ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing:
branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 1581 by gezelter, Mon Jun 13 22:13:12 2011 UTC vs.
trunk/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 2057 by gezelter, Tue Mar 3 15:22:26 2015 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42   #include "parallel/ForceMatrixDecomposition.hpp"
43   #include "math/SquareMatrix3.hpp"
# Line 47 | Line 48 | namespace OpenMD {
48   using namespace std;
49   namespace OpenMD {
50  
51 +  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52 +
53 +    // Row and colum scans must visit all surrounding cells
54 +    cellOffsets_.clear();
55 +    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
56 +    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
57 +    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                          
58 +    cellOffsets_.push_back( Vector3i(-1, 0,-1) );
59 +    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
60 +    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
61 +    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
62 +    cellOffsets_.push_back( Vector3i( 0, 1,-1) );      
63 +    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
64 +    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
65 +    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
66 +    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
67 +    cellOffsets_.push_back( Vector3i(-1, 0, 0) );      
68 +    cellOffsets_.push_back( Vector3i( 0, 0, 0) );
69 +    cellOffsets_.push_back( Vector3i( 1, 0, 0) );
70 +    cellOffsets_.push_back( Vector3i(-1, 1, 0) );
71 +    cellOffsets_.push_back( Vector3i( 0, 1, 0) );
72 +    cellOffsets_.push_back( Vector3i( 1, 1, 0) );
73 +    cellOffsets_.push_back( Vector3i(-1,-1, 1) );
74 +    cellOffsets_.push_back( Vector3i( 0,-1, 1) );
75 +    cellOffsets_.push_back( Vector3i( 1,-1, 1) );
76 +    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
77 +    cellOffsets_.push_back( Vector3i( 0, 0, 1) );
78 +    cellOffsets_.push_back( Vector3i( 1, 0, 1) );
79 +    cellOffsets_.push_back( Vector3i(-1, 1, 1) );
80 +    cellOffsets_.push_back( Vector3i( 0, 1, 1) );
81 +    cellOffsets_.push_back( Vector3i( 1, 1, 1) );
82 +  }
83 +
84 +
85    /**
86     * distributeInitialData is essentially a copy of the older fortran
87     * SimulationSetup
88     */
54  
89    void ForceMatrixDecomposition::distributeInitialData() {
90      snap_ = sman_->getCurrentSnapshot();
91      storageLayout_ = sman_->getStorageLayout();
92      ff_ = info_->getForceField();
93      nLocal_ = snap_->getNumberOfAtoms();
94 <
94 >  
95      nGroups_ = info_->getNLocalCutoffGroups();
62    cerr << "in dId, nGroups = " << nGroups_ << "\n";
96      // gather the information for atomtype IDs (atids):
97 <    identsLocal = info_->getIdentArray();
97 >    idents = info_->getIdentArray();
98 >    regions = info_->getRegions();
99      AtomLocalToGlobal = info_->getGlobalAtomIndices();
100      cgLocalToGlobal = info_->getGlobalGroupIndices();
101      vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
102 +
103      massFactors = info_->getMassFactors();
69    PairList excludes = info_->getExcludedInteractions();
70    PairList oneTwo = info_->getOneTwoInteractions();
71    PairList oneThree = info_->getOneThreeInteractions();
72    PairList oneFour = info_->getOneFourInteractions();
104  
105 +    PairList* excludes = info_->getExcludedInteractions();
106 +    PairList* oneTwo = info_->getOneTwoInteractions();
107 +    PairList* oneThree = info_->getOneThreeInteractions();
108 +    PairList* oneFour = info_->getOneFourInteractions();
109 +    
110 +    if (needVelocities_)
111 +      snap_->cgData.setStorageLayout(DataStorage::dslPosition |
112 +                                     DataStorage::dslVelocity);
113 +    else
114 +      snap_->cgData.setStorageLayout(DataStorage::dslPosition);
115 +    
116   #ifdef IS_MPI
117  
118 <    AtomCommIntRow = new Communicator<Row,int>(nLocal_);
119 <    AtomCommRealRow = new Communicator<Row,RealType>(nLocal_);
78 <    AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_);
79 <    AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_);
80 <    AtomCommPotRow = new Communicator<Row,potVec>(nLocal_);
118 >    MPI_Comm row = rowComm.getComm();
119 >    MPI_Comm col = colComm.getComm();
120  
121 <    AtomCommIntColumn = new Communicator<Column,int>(nLocal_);
122 <    AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_);
123 <    AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_);
124 <    AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_);
125 <    AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_);
121 >    AtomPlanIntRow = new Plan<int>(row, nLocal_);
122 >    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
123 >    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
124 >    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
125 >    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
126  
127 <    cgCommIntRow = new Communicator<Row,int>(nGroups_);
128 <    cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_);
129 <    cgCommIntColumn = new Communicator<Column,int>(nGroups_);
130 <    cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_);
127 >    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
128 >    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
129 >    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
130 >    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
131 >    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
132  
133 <    nAtomsInRow_ = AtomCommIntRow->getSize();
134 <    nAtomsInCol_ = AtomCommIntColumn->getSize();
135 <    nGroupsInRow_ = cgCommIntRow->getSize();
136 <    nGroupsInCol_ = cgCommIntColumn->getSize();
133 >    cgPlanIntRow = new Plan<int>(row, nGroups_);
134 >    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
135 >    cgPlanIntColumn = new Plan<int>(col, nGroups_);
136 >    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
137  
138 +    nAtomsInRow_ = AtomPlanIntRow->getSize();
139 +    nAtomsInCol_ = AtomPlanIntColumn->getSize();
140 +    nGroupsInRow_ = cgPlanIntRow->getSize();
141 +    nGroupsInCol_ = cgPlanIntColumn->getSize();
142 +
143      // Modify the data storage objects with the correct layouts and sizes:
144      atomRowData.resize(nAtomsInRow_);
145      atomRowData.setStorageLayout(storageLayout_);
# Line 103 | Line 148 | namespace OpenMD {
148      cgRowData.resize(nGroupsInRow_);
149      cgRowData.setStorageLayout(DataStorage::dslPosition);
150      cgColData.resize(nGroupsInCol_);
151 <    cgColData.setStorageLayout(DataStorage::dslPosition);
152 <        
151 >    if (needVelocities_)
152 >      // we only need column velocities if we need them.
153 >      cgColData.setStorageLayout(DataStorage::dslPosition |
154 >                                 DataStorage::dslVelocity);
155 >    else    
156 >      cgColData.setStorageLayout(DataStorage::dslPosition);
157 >      
158      identsRow.resize(nAtomsInRow_);
159      identsCol.resize(nAtomsInCol_);
160      
161 <    AtomCommIntRow->gather(identsLocal, identsRow);
162 <    AtomCommIntColumn->gather(identsLocal, identsCol);
163 <    
164 <    AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
165 <    AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
161 >    AtomPlanIntRow->gather(idents, identsRow);
162 >    AtomPlanIntColumn->gather(idents, identsCol);
163 >
164 >    regionsRow.resize(nAtomsInRow_);
165 >    regionsCol.resize(nAtomsInCol_);
166      
167 <    cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
168 <    cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
167 >    AtomPlanIntRow->gather(regions, regionsRow);
168 >    AtomPlanIntColumn->gather(regions, regionsCol);
169 >    
170 >    // allocate memory for the parallel objects
171 >    atypesRow.resize(nAtomsInRow_);
172 >    atypesCol.resize(nAtomsInCol_);
173  
174 <    AtomCommRealRow->gather(massFactors, massFactorsRow);
175 <    AtomCommRealColumn->gather(massFactors, massFactorsCol);
174 >    for (int i = 0; i < nAtomsInRow_; i++)
175 >      atypesRow[i] = ff_->getAtomType(identsRow[i]);
176 >    for (int i = 0; i < nAtomsInCol_; i++)
177 >      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
178  
179 +    pot_row.resize(nAtomsInRow_);
180 +    pot_col.resize(nAtomsInCol_);
181 +
182 +    expot_row.resize(nAtomsInRow_);
183 +    expot_col.resize(nAtomsInCol_);
184 +
185 +    AtomRowToGlobal.resize(nAtomsInRow_);
186 +    AtomColToGlobal.resize(nAtomsInCol_);
187 +    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
188 +    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
189 +
190 +    cgRowToGlobal.resize(nGroupsInRow_);
191 +    cgColToGlobal.resize(nGroupsInCol_);
192 +    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
193 +    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
194 +
195 +    massFactorsRow.resize(nAtomsInRow_);
196 +    massFactorsCol.resize(nAtomsInCol_);
197 +    AtomPlanRealRow->gather(massFactors, massFactorsRow);
198 +    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
199 +
200      groupListRow_.clear();
201      groupListRow_.resize(nGroupsInRow_);
202      for (int i = 0; i < nGroupsInRow_; i++) {
# Line 142 | Line 219 | namespace OpenMD {
219        }      
220      }
221  
222 <    skipsForAtom.clear();
223 <    skipsForAtom.resize(nAtomsInRow_);
222 >    excludesForAtom.clear();
223 >    excludesForAtom.resize(nAtomsInRow_);
224      toposForAtom.clear();
225      toposForAtom.resize(nAtomsInRow_);
226      topoDist.clear();
# Line 154 | Line 231 | namespace OpenMD {
231        for (int j = 0; j < nAtomsInCol_; j++) {
232          int jglob = AtomColToGlobal[j];
233  
234 <        if (excludes.hasPair(iglob, jglob))
235 <          skipsForAtom[i].push_back(j);      
234 >        if (excludes->hasPair(iglob, jglob))
235 >          excludesForAtom[i].push_back(j);      
236          
237 <        if (oneTwo.hasPair(iglob, jglob)) {
237 >        if (oneTwo->hasPair(iglob, jglob)) {
238            toposForAtom[i].push_back(j);
239            topoDist[i].push_back(1);
240          } else {
241 <          if (oneThree.hasPair(iglob, jglob)) {
241 >          if (oneThree->hasPair(iglob, jglob)) {
242              toposForAtom[i].push_back(j);
243              topoDist[i].push_back(2);
244            } else {
245 <            if (oneFour.hasPair(iglob, jglob)) {
245 >            if (oneFour->hasPair(iglob, jglob)) {
246                toposForAtom[i].push_back(j);
247                topoDist[i].push_back(3);
248              }
# Line 174 | Line 251 | namespace OpenMD {
251        }      
252      }
253  
254 < #endif
255 <
256 <    groupList_.clear();
180 <    groupList_.resize(nGroups_);
181 <    for (int i = 0; i < nGroups_; i++) {
182 <      int gid = cgLocalToGlobal[i];
183 <      for (int j = 0; j < nLocal_; j++) {
184 <        int aid = AtomLocalToGlobal[j];
185 <        if (globalGroupMembership[aid] == gid) {
186 <          groupList_[i].push_back(j);
187 <        }
188 <      }      
189 <    }
190 <
191 <    skipsForAtom.clear();
192 <    skipsForAtom.resize(nLocal_);
254 > #else
255 >    excludesForAtom.clear();
256 >    excludesForAtom.resize(nLocal_);
257      toposForAtom.clear();
258      toposForAtom.resize(nLocal_);
259      topoDist.clear();
# Line 201 | Line 265 | namespace OpenMD {
265        for (int j = 0; j < nLocal_; j++) {
266          int jglob = AtomLocalToGlobal[j];
267  
268 <        if (excludes.hasPair(iglob, jglob))
269 <          skipsForAtom[i].push_back(j);              
268 >        if (excludes->hasPair(iglob, jglob))
269 >          excludesForAtom[i].push_back(j);              
270          
271 <        if (oneTwo.hasPair(iglob, jglob)) {
271 >        if (oneTwo->hasPair(iglob, jglob)) {
272            toposForAtom[i].push_back(j);
273            topoDist[i].push_back(1);
274          } else {
275 <          if (oneThree.hasPair(iglob, jglob)) {
275 >          if (oneThree->hasPair(iglob, jglob)) {
276              toposForAtom[i].push_back(j);
277              topoDist[i].push_back(2);
278            } else {
279 <            if (oneFour.hasPair(iglob, jglob)) {
279 >            if (oneFour->hasPair(iglob, jglob)) {
280                toposForAtom[i].push_back(j);
281                topoDist[i].push_back(3);
282              }
# Line 220 | Line 284 | namespace OpenMD {
284          }
285        }      
286      }
287 <    
224 <    createGtypeCutoffMap();
225 <  }
226 <  
227 <  void ForceMatrixDecomposition::createGtypeCutoffMap() {
287 > #endif
288  
289 <    RealType tol = 1e-6;
290 <    RealType rc;
231 <    int atid;
232 <    set<AtomType*> atypes = info_->getSimulatedAtomTypes();
233 <    vector<RealType> atypeCutoff;
234 <    atypeCutoff.resize( atypes.size() );
289 >    // allocate memory for the parallel objects
290 >    atypesLocal.resize(nLocal_);
291  
292 <    for (set<AtomType*>::iterator at = atypes.begin();
293 <         at != atypes.end(); ++at){
238 <      rc = interactionMan_->getSuggestedCutoffRadius(*at);
239 <      atid = (*at)->getIdent();
240 <      atypeCutoff[atid] = rc;
241 <    }
292 >    for (int i = 0; i < nLocal_; i++)
293 >      atypesLocal[i] = ff_->getAtomType(idents[i]);
294  
295 <    vector<RealType> gTypeCutoffs;
296 <
297 <    // first we do a single loop over the cutoff groups to find the
298 <    // largest cutoff for any atypes present in this group.
299 < #ifdef IS_MPI
300 <    vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
301 <    groupRowToGtype.resize(nGroupsInRow_);
302 <    for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
251 <      vector<int> atomListRow = getAtomsInGroupRow(cg1);
252 <      for (vector<int>::iterator ia = atomListRow.begin();
253 <           ia != atomListRow.end(); ++ia) {            
254 <        int atom1 = (*ia);
255 <        atid = identsRow[atom1];
256 <        if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
257 <          groupCutoffRow[cg1] = atypeCutoff[atid];
295 >    groupList_.clear();
296 >    groupList_.resize(nGroups_);
297 >    for (int i = 0; i < nGroups_; i++) {
298 >      int gid = cgLocalToGlobal[i];
299 >      for (int j = 0; j < nLocal_; j++) {
300 >        int aid = AtomLocalToGlobal[j];
301 >        if (globalGroupMembership[aid] == gid) {
302 >          groupList_[i].push_back(j);
303          }
259      }
260
261      bool gTypeFound = false;
262      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
263        if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
264          groupRowToGtype[cg1] = gt;
265          gTypeFound = true;
266        }
267      }
268      if (!gTypeFound) {
269        gTypeCutoffs.push_back( groupCutoffRow[cg1] );
270        groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
271      }
272      
273    }
274    vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
275    groupColToGtype.resize(nGroupsInCol_);
276    for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
277      vector<int> atomListCol = getAtomsInGroupColumn(cg2);
278      for (vector<int>::iterator jb = atomListCol.begin();
279           jb != atomListCol.end(); ++jb) {            
280        int atom2 = (*jb);
281        atid = identsCol[atom2];
282        if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
283          groupCutoffCol[cg2] = atypeCutoff[atid];
284        }
285      }
286      bool gTypeFound = false;
287      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
288        if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
289          groupColToGtype[cg2] = gt;
290          gTypeFound = true;
291        }
292      }
293      if (!gTypeFound) {
294        gTypeCutoffs.push_back( groupCutoffCol[cg2] );
295        groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
296      }
297    }
298 #else
299
300    vector<RealType> groupCutoff(nGroups_, 0.0);
301    groupToGtype.resize(nGroups_);
302
303    cerr << "nGroups = " << nGroups_ << "\n";
304    for (int cg1 = 0; cg1 < nGroups_; cg1++) {
305
306      groupCutoff[cg1] = 0.0;
307      vector<int> atomList = getAtomsInGroupRow(cg1);
308
309      for (vector<int>::iterator ia = atomList.begin();
310           ia != atomList.end(); ++ia) {            
311        int atom1 = (*ia);
312        atid = identsLocal[atom1];
313        if (atypeCutoff[atid] > groupCutoff[cg1]) {
314          groupCutoff[cg1] = atypeCutoff[atid];
315        }
316      }
317
318      bool gTypeFound = false;
319      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
320        if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
321          groupToGtype[cg1] = gt;
322          gTypeFound = true;
323        }
324      }
325      if (!gTypeFound) {
326        gTypeCutoffs.push_back( groupCutoff[cg1] );
327        groupToGtype[cg1] = gTypeCutoffs.size() - 1;
304        }      
305 <    }
330 < #endif
331 <
332 <    cerr << "gTypeCutoffs.size() = " << gTypeCutoffs.size() << "\n";
333 <    // Now we find the maximum group cutoff value present in the simulation
334 <
335 <    RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end());
336 <
337 < #ifdef IS_MPI
338 <    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX);
339 < #endif
340 <    
341 <    RealType tradRcut = groupMax;
342 <
343 <    for (int i = 0; i < gTypeCutoffs.size();  i++) {
344 <      for (int j = 0; j < gTypeCutoffs.size();  j++) {      
345 <        RealType thisRcut;
346 <        switch(cutoffPolicy_) {
347 <        case TRADITIONAL:
348 <          thisRcut = tradRcut;
349 <          break;
350 <        case MIX:
351 <          thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
352 <          break;
353 <        case MAX:
354 <          thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
355 <          break;
356 <        default:
357 <          sprintf(painCave.errMsg,
358 <                  "ForceMatrixDecomposition::createGtypeCutoffMap "
359 <                  "hit an unknown cutoff policy!\n");
360 <          painCave.severity = OPENMD_ERROR;
361 <          painCave.isFatal = 1;
362 <          simError();
363 <          break;
364 <        }
365 <
366 <        pair<int,int> key = make_pair(i,j);
367 <        gTypeCutoffMap[key].first = thisRcut;
368 <
369 <        if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
370 <
371 <        gTypeCutoffMap[key].second = thisRcut*thisRcut;
372 <        
373 <        gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
374 <
375 <        // sanity check
376 <        
377 <        if (userChoseCutoff_) {
378 <          if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
379 <            sprintf(painCave.errMsg,
380 <                    "ForceMatrixDecomposition::createGtypeCutoffMap "
381 <                    "user-specified rCut does not match computed group Cutoff\n");
382 <            painCave.severity = OPENMD_ERROR;
383 <            painCave.isFatal = 1;
384 <            simError();            
385 <          }
386 <        }
387 <      }
388 <    }
305 >    }    
306    }
307 <
391 <
392 <  groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
393 <    int i, j;  
394 < #ifdef IS_MPI
395 <    i = groupRowToGtype[cg1];
396 <    j = groupColToGtype[cg2];
397 < #else
398 <    i = groupToGtype[cg1];
399 <    j = groupToGtype[cg2];
400 < #endif    
401 <    return gTypeCutoffMap[make_pair(i,j)];
402 <  }
403 <
307 >    
308    int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
309 <    for (int j = 0; j < toposForAtom[atom1].size(); j++) {
309 >    for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) {
310        if (toposForAtom[atom1][j] == atom2)
311          return topoDist[atom1][j];
312 <    }
312 >    }                                          
313      return 0;
314    }
315  
316    void ForceMatrixDecomposition::zeroWorkArrays() {
317 +    pairwisePot = 0.0;
318 +    embeddingPot = 0.0;
319 +    excludedPot = 0.0;
320 +    excludedSelfPot = 0.0;
321  
414    for (int j = 0; j < N_INTERACTION_FAMILIES; j++) {
415      longRangePot_[j] = 0.0;
416    }
417
322   #ifdef IS_MPI
323      if (storageLayout_ & DataStorage::dslForce) {
324        fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
# Line 430 | Line 334 | namespace OpenMD {
334           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
335  
336      fill(pot_col.begin(), pot_col.end(),
337 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
338 +
339 +    fill(expot_row.begin(), expot_row.end(),
340           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
434    
435    pot_local = Vector<RealType, N_INTERACTION_FAMILIES>(0.0);
341  
342 +    fill(expot_col.begin(), expot_col.end(),
343 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
344 +
345      if (storageLayout_ & DataStorage::dslParticlePot) {    
346 <      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0);
347 <      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0);
346 >      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
347 >           0.0);
348 >      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
349 >           0.0);
350      }
351  
352      if (storageLayout_ & DataStorage::dslDensity) {      
# Line 445 | Line 355 | namespace OpenMD {
355      }
356  
357      if (storageLayout_ & DataStorage::dslFunctional) {  
358 <      fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0);
359 <      fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0);
358 >      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
359 >           0.0);
360 >      fill(atomColData.functional.begin(), atomColData.functional.end(),
361 >           0.0);
362      }
363  
364      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
# Line 456 | Line 368 | namespace OpenMD {
368             atomColData.functionalDerivative.end(), 0.0);
369      }
370  
371 < #else
372 <    
371 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
372 >      fill(atomRowData.skippedCharge.begin(),
373 >           atomRowData.skippedCharge.end(), 0.0);
374 >      fill(atomColData.skippedCharge.begin(),
375 >           atomColData.skippedCharge.end(), 0.0);
376 >    }
377 >
378 >    if (storageLayout_ & DataStorage::dslFlucQForce) {      
379 >      fill(atomRowData.flucQFrc.begin(),
380 >           atomRowData.flucQFrc.end(), 0.0);
381 >      fill(atomColData.flucQFrc.begin(),
382 >           atomColData.flucQFrc.end(), 0.0);
383 >    }
384 >
385 >    if (storageLayout_ & DataStorage::dslElectricField) {    
386 >      fill(atomRowData.electricField.begin(),
387 >           atomRowData.electricField.end(), V3Zero);
388 >      fill(atomColData.electricField.begin(),
389 >           atomColData.electricField.end(), V3Zero);
390 >    }
391 >
392 >    if (storageLayout_ & DataStorage::dslSitePotential) {    
393 >      fill(atomRowData.sitePotential.begin(),
394 >           atomRowData.sitePotential.end(), 0.0);
395 >      fill(atomColData.sitePotential.begin(),
396 >           atomColData.sitePotential.end(), 0.0);
397 >    }
398 >
399 > #endif
400 >    // even in parallel, we need to zero out the local arrays:
401 >
402      if (storageLayout_ & DataStorage::dslParticlePot) {      
403        fill(snap_->atomData.particlePot.begin(),
404             snap_->atomData.particlePot.end(), 0.0);
# Line 467 | Line 408 | namespace OpenMD {
408        fill(snap_->atomData.density.begin(),
409             snap_->atomData.density.end(), 0.0);
410      }
411 +
412      if (storageLayout_ & DataStorage::dslFunctional) {
413        fill(snap_->atomData.functional.begin(),
414             snap_->atomData.functional.end(), 0.0);
415      }
416 +
417      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
418        fill(snap_->atomData.functionalDerivative.begin(),
419             snap_->atomData.functionalDerivative.end(), 0.0);
420      }
421 < #endif
422 <    
421 >
422 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
423 >      fill(snap_->atomData.skippedCharge.begin(),
424 >           snap_->atomData.skippedCharge.end(), 0.0);
425 >    }
426 >
427 >    if (storageLayout_ & DataStorage::dslElectricField) {      
428 >      fill(snap_->atomData.electricField.begin(),
429 >           snap_->atomData.electricField.end(), V3Zero);
430 >    }
431 >    if (storageLayout_ & DataStorage::dslSitePotential) {      
432 >      fill(snap_->atomData.sitePotential.begin(),
433 >           snap_->atomData.sitePotential.end(), 0.0);
434 >    }
435    }
436  
437  
438    void ForceMatrixDecomposition::distributeData()  {
439      snap_ = sman_->getCurrentSnapshot();
440      storageLayout_ = sman_->getStorageLayout();
441 +
442 +    bool needsCG = true;
443 +    if(info_->getNCutoffGroups() != info_->getNAtoms())
444 +      needsCG = false;
445 +  
446   #ifdef IS_MPI
447      
448      // gather up the atomic positions
449 <    AtomCommVectorRow->gather(snap_->atomData.position,
449 >    AtomPlanVectorRow->gather(snap_->atomData.position,
450                                atomRowData.position);
451 <    AtomCommVectorColumn->gather(snap_->atomData.position,
451 >    AtomPlanVectorColumn->gather(snap_->atomData.position,
452                                   atomColData.position);
453      
454      // gather up the cutoff group positions
455 <    cgCommVectorRow->gather(snap_->cgData.position,
456 <                            cgRowData.position);
457 <    cgCommVectorColumn->gather(snap_->cgData.position,
458 <                               cgColData.position);
455 >
456 >    if (needsCG) {
457 >      cgPlanVectorRow->gather(snap_->cgData.position,
458 >                              cgRowData.position);
459 >      
460 >      cgPlanVectorColumn->gather(snap_->cgData.position,
461 >                                 cgColData.position);
462 >    }
463 >
464 >
465 >    if (needVelocities_) {
466 >      // gather up the atomic velocities
467 >      AtomPlanVectorColumn->gather(snap_->atomData.velocity,
468 >                                   atomColData.velocity);
469 >
470 >      if (needsCG) {        
471 >        cgPlanVectorColumn->gather(snap_->cgData.velocity,
472 >                                   cgColData.velocity);
473 >      }
474 >    }
475 >
476      
477      // if needed, gather the atomic rotation matrices
478      if (storageLayout_ & DataStorage::dslAmat) {
479 <      AtomCommMatrixRow->gather(snap_->atomData.aMat,
479 >      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
480                                  atomRowData.aMat);
481 <      AtomCommMatrixColumn->gather(snap_->atomData.aMat,
481 >      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
482                                     atomColData.aMat);
483      }
484 <    
485 <    // if needed, gather the atomic eletrostatic frames
486 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
487 <      AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
488 <                                atomRowData.electroFrame);
489 <      AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
490 <                                   atomColData.electroFrame);
484 >
485 >    // if needed, gather the atomic eletrostatic information
486 >    if (storageLayout_ & DataStorage::dslDipole) {
487 >      AtomPlanVectorRow->gather(snap_->atomData.dipole,
488 >                                atomRowData.dipole);
489 >      AtomPlanVectorColumn->gather(snap_->atomData.dipole,
490 >                                   atomColData.dipole);
491      }
492 +
493 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
494 +      AtomPlanMatrixRow->gather(snap_->atomData.quadrupole,
495 +                                atomRowData.quadrupole);
496 +      AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole,
497 +                                   atomColData.quadrupole);
498 +    }
499 +        
500 +    // if needed, gather the atomic fluctuating charge values
501 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {
502 +      AtomPlanRealRow->gather(snap_->atomData.flucQPos,
503 +                              atomRowData.flucQPos);
504 +      AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
505 +                                 atomColData.flucQPos);
506 +    }
507 +
508   #endif      
509    }
510    
# Line 525 | Line 518 | namespace OpenMD {
518      
519      if (storageLayout_ & DataStorage::dslDensity) {
520        
521 <      AtomCommRealRow->scatter(atomRowData.density,
521 >      AtomPlanRealRow->scatter(atomRowData.density,
522                                 snap_->atomData.density);
523        
524        int n = snap_->atomData.density.size();
525        vector<RealType> rho_tmp(n, 0.0);
526 <      AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
526 >      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
527        for (int i = 0; i < n; i++)
528          snap_->atomData.density[i] += rho_tmp[i];
529      }
530 +
531 +    // this isn't necessary if we don't have polarizable atoms, but
532 +    // we'll leave it here for now.
533 +    if (storageLayout_ & DataStorage::dslElectricField) {
534 +      
535 +      AtomPlanVectorRow->scatter(atomRowData.electricField,
536 +                                 snap_->atomData.electricField);
537 +      
538 +      int n = snap_->atomData.electricField.size();
539 +      vector<Vector3d> field_tmp(n, V3Zero);
540 +      AtomPlanVectorColumn->scatter(atomColData.electricField,
541 +                                    field_tmp);
542 +      for (int i = 0; i < n; i++)
543 +        snap_->atomData.electricField[i] += field_tmp[i];
544 +    }
545   #endif
546    }
547  
# Line 546 | Line 554 | namespace OpenMD {
554      storageLayout_ = sman_->getStorageLayout();
555   #ifdef IS_MPI
556      if (storageLayout_ & DataStorage::dslFunctional) {
557 <      AtomCommRealRow->gather(snap_->atomData.functional,
557 >      AtomPlanRealRow->gather(snap_->atomData.functional,
558                                atomRowData.functional);
559 <      AtomCommRealColumn->gather(snap_->atomData.functional,
559 >      AtomPlanRealColumn->gather(snap_->atomData.functional,
560                                   atomColData.functional);
561      }
562      
563      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
564 <      AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
564 >      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
565                                atomRowData.functionalDerivative);
566 <      AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
566 >      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
567                                   atomColData.functionalDerivative);
568      }
569   #endif
# Line 569 | Line 577 | namespace OpenMD {
577      int n = snap_->atomData.force.size();
578      vector<Vector3d> frc_tmp(n, V3Zero);
579      
580 <    AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
580 >    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
581      for (int i = 0; i < n; i++) {
582        snap_->atomData.force[i] += frc_tmp[i];
583        frc_tmp[i] = 0.0;
584      }
585      
586 <    AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
587 <    for (int i = 0; i < n; i++)
586 >    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
587 >    for (int i = 0; i < n; i++) {
588        snap_->atomData.force[i] += frc_tmp[i];
589 <    
590 <    
589 >    }
590 >        
591      if (storageLayout_ & DataStorage::dslTorque) {
592  
593 <      int nt = snap_->atomData.force.size();
593 >      int nt = snap_->atomData.torque.size();
594        vector<Vector3d> trq_tmp(nt, V3Zero);
595  
596 <      AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
597 <      for (int i = 0; i < n; i++) {
596 >      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
597 >      for (int i = 0; i < nt; i++) {
598          snap_->atomData.torque[i] += trq_tmp[i];
599          trq_tmp[i] = 0.0;
600        }
601        
602 <      AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
603 <      for (int i = 0; i < n; i++)
602 >      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
603 >      for (int i = 0; i < nt; i++)
604          snap_->atomData.torque[i] += trq_tmp[i];
605      }
606 +
607 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
608 +
609 +      int ns = snap_->atomData.skippedCharge.size();
610 +      vector<RealType> skch_tmp(ns, 0.0);
611 +
612 +      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
613 +      for (int i = 0; i < ns; i++) {
614 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
615 +        skch_tmp[i] = 0.0;
616 +      }
617 +      
618 +      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
619 +      for (int i = 0; i < ns; i++)
620 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
621 +            
622 +    }
623      
624 +    if (storageLayout_ & DataStorage::dslFlucQForce) {
625 +
626 +      int nq = snap_->atomData.flucQFrc.size();
627 +      vector<RealType> fqfrc_tmp(nq, 0.0);
628 +
629 +      AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
630 +      for (int i = 0; i < nq; i++) {
631 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
632 +        fqfrc_tmp[i] = 0.0;
633 +      }
634 +      
635 +      AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
636 +      for (int i = 0; i < nq; i++)
637 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
638 +            
639 +    }
640 +
641 +    if (storageLayout_ & DataStorage::dslElectricField) {
642 +
643 +      int nef = snap_->atomData.electricField.size();
644 +      vector<Vector3d> efield_tmp(nef, V3Zero);
645 +
646 +      AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp);
647 +      for (int i = 0; i < nef; i++) {
648 +        snap_->atomData.electricField[i] += efield_tmp[i];
649 +        efield_tmp[i] = 0.0;
650 +      }
651 +      
652 +      AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp);
653 +      for (int i = 0; i < nef; i++)
654 +        snap_->atomData.electricField[i] += efield_tmp[i];
655 +    }
656 +
657 +    if (storageLayout_ & DataStorage::dslSitePotential) {
658 +
659 +      int nsp = snap_->atomData.sitePotential.size();
660 +      vector<RealType> sp_tmp(nsp, 0.0);
661 +
662 +      AtomPlanRealRow->scatter(atomRowData.sitePotential, sp_tmp);
663 +      for (int i = 0; i < nsp; i++) {
664 +        snap_->atomData.sitePotential[i] += sp_tmp[i];
665 +        sp_tmp[i] = 0.0;
666 +      }
667 +      
668 +      AtomPlanRealColumn->scatter(atomColData.sitePotential, sp_tmp);
669 +      for (int i = 0; i < nsp; i++)
670 +        snap_->atomData.sitePotential[i] += sp_tmp[i];
671 +    }
672 +
673      nLocal_ = snap_->getNumberOfAtoms();
674  
675      vector<potVec> pot_temp(nLocal_,
676                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
677 +    vector<potVec> expot_temp(nLocal_,
678 +                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
679  
680      // scatter/gather pot_row into the members of my column
681            
682 <    AtomCommPotRow->scatter(pot_row, pot_temp);
682 >    AtomPlanPotRow->scatter(pot_row, pot_temp);
683 >    AtomPlanPotRow->scatter(expot_row, expot_temp);
684  
685 <    for (int ii = 0;  ii < pot_temp.size(); ii++ )
686 <      pot_local += pot_temp[ii];
687 <    
685 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
686 >      pairwisePot += pot_temp[ii];
687 >
688 >    for (int ii = 0;  ii < expot_temp.size(); ii++ )
689 >      excludedPot += expot_temp[ii];
690 >        
691 >    if (storageLayout_ & DataStorage::dslParticlePot) {
692 >      // This is the pairwise contribution to the particle pot.  The
693 >      // embedding contribution is added in each of the low level
694 >      // non-bonded routines.  In single processor, this is done in
695 >      // unpackInteractionData, not in collectData.
696 >      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
697 >        for (int i = 0; i < nLocal_; i++) {
698 >          // factor of two is because the total potential terms are divided
699 >          // by 2 in parallel due to row/ column scatter      
700 >          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
701 >        }
702 >      }
703 >    }
704 >
705      fill(pot_temp.begin(), pot_temp.end(),
706           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
707 +    fill(expot_temp.begin(), expot_temp.end(),
708 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
709        
710 <    AtomCommPotColumn->scatter(pot_col, pot_temp);    
710 >    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
711 >    AtomPlanPotColumn->scatter(expot_col, expot_temp);    
712      
713      for (int ii = 0;  ii < pot_temp.size(); ii++ )
714 <      pot_local += pot_temp[ii];
714 >      pairwisePot += pot_temp[ii];    
715 >
716 >    for (int ii = 0;  ii < expot_temp.size(); ii++ )
717 >      excludedPot += expot_temp[ii];    
718 >
719 >    if (storageLayout_ & DataStorage::dslParticlePot) {
720 >      // This is the pairwise contribution to the particle pot.  The
721 >      // embedding contribution is added in each of the low level
722 >      // non-bonded routines.  In single processor, this is done in
723 >      // unpackInteractionData, not in collectData.
724 >      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
725 >        for (int i = 0; i < nLocal_; i++) {
726 >          // factor of two is because the total potential terms are divided
727 >          // by 2 in parallel due to row/ column scatter      
728 >          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
729 >        }
730 >      }
731 >    }
732      
733 +    if (storageLayout_ & DataStorage::dslParticlePot) {
734 +      int npp = snap_->atomData.particlePot.size();
735 +      vector<RealType> ppot_temp(npp, 0.0);
736 +
737 +      // This is the direct or embedding contribution to the particle
738 +      // pot.
739 +      
740 +      AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
741 +      for (int i = 0; i < npp; i++) {
742 +        snap_->atomData.particlePot[i] += ppot_temp[i];
743 +      }
744 +
745 +      fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
746 +      
747 +      AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
748 +      for (int i = 0; i < npp; i++) {
749 +        snap_->atomData.particlePot[i] += ppot_temp[i];
750 +      }
751 +    }
752 +
753 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
754 +      RealType ploc1 = pairwisePot[ii];
755 +      RealType ploc2 = 0.0;
756 +      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
757 +      pairwisePot[ii] = ploc2;
758 +    }
759 +
760 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
761 +      RealType ploc1 = excludedPot[ii];
762 +      RealType ploc2 = 0.0;
763 +      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
764 +      excludedPot[ii] = ploc2;
765 +    }
766 +
767 +    // Here be dragons.
768 +    MPI_Comm col = colComm.getComm();
769 +
770 +    MPI_Allreduce(MPI_IN_PLACE,
771 +                  &snap_->frameData.conductiveHeatFlux[0], 3,
772 +                  MPI_REALTYPE, MPI_SUM, col);
773 +
774 +
775   #endif
776 +
777    }
778  
779 <  int ForceMatrixDecomposition::getNAtomsInRow() {  
779 >  /**
780 >   * Collects information obtained during the post-pair (and embedding
781 >   * functional) loops onto local data structures.
782 >   */
783 >  void ForceMatrixDecomposition::collectSelfData() {
784 >    snap_ = sman_->getCurrentSnapshot();
785 >    storageLayout_ = sman_->getStorageLayout();
786 >
787   #ifdef IS_MPI
788 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
789 +      RealType ploc1 = embeddingPot[ii];
790 +      RealType ploc2 = 0.0;
791 +      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
792 +      embeddingPot[ii] = ploc2;
793 +    }    
794 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
795 +      RealType ploc1 = excludedSelfPot[ii];
796 +      RealType ploc2 = 0.0;
797 +      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
798 +      excludedSelfPot[ii] = ploc2;
799 +    }    
800 + #endif
801 +    
802 +  }
803 +
804 +
805 +
806 +  int& ForceMatrixDecomposition::getNAtomsInRow() {  
807 + #ifdef IS_MPI
808      return nAtomsInRow_;
809   #else
810      return nLocal_;
# Line 630 | Line 814 | namespace OpenMD {
814    /**
815     * returns the list of atoms belonging to this group.  
816     */
817 <  vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
817 >  vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
818   #ifdef IS_MPI
819      return groupListRow_[cg1];
820   #else
# Line 638 | Line 822 | namespace OpenMD {
822   #endif
823    }
824  
825 <  vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
825 >  vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
826   #ifdef IS_MPI
827      return groupListCol_[cg2];
828   #else
# Line 655 | Line 839 | namespace OpenMD {
839      d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
840   #endif
841      
842 <    snap_->wrapVector(d);
842 >    if (usePeriodicBoundaryConditions_) {
843 >      snap_->wrapVector(d);
844 >    }
845      return d;    
846    }
847  
848 +  Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
849 + #ifdef IS_MPI
850 +    return cgColData.velocity[cg2];
851 + #else
852 +    return snap_->cgData.velocity[cg2];
853 + #endif
854 +  }
855  
856 +  Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
857 + #ifdef IS_MPI
858 +    return atomColData.velocity[atom2];
859 + #else
860 +    return snap_->atomData.velocity[atom2];
861 + #endif
862 +  }
863 +
864 +
865    Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
866  
867      Vector3d d;
# Line 669 | Line 871 | namespace OpenMD {
871   #else
872      d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
873   #endif
874 <
875 <    snap_->wrapVector(d);
874 >    if (usePeriodicBoundaryConditions_) {
875 >      snap_->wrapVector(d);
876 >    }
877      return d;    
878    }
879    
# Line 682 | Line 885 | namespace OpenMD {
885   #else
886      d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
887   #endif
888 <    
889 <    snap_->wrapVector(d);
888 >    if (usePeriodicBoundaryConditions_) {
889 >      snap_->wrapVector(d);
890 >    }
891      return d;    
892    }
893  
894 <  RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
894 >  RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) {
895   #ifdef IS_MPI
896      return massFactorsRow[atom1];
897   #else
# Line 695 | Line 899 | namespace OpenMD {
899   #endif
900    }
901  
902 <  RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
902 >  RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
903   #ifdef IS_MPI
904      return massFactorsCol[atom2];
905   #else
# Line 712 | Line 916 | namespace OpenMD {
916   #else
917      d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
918   #endif
919 <
920 <    snap_->wrapVector(d);
919 >    if (usePeriodicBoundaryConditions_) {
920 >      snap_->wrapVector(d);
921 >    }
922      return d;    
923    }
924  
925 <  vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) {
926 <    return skipsForAtom[atom1];
925 >  vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
926 >    return excludesForAtom[atom1];
927    }
928  
929    /**
930 <   * There are a number of reasons to skip a pair or a
726 <   * particle. Mostly we do this to exclude atoms who are involved in
727 <   * short range interactions (bonds, bends, torsions), but we also
728 <   * need to exclude some overcounted interactions that result from
930 >   * We need to exclude some overcounted interactions that result from
931     * the parallel decomposition.
932     */
933 <  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
933 >  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) {
934      int unique_id_1, unique_id_2;
935 <
935 >        
936   #ifdef IS_MPI
937      // in MPI, we have to look up the unique IDs for each atom
938      unique_id_1 = AtomRowToGlobal[atom1];
939      unique_id_2 = AtomColToGlobal[atom2];
940 <
941 <    // this situation should only arise in MPI simulations
940 >    // group1 = cgRowToGlobal[cg1];
941 >    // group2 = cgColToGlobal[cg2];
942 > #else
943 >    unique_id_1 = AtomLocalToGlobal[atom1];
944 >    unique_id_2 = AtomLocalToGlobal[atom2];
945 >    int group1 = cgLocalToGlobal[cg1];
946 >    int group2 = cgLocalToGlobal[cg2];
947 > #endif  
948 >
949      if (unique_id_1 == unique_id_2) return true;
950 <    
950 >
951 > #ifdef IS_MPI
952      // this prevents us from doing the pair on multiple processors
953      if (unique_id_1 < unique_id_2) {
954        if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
955      } else {
956 <      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
956 >      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
957      }
958 < #else
959 <    // in the normal loop, the atom numbers are unique
960 <    unique_id_1 = atom1;
961 <    unique_id_2 = atom2;
958 > #endif    
959 >
960 > #ifndef IS_MPI
961 >    if (group1 == group2) {
962 >      if (unique_id_1 < unique_id_2) return true;
963 >    }
964   #endif
965      
966 <    for (vector<int>::iterator i = skipsForAtom[atom1].begin();
967 <         i != skipsForAtom[atom1].end(); ++i) {
756 <      if ( (*i) == unique_id_2 ) return true;
757 <    }    
966 >    return false;
967 >  }
968  
969 +  /**
970 +   * We need to handle the interactions for atoms who are involved in
971 +   * the same rigid body as well as some short range interactions
972 +   * (bonds, bends, torsions) differently from other interactions.
973 +   * We'll still visit the pairwise routines, but with a flag that
974 +   * tells those routines to exclude the pair from direct long range
975 +   * interactions.  Some indirect interactions (notably reaction
976 +   * field) must still be handled for these pairs.
977 +   */
978 +  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
979 +
980 +    // excludesForAtom was constructed to use row/column indices in the MPI
981 +    // version, and to use local IDs in the non-MPI version:
982 +    
983 +    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
984 +         i != excludesForAtom[atom1].end(); ++i) {
985 +      if ( (*i) == atom2 ) return true;
986 +    }
987 +
988 +    return false;
989    }
990  
991  
# Line 776 | Line 1006 | namespace OpenMD {
1006    }
1007  
1008      // filling interaction blocks with pointers
1009 <  void ForceMatrixDecomposition::fillInteractionData(InteractionData idat,
1010 <                                                     int atom1, int atom2) {    
1009 >  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1010 >                                                     int atom1, int atom2,
1011 >                                                     bool newAtom1) {
1012 >
1013 >    idat.excluded = excludeAtomPair(atom1, atom2);
1014 >
1015 >    if (newAtom1) {
1016 >      
1017   #ifdef IS_MPI
1018 <    
1019 <    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
1020 <                             ff_->getAtomType(identsCol[atom2]) );
1021 <    
1018 >      idat.atid1 = identsRow[atom1];
1019 >      idat.atid2 = identsCol[atom2];
1020 >      
1021 >      if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) {
1022 >        idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]);
1023 >      } else {
1024 >        idat.sameRegion = false;
1025 >      }
1026 >      
1027 >      if (storageLayout_ & DataStorage::dslAmat) {
1028 >        idat.A1 = &(atomRowData.aMat[atom1]);
1029 >        idat.A2 = &(atomColData.aMat[atom2]);
1030 >      }
1031 >      
1032 >      if (storageLayout_ & DataStorage::dslTorque) {
1033 >        idat.t1 = &(atomRowData.torque[atom1]);
1034 >        idat.t2 = &(atomColData.torque[atom2]);
1035 >      }
1036 >      
1037 >      if (storageLayout_ & DataStorage::dslDipole) {
1038 >        idat.dipole1 = &(atomRowData.dipole[atom1]);
1039 >        idat.dipole2 = &(atomColData.dipole[atom2]);
1040 >      }
1041 >      
1042 >      if (storageLayout_ & DataStorage::dslQuadrupole) {
1043 >        idat.quadrupole1 = &(atomRowData.quadrupole[atom1]);
1044 >        idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1045 >      }
1046 >      
1047 >      if (storageLayout_ & DataStorage::dslDensity) {
1048 >        idat.rho1 = &(atomRowData.density[atom1]);
1049 >        idat.rho2 = &(atomColData.density[atom2]);
1050 >      }
1051 >      
1052 >      if (storageLayout_ & DataStorage::dslFunctional) {
1053 >        idat.frho1 = &(atomRowData.functional[atom1]);
1054 >        idat.frho2 = &(atomColData.functional[atom2]);
1055 >      }
1056 >      
1057 >      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1058 >        idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1059 >        idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1060 >      }
1061 >      
1062 >      if (storageLayout_ & DataStorage::dslParticlePot) {
1063 >        idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1064 >        idat.particlePot2 = &(atomColData.particlePot[atom2]);
1065 >      }
1066 >      
1067 >      if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1068 >        idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1069 >        idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1070 >      }
1071 >      
1072 >      if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1073 >        idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1074 >        idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1075 >      }
1076 >      
1077 > #else
1078 >      
1079 >      idat.atid1 = idents[atom1];
1080 >      idat.atid2 = idents[atom2];
1081 >      
1082 >      if (regions[atom1] >= 0 && regions[atom2] >= 0) {
1083 >        idat.sameRegion = (regions[atom1] == regions[atom2]);
1084 >      } else {
1085 >        idat.sameRegion = false;
1086 >      }
1087 >      
1088 >      if (storageLayout_ & DataStorage::dslAmat) {
1089 >        idat.A1 = &(snap_->atomData.aMat[atom1]);
1090 >        idat.A2 = &(snap_->atomData.aMat[atom2]);
1091 >      }
1092 >      
1093 >      if (storageLayout_ & DataStorage::dslTorque) {
1094 >        idat.t1 = &(snap_->atomData.torque[atom1]);
1095 >        idat.t2 = &(snap_->atomData.torque[atom2]);
1096 >      }
1097 >      
1098 >      if (storageLayout_ & DataStorage::dslDipole) {
1099 >        idat.dipole1 = &(snap_->atomData.dipole[atom1]);
1100 >        idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1101 >      }
1102 >      
1103 >      if (storageLayout_ & DataStorage::dslQuadrupole) {
1104 >        idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]);
1105 >        idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1106 >      }
1107 >      
1108 >      if (storageLayout_ & DataStorage::dslDensity) {    
1109 >        idat.rho1 = &(snap_->atomData.density[atom1]);
1110 >        idat.rho2 = &(snap_->atomData.density[atom2]);
1111 >      }
1112 >      
1113 >      if (storageLayout_ & DataStorage::dslFunctional) {
1114 >        idat.frho1 = &(snap_->atomData.functional[atom1]);
1115 >        idat.frho2 = &(snap_->atomData.functional[atom2]);
1116 >      }
1117 >      
1118 >      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1119 >        idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1120 >        idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1121 >      }
1122 >      
1123 >      if (storageLayout_ & DataStorage::dslParticlePot) {
1124 >        idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1125 >        idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1126 >      }
1127 >      
1128 >      if (storageLayout_ & DataStorage::dslSkippedCharge) {
1129 >        idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1130 >        idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1131 >      }
1132 >      
1133 >      if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1134 >        idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1135 >        idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1136 >      }
1137 > #endif
1138 >      
1139 >    } else {
1140 >      // atom1 is not new, so don't bother updating properties of that atom:
1141 > #ifdef IS_MPI
1142 >    idat.atid2 = identsCol[atom2];
1143 >
1144 >    if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) {
1145 >      idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]);
1146 >    } else {
1147 >      idat.sameRegion = false;
1148 >    }
1149 >
1150      if (storageLayout_ & DataStorage::dslAmat) {
787      idat.A1 = &(atomRowData.aMat[atom1]);
1151        idat.A2 = &(atomColData.aMat[atom2]);
1152      }
1153      
791    if (storageLayout_ & DataStorage::dslElectroFrame) {
792      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
793      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
794    }
795
1154      if (storageLayout_ & DataStorage::dslTorque) {
797      idat.t1 = &(atomRowData.torque[atom1]);
1155        idat.t2 = &(atomColData.torque[atom2]);
1156      }
1157  
1158 +    if (storageLayout_ & DataStorage::dslDipole) {
1159 +      idat.dipole2 = &(atomColData.dipole[atom2]);
1160 +    }
1161 +
1162 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1163 +      idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1164 +    }
1165 +
1166      if (storageLayout_ & DataStorage::dslDensity) {
802      idat.rho1 = &(atomRowData.density[atom1]);
1167        idat.rho2 = &(atomColData.density[atom2]);
1168      }
1169  
1170      if (storageLayout_ & DataStorage::dslFunctional) {
807      idat.frho1 = &(atomRowData.functional[atom1]);
1171        idat.frho2 = &(atomColData.functional[atom2]);
1172      }
1173  
1174      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
812      idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1175        idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1176      }
1177  
1178      if (storageLayout_ & DataStorage::dslParticlePot) {
817      idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1179        idat.particlePot2 = &(atomColData.particlePot[atom2]);
1180      }
1181  
1182 < #else
1183 <
1184 <    idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]),
824 <                             ff_->getAtomType(identsLocal[atom2]) );
1182 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1183 >      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1184 >    }
1185  
1186 <    if (storageLayout_ & DataStorage::dslAmat) {
1187 <      idat.A1 = &(snap_->atomData.aMat[atom1]);
828 <      idat.A2 = &(snap_->atomData.aMat[atom2]);
1186 >    if (storageLayout_ & DataStorage::dslFlucQPosition) {
1187 >      idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1188      }
1189  
1190 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
1191 <      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
1192 <      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
1190 > #else  
1191 >    idat.atid2 = idents[atom2];
1192 >
1193 >    if (regions[atom1] >= 0 && regions[atom2] >= 0) {
1194 >      idat.sameRegion = (regions[atom1] == regions[atom2]);
1195 >    } else {
1196 >      idat.sameRegion = false;
1197      }
1198  
1199 +    if (storageLayout_ & DataStorage::dslAmat) {
1200 +      idat.A2 = &(snap_->atomData.aMat[atom2]);
1201 +    }
1202 +
1203      if (storageLayout_ & DataStorage::dslTorque) {
837      idat.t1 = &(snap_->atomData.torque[atom1]);
1204        idat.t2 = &(snap_->atomData.torque[atom2]);
1205      }
1206  
1207 <    if (storageLayout_ & DataStorage::dslDensity) {
1208 <      idat.rho1 = &(snap_->atomData.density[atom1]);
1207 >    if (storageLayout_ & DataStorage::dslDipole) {
1208 >      idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1209 >    }
1210 >
1211 >    if (storageLayout_ & DataStorage::dslQuadrupole) {
1212 >      idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1213 >    }
1214 >
1215 >    if (storageLayout_ & DataStorage::dslDensity) {    
1216        idat.rho2 = &(snap_->atomData.density[atom2]);
1217      }
1218  
1219      if (storageLayout_ & DataStorage::dslFunctional) {
847      idat.frho1 = &(snap_->atomData.functional[atom1]);
1220        idat.frho2 = &(snap_->atomData.functional[atom2]);
1221      }
1222  
1223      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
852      idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1224        idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1225      }
1226  
1227      if (storageLayout_ & DataStorage::dslParticlePot) {
857      idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1228        idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1229      }
1230  
1231 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
1232 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1233 +    }
1234 +
1235 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1236 +      idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1237 +    }
1238 +
1239   #endif
1240 +    }
1241    }
863
1242    
1243 <  void ForceMatrixDecomposition::unpackInteractionData(InteractionData idat, int atom1, int atom2) {    
1243 >  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat,
1244 >                                                       int atom1, int atom2) {  
1245   #ifdef IS_MPI
1246 <    pot_row[atom1] += 0.5 *  *(idat.pot);
1247 <    pot_col[atom2] += 0.5 *  *(idat.pot);
1246 >    pot_row[atom1] += RealType(0.5) *  *(idat.pot);
1247 >    pot_col[atom2] += RealType(0.5) *  *(idat.pot);
1248 >    expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot);
1249 >    expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot);
1250  
1251      atomRowData.force[atom1] += *(idat.f1);
1252      atomColData.force[atom2] -= *(idat.f1);
872 #else
873    longRangePot_ += *(idat.pot);
874    
875    snap_->atomData.force[atom1] += *(idat.f1);
876    snap_->atomData.force[atom2] -= *(idat.f1);
877 #endif
1253  
1254 <  }
1254 >    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1255 >      atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1256 >      atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1257 >    }
1258  
1259 +    if (storageLayout_ & DataStorage::dslElectricField) {              
1260 +      atomRowData.electricField[atom1] += *(idat.eField1);
1261 +      atomColData.electricField[atom2] += *(idat.eField2);
1262 +    }
1263  
1264 <  void ForceMatrixDecomposition::fillSkipData(InteractionData idat,
1265 <                                              int atom1, int atom2) {
1266 < #ifdef IS_MPI
1267 <    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
886 <                             ff_->getAtomType(identsCol[atom2]) );
1264 >    if (storageLayout_ & DataStorage::dslSitePotential) {              
1265 >      atomRowData.sitePotential[atom1] += *(idat.sPot1);
1266 >      atomColData.sitePotential[atom2] += *(idat.sPot2);
1267 >    }
1268  
1269 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
1270 <      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
1271 <      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
1269 > #else
1270 >    pairwisePot += *(idat.pot);
1271 >    excludedPot += *(idat.excludedPot);
1272 >
1273 >    snap_->atomData.force[atom1] += *(idat.f1);
1274 >    snap_->atomData.force[atom2] -= *(idat.f1);
1275 >
1276 >    if (idat.doParticlePot) {
1277 >      // This is the pairwise contribution to the particle pot.  The
1278 >      // embedding contribution is added in each of the low level
1279 >      // non-bonded routines.  In parallel, this calculation is done
1280 >      // in collectData, not in unpackInteractionData.
1281 >      snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1282 >      snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1283      }
1284 <    if (storageLayout_ & DataStorage::dslTorque) {
1285 <      idat.t1 = &(atomRowData.torque[atom1]);
1286 <      idat.t2 = &(atomColData.torque[atom2]);
1284 >    
1285 >    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1286 >      snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1287 >      snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1288      }
896 #else
897    idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]),
898                             ff_->getAtomType(identsLocal[atom2]) );
1289  
1290 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
1291 <      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
1292 <      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
1290 >    if (storageLayout_ & DataStorage::dslElectricField) {              
1291 >      snap_->atomData.electricField[atom1] += *(idat.eField1);
1292 >      snap_->atomData.electricField[atom2] += *(idat.eField2);
1293      }
1294 <    if (storageLayout_ & DataStorage::dslTorque) {
1295 <      idat.t1 = &(snap_->atomData.torque[atom1]);
1296 <      idat.t2 = &(snap_->atomData.torque[atom2]);
1294 >
1295 >    if (storageLayout_ & DataStorage::dslSitePotential) {              
1296 >      snap_->atomData.sitePotential[atom1] += *(idat.sPot1);
1297 >      snap_->atomData.sitePotential[atom2] += *(idat.sPot2);
1298      }
1299 < #endif    
1299 >
1300 > #endif
1301 >    
1302    }
1303  
1304    /*
1305     * buildNeighborList
1306     *
1307 <   * first element of pair is row-indexed CutoffGroup
1308 <   * second element of pair is column-indexed CutoffGroup
1307 >   * Constructs the Verlet neighbor list for a force-matrix
1308 >   * decomposition.  In this case, each processor is responsible for
1309 >   * row-site interactions with column-sites.
1310 >   *
1311 >   * neighborList is returned as a packed array of neighboring
1312 >   * column-ordered CutoffGroups.  The starting position in
1313 >   * neighborList for each row-ordered CutoffGroup is given by the
1314 >   * returned vector point.
1315     */
1316 <  vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1317 <      
1318 <    vector<pair<int, int> > neighborList;
1319 <    groupCutoffs cuts;
1316 >  void ForceMatrixDecomposition::buildNeighborList(vector<int>& neighborList,
1317 >                                                   vector<int>& point) {
1318 >    neighborList.clear();
1319 >    point.clear();
1320 >    int len = 0;
1321 >    
1322 >    bool doAllPairs = false;
1323 >
1324 >    Snapshot* snap_ = sman_->getCurrentSnapshot();
1325 >    Mat3x3d box;
1326 >    Mat3x3d invBox;
1327 >
1328 >    Vector3d rs, scaled, dr;
1329 >    Vector3i whichCell;
1330 >    int cellIndex;
1331 >
1332   #ifdef IS_MPI
1333      cellListRow_.clear();
1334      cellListCol_.clear();
1335 +    point.resize(nGroupsInRow_+1);
1336   #else
1337      cellList_.clear();
1338 +    point.resize(nGroups_+1);
1339   #endif
1340 +    
1341 +    if (!usePeriodicBoundaryConditions_) {
1342 +      box = snap_->getBoundingBox();
1343 +      invBox = snap_->getInvBoundingBox();
1344 +    } else {
1345 +      box = snap_->getHmat();
1346 +      invBox = snap_->getInvHmat();
1347 +    }
1348 +    
1349 +    Vector3d A = box.getColumn(0);
1350 +    Vector3d B = box.getColumn(1);
1351 +    Vector3d C = box.getColumn(2);
1352  
1353 <    RealType rList_ = (largestRcut_ + skinThickness_);
1354 <    RealType rl2 = rList_ * rList_;
1355 <    Snapshot* snap_ = sman_->getCurrentSnapshot();
1356 <    Mat3x3d Hmat = snap_->getHmat();
932 <    Vector3d Hx = Hmat.getColumn(0);
933 <    Vector3d Hy = Hmat.getColumn(1);
934 <    Vector3d Hz = Hmat.getColumn(2);
1353 >    // Required for triclinic cells
1354 >    Vector3d AxB = cross(A, B);
1355 >    Vector3d BxC = cross(B, C);
1356 >    Vector3d CxA = cross(C, A);
1357  
1358 <    nCells_.x() = (int) ( Hx.length() )/ rList_;
1359 <    nCells_.y() = (int) ( Hy.length() )/ rList_;
1360 <    nCells_.z() = (int) ( Hz.length() )/ rList_;
1361 <
940 <    Mat3x3d invHmat = snap_->getInvHmat();
941 <    Vector3d rs, scaled, dr;
942 <    Vector3i whichCell;
943 <    int cellIndex;
944 <    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1358 >    // unit vectors perpendicular to the faces of the triclinic cell:
1359 >    AxB.normalize();
1360 >    BxC.normalize();
1361 >    CxA.normalize();
1362  
1363 <    cerr << "flag1\n";
1363 >    // A set of perpendicular lengths in triclinic cells:
1364 >    RealType Wa = abs(dot(A, BxC));
1365 >    RealType Wb = abs(dot(B, CxA));
1366 >    RealType Wc = abs(dot(C, AxB));
1367 >    
1368 >    nCells_.x() = int( Wa / rList_ );
1369 >    nCells_.y() = int( Wb / rList_ );
1370 >    nCells_.z() = int( Wc / rList_ );
1371 >    
1372 >    // handle small boxes where the cell offsets can end up repeating cells
1373 >    if (nCells_.x() < 3) doAllPairs = true;
1374 >    if (nCells_.y() < 3) doAllPairs = true;
1375 >    if (nCells_.z() < 3) doAllPairs = true;
1376 >    
1377 >    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1378 >    
1379   #ifdef IS_MPI
1380      cellListRow_.resize(nCtot);
1381      cellListCol_.resize(nCtot);
1382   #else
1383      cellList_.resize(nCtot);
1384   #endif
1385 <    cerr << "flag2\n";
1385 >    
1386 >    if (!doAllPairs) {
1387 >      
1388   #ifdef IS_MPI
1389 <    for (int i = 0; i < nGroupsInRow_; i++) {
1390 <      rs = cgRowData.position[i];
1391 <
1392 <      // scaled positions relative to the box vectors
1393 <      scaled = invHmat * rs;
1394 <
1395 <      // wrap the vector back into the unit box by subtracting integer box
1396 <      // numbers
1397 <      for (int j = 0; j < 3; j++) {
1398 <        scaled[j] -= roundMe(scaled[j]);
1399 <        scaled[j] += 0.5;
1389 >      
1390 >      for (int i = 0; i < nGroupsInRow_; i++) {
1391 >        rs = cgRowData.position[i];
1392 >        
1393 >        // scaled positions relative to the box vectors
1394 >        scaled = invBox * rs;
1395 >        
1396 >        // wrap the vector back into the unit box by subtracting integer box
1397 >        // numbers
1398 >        for (int j = 0; j < 3; j++) {
1399 >          scaled[j] -= roundMe(scaled[j]);
1400 >          scaled[j] += 0.5;
1401 >          // Handle the special case when an object is exactly on the
1402 >          // boundary (a scaled coordinate of 1.0 is the same as
1403 >          // scaled coordinate of 0.0)
1404 >          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1405 >        }
1406 >        
1407 >        // find xyz-indices of cell that cutoffGroup is in.
1408 >        whichCell.x() = nCells_.x() * scaled.x();
1409 >        whichCell.y() = nCells_.y() * scaled.y();
1410 >        whichCell.z() = nCells_.z() * scaled.z();
1411 >        
1412 >        // find single index of this cell:
1413 >        cellIndex = Vlinear(whichCell, nCells_);
1414 >        
1415 >        // add this cutoff group to the list of groups in this cell;
1416 >        cellListRow_[cellIndex].push_back(i);
1417        }
1418 <    
1419 <      // find xyz-indices of cell that cutoffGroup is in.
1420 <      whichCell.x() = nCells_.x() * scaled.x();
1421 <      whichCell.y() = nCells_.y() * scaled.y();
1422 <      whichCell.z() = nCells_.z() * scaled.z();
1423 <
1424 <      // find single index of this cell:
1425 <      cellIndex = Vlinear(whichCell, nCells_);
1426 <
1427 <      // add this cutoff group to the list of groups in this cell;
1428 <      cellListRow_[cellIndex].push_back(i);
1429 <    }
1430 <
1431 <    for (int i = 0; i < nGroupsInCol_; i++) {
1432 <      rs = cgColData.position[i];
1433 <
1434 <      // scaled positions relative to the box vectors
1435 <      scaled = invHmat * rs;
1436 <
1437 <      // wrap the vector back into the unit box by subtracting integer box
1438 <      // numbers
1439 <      for (int j = 0; j < 3; j++) {
1440 <        scaled[j] -= roundMe(scaled[j]);
1441 <        scaled[j] += 0.5;
1418 >      for (int i = 0; i < nGroupsInCol_; i++) {
1419 >        rs = cgColData.position[i];
1420 >        
1421 >        // scaled positions relative to the box vectors
1422 >        scaled = invBox * rs;
1423 >        
1424 >        // wrap the vector back into the unit box by subtracting integer box
1425 >        // numbers
1426 >        for (int j = 0; j < 3; j++) {
1427 >          scaled[j] -= roundMe(scaled[j]);
1428 >          scaled[j] += 0.5;
1429 >          // Handle the special case when an object is exactly on the
1430 >          // boundary (a scaled coordinate of 1.0 is the same as
1431 >          // scaled coordinate of 0.0)
1432 >          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1433 >        }
1434 >        
1435 >        // find xyz-indices of cell that cutoffGroup is in.
1436 >        whichCell.x() = nCells_.x() * scaled.x();
1437 >        whichCell.y() = nCells_.y() * scaled.y();
1438 >        whichCell.z() = nCells_.z() * scaled.z();
1439 >        
1440 >        // find single index of this cell:
1441 >        cellIndex = Vlinear(whichCell, nCells_);
1442 >        
1443 >        // add this cutoff group to the list of groups in this cell;
1444 >        cellListCol_[cellIndex].push_back(i);
1445        }
1446 <
993 <      // find xyz-indices of cell that cutoffGroup is in.
994 <      whichCell.x() = nCells_.x() * scaled.x();
995 <      whichCell.y() = nCells_.y() * scaled.y();
996 <      whichCell.z() = nCells_.z() * scaled.z();
997 <
998 <      // find single index of this cell:
999 <      cellIndex = Vlinear(whichCell, nCells_);
1000 <
1001 <      // add this cutoff group to the list of groups in this cell;
1002 <      cellListCol_[cellIndex].push_back(i);
1003 <    }
1446 >            
1447   #else
1448 <    for (int i = 0; i < nGroups_; i++) {
1449 <      rs = snap_->cgData.position[i];
1450 <
1451 <      // scaled positions relative to the box vectors
1452 <      scaled = invHmat * rs;
1453 <
1454 <      // wrap the vector back into the unit box by subtracting integer box
1455 <      // numbers
1456 <      for (int j = 0; j < 3; j++) {
1457 <        scaled[j] -= roundMe(scaled[j]);
1458 <        scaled[j] += 0.5;
1448 >      for (int i = 0; i < nGroups_; i++) {
1449 >        rs = snap_->cgData.position[i];
1450 >        
1451 >        // scaled positions relative to the box vectors
1452 >        scaled = invBox * rs;
1453 >        
1454 >        // wrap the vector back into the unit box by subtracting integer box
1455 >        // numbers
1456 >        for (int j = 0; j < 3; j++) {
1457 >          scaled[j] -= roundMe(scaled[j]);
1458 >          scaled[j] += 0.5;
1459 >          // Handle the special case when an object is exactly on the
1460 >          // boundary (a scaled coordinate of 1.0 is the same as
1461 >          // scaled coordinate of 0.0)
1462 >          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1463 >        }
1464 >        
1465 >        // find xyz-indices of cell that cutoffGroup is in.
1466 >        whichCell.x() = int(nCells_.x() * scaled.x());
1467 >        whichCell.y() = int(nCells_.y() * scaled.y());
1468 >        whichCell.z() = int(nCells_.z() * scaled.z());
1469 >        
1470 >        // find single index of this cell:
1471 >        cellIndex = Vlinear(whichCell, nCells_);
1472 >        
1473 >        // add this cutoff group to the list of groups in this cell;
1474 >        cellList_[cellIndex].push_back(i);
1475        }
1476  
1477 <      // find xyz-indices of cell that cutoffGroup is in.
1019 <      whichCell.x() = nCells_.x() * scaled.x();
1020 <      whichCell.y() = nCells_.y() * scaled.y();
1021 <      whichCell.z() = nCells_.z() * scaled.z();
1477 > #endif
1478  
1479 <      // find single index of this cell:
1480 <      cellIndex = Vlinear(whichCell, nCells_);      
1479 > #ifdef IS_MPI
1480 >      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1481 >        rs = cgRowData.position[j1];
1482 > #else
1483  
1484 <      // add this cutoff group to the list of groups in this cell;
1485 <      cellList_[cellIndex].push_back(i);
1028 <    }
1484 >      for (int j1 = 0; j1 < nGroups_; j1++) {
1485 >        rs = snap_->cgData.position[j1];
1486   #endif
1487 +        point[j1] = len;
1488 +        
1489 +        // scaled positions relative to the box vectors
1490 +        scaled = invBox * rs;
1491 +        
1492 +        // wrap the vector back into the unit box by subtracting integer box
1493 +        // numbers
1494 +        for (int j = 0; j < 3; j++) {
1495 +          scaled[j] -= roundMe(scaled[j]);
1496 +          scaled[j] += 0.5;
1497 +          // Handle the special case when an object is exactly on the
1498 +          // boundary (a scaled coordinate of 1.0 is the same as
1499 +          // scaled coordinate of 0.0)
1500 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1501 +        }
1502 +        
1503 +        // find xyz-indices of cell that cutoffGroup is in.
1504 +        whichCell.x() = nCells_.x() * scaled.x();
1505 +        whichCell.y() = nCells_.y() * scaled.y();
1506 +        whichCell.z() = nCells_.z() * scaled.z();
1507 +        
1508 +        // find single index of this cell:
1509 +        int m1 = Vlinear(whichCell, nCells_);
1510  
1511 <    for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1512 <      for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1513 <        for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1514 <          Vector3i m1v(m1x, m1y, m1z);
1035 <          int m1 = Vlinear(m1v, nCells_);
1511 >        for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1512 >             os != cellOffsets_.end(); ++os) {
1513 >              
1514 >          Vector3i m2v = whichCell + (*os);
1515  
1516 <          for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1517 <               os != cellOffsets_.end(); ++os) {
1516 >          if (m2v.x() >= nCells_.x()) {
1517 >            m2v.x() = 0;          
1518 >          } else if (m2v.x() < 0) {
1519 >            m2v.x() = nCells_.x() - 1;
1520 >          }
1521 >          
1522 >          if (m2v.y() >= nCells_.y()) {
1523 >            m2v.y() = 0;          
1524 >          } else if (m2v.y() < 0) {
1525 >            m2v.y() = nCells_.y() - 1;
1526 >          }
1527 >          
1528 >          if (m2v.z() >= nCells_.z()) {
1529 >            m2v.z() = 0;          
1530 >          } else if (m2v.z() < 0) {
1531 >            m2v.z() = nCells_.z() - 1;
1532 >          }
1533 >          int m2 = Vlinear (m2v, nCells_);                                      
1534 > #ifdef IS_MPI
1535 >          for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1536 >               j2 != cellListCol_[m2].end(); ++j2) {
1537              
1538 <            Vector3i m2v = m1v + (*os);
1539 <            
1540 <            if (m2v.x() >= nCells_.x()) {
1541 <              m2v.x() = 0;          
1542 <            } else if (m2v.x() < 0) {
1543 <              m2v.x() = nCells_.x() - 1;
1538 >            // In parallel, we need to visit *all* pairs of row
1539 >            // & column indicies and will divide labor in the
1540 >            // force evaluation later.
1541 >            dr = cgColData.position[(*j2)] - rs;
1542 >            if (usePeriodicBoundaryConditions_) {
1543 >              snap_->wrapVector(dr);
1544              }
1545 +            if (dr.lengthSquare() < rListSq_) {
1546 +              neighborList.push_back( (*j2) );
1547 +              ++len;
1548 +            }                
1549 +          }        
1550 + #else
1551 +          for (vector<int>::iterator j2 = cellList_[m2].begin();
1552 +               j2 != cellList_[m2].end(); ++j2) {
1553 +          
1554 +            // Always do this if we're in different cells or if
1555 +            // we're in the same cell and the global index of
1556 +            // the j2 cutoff group is greater than or equal to
1557 +            // the j1 cutoff group.  Note that Rappaport's code
1558 +            // has a "less than" conditional here, but that
1559 +            // deals with atom-by-atom computation.  OpenMD
1560 +            // allows atoms within a single cutoff group to
1561 +            // interact with each other.
1562              
1563 <            if (m2v.y() >= nCells_.y()) {
1564 <              m2v.y() = 0;          
1565 <            } else if (m2v.y() < 0) {
1566 <              m2v.y() = nCells_.y() - 1;
1567 <            }
1053 <            
1054 <            if (m2v.z() >= nCells_.z()) {
1055 <              m2v.z() = 0;          
1056 <            } else if (m2v.z() < 0) {
1057 <              m2v.z() = nCells_.z() - 1;
1058 <            }
1059 <            
1060 <            int m2 = Vlinear (m2v, nCells_);
1061 <
1062 < #ifdef IS_MPI
1063 <            for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1064 <                 j1 != cellListRow_[m1].end(); ++j1) {
1065 <              for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1066 <                   j2 != cellListCol_[m2].end(); ++j2) {
1067 <                              
1068 <                // Always do this if we're in different cells or if
1069 <                // we're in the same cell and the global index of the
1070 <                // j2 cutoff group is less than the j1 cutoff group
1071 <
1072 <                if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1073 <                  dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1074 <                  snap_->wrapVector(dr);
1075 <                  cuts = getGroupCutoffs( (*j1), (*j2) );
1076 <                  if (dr.lengthSquare() < cuts.third) {
1077 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1078 <                  }
1079 <                }
1563 >            if ( (*j2) >= j1 ) {
1564 >              
1565 >              dr = snap_->cgData.position[(*j2)] - rs;
1566 >              if (usePeriodicBoundaryConditions_) {
1567 >                snap_->wrapVector(dr);
1568                }
1569 <            }
1570 < #else
1571 <
1084 <            for (vector<int>::iterator j1 = cellList_[m1].begin();
1085 <                 j1 != cellList_[m1].end(); ++j1) {
1086 <              for (vector<int>::iterator j2 = cellList_[m2].begin();
1087 <                   j2 != cellList_[m2].end(); ++j2) {
1088 <
1089 <                // Always do this if we're in different cells or if
1090 <                // we're in the same cell and the global index of the
1091 <                // j2 cutoff group is less than the j1 cutoff group
1092 <
1093 <                if (m2 != m1 || (*j2) < (*j1)) {
1094 <                  dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1095 <                  snap_->wrapVector(dr);
1096 <                  cuts = getGroupCutoffs( (*j1), (*j2) );
1097 <                  if (dr.lengthSquare() < cuts.third) {
1098 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1099 <                  }
1100 <                }
1569 >              if ( dr.lengthSquare() < rListSq_) {
1570 >                neighborList.push_back( (*j2) );
1571 >                ++len;
1572                }
1573              }
1574 +          }                
1575   #endif
1576 +        }
1577 +      }      
1578 +    } else {
1579 +      // branch to do all cutoff group pairs
1580 + #ifdef IS_MPI
1581 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1582 +        point[j1] = len;
1583 +        rs = cgRowData.position[j1];
1584 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {    
1585 +          dr = cgColData.position[j2] - rs;
1586 +          if (usePeriodicBoundaryConditions_) {
1587 +            snap_->wrapVector(dr);
1588            }
1589 +          if (dr.lengthSquare() < rListSq_) {
1590 +            neighborList.push_back( j2 );
1591 +            ++len;
1592 +          }
1593          }
1594 +      }      
1595 + #else
1596 +      // include all groups here.
1597 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1598 +        point[j1] = len;
1599 +        rs = snap_->cgData.position[j1];
1600 +        // include self group interactions j2 == j1
1601 +        for (int j2 = j1; j2 < nGroups_; j2++) {
1602 +          dr = snap_->cgData.position[j2] - rs;
1603 +          if (usePeriodicBoundaryConditions_) {
1604 +            snap_->wrapVector(dr);
1605 +          }
1606 +          if (dr.lengthSquare() < rListSq_) {
1607 +            neighborList.push_back( j2 );
1608 +            ++len;
1609 +          }
1610 +        }    
1611        }
1612 + #endif
1613      }
1614 <    
1614 >
1615 > #ifdef IS_MPI
1616 >    point[nGroupsInRow_] = len;
1617 > #else
1618 >    point[nGroups_] = len;
1619 > #endif
1620 >  
1621      // save the local cutoff group positions for the check that is
1622      // done on each loop:
1623      saved_CG_positions_.clear();
1624 +    saved_CG_positions_.reserve(nGroups_);
1625      for (int i = 0; i < nGroups_; i++)
1626        saved_CG_positions_.push_back(snap_->cgData.position[i]);
1114    
1115    return neighborList;
1627    }
1628   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines