 }
211
212 AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
213 for (int i = 0; i < n; i++)
214 snap_->atomData.force[i] += frc_tmp[i];
215
216
217 if (storageLayout_ & DataStorage::dslTorque) {
218
219 int nt = snap_->atomData.force.size();
220 vector<Vector3d> trq_tmp(nt, V3Zero);
221
222 AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
223 for (int i = 0; i < n; i++) {
224 snap_->atomData.torque[i] += trq_tmp[i];
225 trq_tmp[i] = 0.0;
226 }
227
228 AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
229 for (int i = 0; i < n; i++)
230 snap_->atomData.torque[i] += trq_tmp[i];
231 }
232
233 nLocal_ = snap_->getNumberOfAtoms();
234
235 vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES,
236 vector<RealType> (nLocal_, 0.0));
237
238 for (int i = 0; i < N_INTERACTION_FAMILIES; i++) {
239 AtomCommRealRow->scatter(pot_row[i], pot_temp[i]);
240 for (int ii = 0; ii < pot_temp[i].size(); ii++ ) {
241 pot_local[i] += pot_temp[i][ii];
242 }
243 }
244 #endif
245 }
246
247
248 Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
249 Vector3d d;
250
251 #ifdef IS_MPI
252 d = cgColData.position[cg2] - cgRowData.position[cg1];
253 #else
254 d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
255 #endif
256
257 snap_->wrapVector(d);
258 return d;
259 }
260
261
262 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
263
264 Vector3d d;
265
266 #ifdef IS_MPI
267 d = cgRowData.position[cg1] - atomRowData.position[atom1];
268 #else
269 d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
270 #endif
271
272 snap_->wrapVector(d);
273 return d;
274 }
275
276 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
277 Vector3d d;
278
279 #ifdef IS_MPI
280 d = cgColData.position[cg2] - atomColData.position[atom2];
281 #else
282 d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
283 #endif
284
285 snap_->wrapVector(d);
286 return d;
287 }
288
289 Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
290 Vector3d d;
291
292 #ifdef IS_MPI
293 d = atomColData.position[atom2] - atomRowData.position[atom1];
294 #else
295 d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
296 #endif
297
298 snap_->wrapVector(d);
299 return d;
300 }
301
302 void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
303 #ifdef IS_MPI
304 atomRowData.force[atom1] += fg;
305 #else
306 snap_->atomData.force[atom1] += fg;
307 #endif
308 }
309
310 void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
311 #ifdef IS_MPI
312 atomColData.force[atom2] += fg;
313 #else
314 snap_->atomData.force[atom2] += fg;
315 #endif
316 }
317
318 // filling interaction blocks with pointers
319 InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) {
320 InteractionData idat;
321
322 #ifdef IS_MPI
323 if (storageLayout_ & DataStorage::dslAmat) {
324 idat.A1 = &(atomRowData.aMat[atom1]);
325 idat.A2 = &(atomColData.aMat[atom2]);
326 }
327
328 if (storageLayout_ & DataStorage::dslElectroFrame) {
329 idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
330 idat.eFrame2 = &(atomColData.electroFrame[atom2]);
331 }
332
333 if (storageLayout_ & DataStorage::dslTorque) {
334 idat.t1 = &(atomRowData.torque[atom1]);
335 idat.t2 = &(atomColData.torque[atom2]);
336 }
337
338 if (storageLayout_ & DataStorage::dslDensity) {
339 idat.rho1 = &(atomRowData.density[atom1]);
340 idat.rho2 = &(atomColData.density[atom2]);
341 }
342
343 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
344 idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
345 idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
346 }
347 #else
348 if (storageLayout_ & DataStorage::dslAmat) {
349 idat.A1 = &(snap_->atomData.aMat[atom1]);
350 idat.A2 = &(snap_->atomData.aMat[atom2]);
351 }
352
353 if (storageLayout_ & DataStorage::dslElectroFrame) {
354 idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
355 idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
356 }
357
358 if (storageLayout_ & DataStorage::dslTorque) {
359 idat.t1 = &(snap_->atomData.torque[atom1]);
360 idat.t2 = &(snap_->atomData.torque[atom2]);
361 }
362
363 if (storageLayout_ & DataStorage::dslDensity) {
364 idat.rho1 = &(snap_->atomData.density[atom1]);
365 idat.rho2 = &(snap_->atomData.density[atom2]);
366 }
367
368 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
369 idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
370 idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
371 }
372 #endif
373 return idat;
374 }
375
376 InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){
377
378 InteractionData idat;
379 #ifdef IS_MPI
380 if (storageLayout_ & DataStorage::dslElectroFrame) {
381 idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
382 idat.eFrame2 = &(atomColData.electroFrame[atom2]);
383 }
384 if (storageLayout_ & DataStorage::dslTorque) {
385 idat.t1 = &(atomRowData.torque[atom1]);
386 idat.t2 = &(atomColData.torque[atom2]);
387 }
388 if (storageLayout_ & DataStorage::dslForce) {
389 idat.t1 = &(atomRowData.force[atom1]);
390 idat.t2 = &(atomColData.force[atom2]);
391 }
392 #else
393 if (storageLayout_ & DataStorage::dslElectroFrame) {
394 idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
395 idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
396 }
397 if (storageLayout_ & DataStorage::dslTorque) {
398 idat.t1 = &(snap_->atomData.torque[atom1]);
399 idat.t2 = &(snap_->atomData.torque[atom2]);
400 }
401 if (storageLayout_ & DataStorage::dslForce) {
402 idat.t1 = &(snap_->atomData.force[atom1]);
403 idat.t2 = &(snap_->atomData.force[atom2]);
404 }
405 #endif
406
407 }
408
409 SelfData ForceMatrixDecomposition::fillSelfData(int atom1) {
410 SelfData sdat;
411 // Still Missing atype, skippedCharge, potVec pot,
412 if (storageLayout_ & DataStorage::dslElectroFrame) {
413 sdat.eFrame = &(snap_->atomData.electroFrame[atom1]);
414 }
415
416 if (storageLayout_ & DataStorage::dslTorque) {
417 sdat.t = &(snap_->atomData.torque[atom1]);
418 }
419
420 if (storageLayout_ & DataStorage::dslDensity) {
421 sdat.rho = &(snap_->atomData.density[atom1]);
422 }
423
424 if (storageLayout_ & DataStorage::dslFunctional) {
425 sdat.frho = &(snap_->atomData.functional[atom1]);
426 }
427
428 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
429 sdat.dfrhodrho = &(snap_->atomData.functionalDerivative[atom1]);
430 }
431
432 return sdat;
433 }
434
435
436
437 /*
438 * buildNeighborList
439 *
440 * first element of pair is row-indexed CutoffGroup
441 * second element of pair is column-indexed CutoffGroup
442 */
443 vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
444
445 vector<pair<int, int> > neighborList;
446 #ifdef IS_MPI
447 CellListRow.clear();
448 CellListCol.clear();
449 #else
450 CellList.clear();
451 #endif
452
453 // dangerous to not do error checking.
454 RealType skinThickness_ = info_->getSimParams()->getSkinThickness();
455 RealType rCut_;
456
457 RealType rList_ = (rCut_ + skinThickness_);
458 RealType rl2 = rList_ * rList_;
459 Snapshot* snap_ = sman_->getCurrentSnapshot();
460 Mat3x3d Hmat = snap_->getHmat();
461 Vector3d Hx = Hmat.getColumn(0);
462 Vector3d Hy = Hmat.getColumn(1);
463 Vector3d Hz = Hmat.getColumn(2);
464 Vector3i nCells;
465
466 nCells.x() = (int) ( Hx.length() )/ rList_;
467 nCells.y() = (int) ( Hy.length() )/ rList_;
468 nCells.z() = (int) ( Hz.length() )/ rList_;
469
470 Mat3x3d invHmat = snap_->getInvHmat();
471 Vector3d rs, scaled, dr;
472 Vector3i whichCell;
473 int cellIndex;
474
475 #ifdef IS_MPI
476 for (int i = 0; i < nGroupsInRow_; i++) {
477 rs = cgRowData.position[i];
478 // scaled positions relative to the box vectors
479 scaled = invHmat * rs;
480 // wrap the vector back into the unit box by subtracting integer box
481 // numbers
482 for (int j = 0; j < 3; j++)
483 scaled[j] -= roundMe(scaled[j]);
484
485 // find xyz-indices of cell that cutoffGroup is in.
486 whichCell.x() = nCells.x() * scaled.x();
487 whichCell.y() = nCells.y() * scaled.y();
488 whichCell.z() = nCells.z() * scaled.z();
489
490 // find single index of this cell:
491 cellIndex = Vlinear(whichCell, nCells);
492 // add this cutoff group to the list of groups in this cell;
493 CellListRow[cellIndex].push_back(i);
494 }
495
496 for (int i = 0; i < nGroupsInCol_; i++) {
497 rs = cgColData.position[i];
498 // scaled positions relative to the box vectors
499 scaled = invHmat * rs;
500 // wrap the vector back into the unit box by subtracting integer box
501 // numbers
502 for (int j = 0; j < 3; j++)
503 scaled[j] -= roundMe(scaled[j]);
504
505 // find xyz-indices of cell that cutoffGroup is in.
506 whichCell.x() = nCells.x() * scaled.x();
507 whichCell.y() = nCells.y() * scaled.y();
508 whichCell.z() = nCells.z() * scaled.z();
509
510 // find single index of this cell:
511 cellIndex = Vlinear(whichCell, nCells);
512 // add this cutoff group to the list of groups in this cell;
513 CellListCol[cellIndex].push_back(i);
514 }
515 #else
516 for (int i = 0; i < nGroups_; i++) {
517 rs = snap_->cgData.position[i];
518 // scaled positions relative to the box vectors
519 scaled = invHmat * rs;
520 // wrap the vector back into the unit box by subtracting integer box
521 // numbers
522 for (int j = 0; j < 3; j++)
523 scaled[j] -= roundMe(scaled[j]);
524
525 // find xyz-indices of cell that cutoffGroup is in.
526 whichCell.x() = nCells.x() * scaled.x();
527 whichCell.y() = nCells.y() * scaled.y();
528 whichCell.z() = nCells.z() * scaled.z();
529
530 // find single index of this cell:
531 cellIndex = Vlinear(whichCell, nCells);
532 // add this cutoff group to the list of groups in this cell;
533 CellList[cellIndex].push_back(i);
534 }
535 #endif
536
537
538
539 for (int m1z = 0; m1z < nCells.z(); m1z++) {
540 for (int m1y = 0; m1y < nCells.y(); m1y++) {
541 for (int m1x = 0; m1x < nCells.x(); m1x++) {
542 Vector3i m1v(m1x, m1y, m1z);
543 int m1 = Vlinear(m1v, nCells);
544 for (int offset = 0; offset < nOffset_; offset++) {
545 Vector3i m2v = m1v + cellOffsets_[offset];
546
547 if (m2v.x() >= nCells.x()) {
548 m2v.x() = 0;
549 } else if (m2v.x() < 0) {
550 m2v.x() = nCells.x() - 1;
551 }
552
553 if (m2v.y() >= nCells.y()) {
554 m2v.y() = 0;
555 } else if (m2v.y() < 0) {
556 m2v.y() = nCells.y() - 1;
557 }
558
559 if (m2v.z() >= nCells.z()) {
560 m2v.z() = 0;
561 } else if (m2v.z() < 0) {
562 m2v.z() = nCells.z() - 1;
563 }
564
565 int m2 = Vlinear (m2v, nCells);
566
567 #ifdef IS_MPI
568 for (vector<int>::iterator j1 = CellListRow[m1].begin();
569 j1 != CellListRow[m1].end(); ++j1) {
570 for (vector<int>::iterator j2 = CellListCol[m2].begin();
571 j2 != CellListCol[m2].end(); ++j2) {
572
573 // Always do this if we're in different cells or if
574 // we're in the same cell and the global index of the
575 // j2 cutoff group is less than the j1 cutoff group
576
577 if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
578 dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
579 snap_->wrapVector(dr);
580 if (dr.lengthSquare() < rl2) {
581 neighborList.push_back(make_pair((*j1), (*j2)));
582 }
583 }
584 }
585 }
586 #else
587 for (vector<int>::iterator j1 = CellList[m1].begin();
588 j1 != CellList[m1].end(); ++j1) {
589 for (vector<int>::iterator j2 = CellList[m2].begin();
590 j2 != CellList[m2].end(); ++j2) {
591
592 // Always do this if we're in different cells or if
593 // we're in the same cell and the global index of the
594 // j2 cutoff group is less than the j1 cutoff group
595
596 if (m2 != m1 || (*j2) < (*j1)) {
597 dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
598 snap_->wrapVector(dr);
599 if (dr.lengthSquare() < rl2) {
600 neighborList.push_back(make_pair((*j1), (*j2)));
601 }
602 }
603 }
604 }
605 #endif
606 }
607 }
608 }
609 }
610 return neighborList;
611 }
612 } //end namespace OpenMD