ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing:
branches/development/src/parallel/ForceDecomposition.cpp (file contents), Revision 1538 by chuckv, Tue Jan 11 18:58:12 2011 UTC vs.
trunk/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 1930 by gezelter, Mon Aug 19 13:51:04 2013 UTC

# Line 1 | Line 1
1 < /**
2 < * @file ForceDecomposition.cpp
3 < * @author Charles Vardeman <cvardema.at.nd.edu>
4 < * @date 08/18/2010
5 < * @time 11:56am
6 < * @version 1.0
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
8 * @section LICENSE
9 * Copyright (c) 2010 The University of Notre Dame. All Rights Reserved.
10 *
4   * The University of Notre Dame grants you ("Licensee") a
5   * non-exclusive, royalty free, license to use, modify and
6   * redistribute this software in source and binary code form, provided
# Line 42 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42 + #include "parallel/ForceMatrixDecomposition.hpp"
43 + #include "math/SquareMatrix3.hpp"
44 + #include "nonbonded/NonBondedInteraction.hpp"
45 + #include "brains/SnapshotManager.hpp"
46 + #include "brains/PairList.hpp"
47  
48 + using namespace std;
49 + namespace OpenMD {
50  
51 +  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52  
53 < /*  -*- c++ -*-  */
54 < #include "config.h"
55 < #include <stdlib.h>
53 >    // In a parallel computation, row and colum scans must visit all
54 >    // surrounding cells (not just the 14 upper triangular blocks that
55 >    // are used when the processor can see all pairs)
56   #ifdef IS_MPI
57 < #include <mpi.h>
58 < #endif
57 >    cellOffsets_.clear();
58 >    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59 >    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60 >    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                          
61 >    cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62 >    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63 >    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64 >    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65 >    cellOffsets_.push_back( Vector3i( 0, 1,-1) );      
66 >    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 >    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68 >    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69 >    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 >    cellOffsets_.push_back( Vector3i(-1, 0, 0) );      
71 >    cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72 >    cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73 >    cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74 >    cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75 >    cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76 >    cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77 >    cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78 >    cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 >    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 >    cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81 >    cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82 >    cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83 >    cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84 >    cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 > #endif    
86 >  }
87  
58 #include <iostream>
59 #include <vector>
60 #include <algorithm>
61 #include <cmath>
62 #include "parallel/ForceDecomposition.hpp"
88  
89 +  /**
90 +   * distributeInitialData is essentially a copy of the older fortran
91 +   * SimulationSetup
92 +   */
93 +  void ForceMatrixDecomposition::distributeInitialData() {
94 +    snap_ = sman_->getCurrentSnapshot();
95 +    storageLayout_ = sman_->getStorageLayout();
96 +    ff_ = info_->getForceField();
97 +    nLocal_ = snap_->getNumberOfAtoms();
98 +  
99 +    nGroups_ = info_->getNLocalCutoffGroups();
100 +    // gather the information for atomtype IDs (atids):
101 +    idents = info_->getIdentArray();
102 +    regions = info_->getRegions();
103 +    AtomLocalToGlobal = info_->getGlobalAtomIndices();
104 +    cgLocalToGlobal = info_->getGlobalGroupIndices();
105 +    vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
106  
107 < using namespace std;
66 < using namespace OpenMD;
107 >    massFactors = info_->getMassFactors();
108  
109 < //__static
109 >    PairList* excludes = info_->getExcludedInteractions();
110 >    PairList* oneTwo = info_->getOneTwoInteractions();
111 >    PairList* oneThree = info_->getOneThreeInteractions();
112 >    PairList* oneFour = info_->getOneFourInteractions();
113 >    
114 >    if (needVelocities_)
115 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition |
116 >                                     DataStorage::dslVelocity);
117 >    else
118 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition);
119 >    
120   #ifdef IS_MPI
121 < static vector<MPI:Comm> communictors;
122 < #endif
121 >
122 >    MPI::Intracomm row = rowComm.getComm();
123 >    MPI::Intracomm col = colComm.getComm();
124  
125 < //____ MPITypeTraits
126 < template<typename T>
127 < struct MPITypeTraits;
125 >    AtomPlanIntRow = new Plan<int>(row, nLocal_);
126 >    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
127 >    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
128 >    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
129 >    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
130  
131 < #ifdef IS_MPI
132 < template<>
133 < struct MPITypeTraits<RealType> {
134 <  static const MPI::Datatype datatype;
135 < };
82 < const MPI_Datatype MPITypeTraits<RealType>::datatype = MY_MPI_REAL;
131 >    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
132 >    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
133 >    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
134 >    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
135 >    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
136  
137 < template<>
138 < struct MPITypeTraits<int> {
139 <  static const MPI::Datatype datatype;
140 < };
88 < const MPI::Datatype MPITypeTraits<int>::datatype = MPI_INT;
89 < #endif
137 >    cgPlanIntRow = new Plan<int>(row, nGroups_);
138 >    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
139 >    cgPlanIntColumn = new Plan<int>(col, nGroups_);
140 >    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
141  
142 < /**
143 < * Constructor for ForceDecomposition Parallel Decomposition Method
144 < * Will try to construct a symmetric grid of processors. Ideally, the
145 < * number of processors will be a square ex: 4, 9, 16, 25.
95 < *
96 < */
142 >    nAtomsInRow_ = AtomPlanIntRow->getSize();
143 >    nAtomsInCol_ = AtomPlanIntColumn->getSize();
144 >    nGroupsInRow_ = cgPlanIntRow->getSize();
145 >    nGroupsInCol_ = cgPlanIntColumn->getSize();
146  
147 < ForceDecomposition::ForceDecomposition() {
147 >    // Modify the data storage objects with the correct layouts and sizes:
148 >    atomRowData.resize(nAtomsInRow_);
149 >    atomRowData.setStorageLayout(storageLayout_);
150 >    atomColData.resize(nAtomsInCol_);
151 >    atomColData.setStorageLayout(storageLayout_);
152 >    cgRowData.resize(nGroupsInRow_);
153 >    cgRowData.setStorageLayout(DataStorage::dslPosition);
154 >    cgColData.resize(nGroupsInCol_);
155 >    if (needVelocities_)
156 >      // we only need column velocities if we need them.
157 >      cgColData.setStorageLayout(DataStorage::dslPosition |
158 >                                 DataStorage::dslVelocity);
159 >    else    
160 >      cgColData.setStorageLayout(DataStorage::dslPosition);
161 >      
162 >    identsRow.resize(nAtomsInRow_);
163 >    identsCol.resize(nAtomsInCol_);
164 >    
165 >    AtomPlanIntRow->gather(idents, identsRow);
166 >    AtomPlanIntColumn->gather(idents, identsCol);
167  
168 < #ifdef IS_MPI
169 <  int nProcs = MPI::COMM_WORLD.Get_size();
170 <  int worldRank = MPI::COMM_WORLD.Get_rank();
171 < #endif
168 >    regionsRow.resize(nAtomsInRow_);
169 >    regionsCol.resize(nAtomsInCol_);
170 >    
171 >    AtomPlanIntRow->gather(regions, regionsRow);
172 >    AtomPlanIntColumn->gather(regions, regionsCol);
173 >    
174 >    // allocate memory for the parallel objects
175 >    atypesRow.resize(nAtomsInRow_);
176 >    atypesCol.resize(nAtomsInCol_);
177  
178 <  // First time through, construct column stride.
179 <  if (communicators.size() == 0)
180 <  {
181 <    int nColumnsMax = (int) round(sqrt((float) nProcs));
109 <    for (int i = 0; i < nProcs; ++i)
110 <    {
111 <      if (nProcs%i==0) nColumns=i;
112 <    }
178 >    for (int i = 0; i < nAtomsInRow_; i++)
179 >      atypesRow[i] = ff_->getAtomType(identsRow[i]);
180 >    for (int i = 0; i < nAtomsInCol_; i++)
181 >      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
182  
183 <    int nRows = nProcs/nColumns;    
184 <    myRank_ = (int) worldRank%nColumns;
116 <  }
117 <  else
118 <  {
119 <    myRank_ = myRank/nColumns;
120 <  }
121 <  MPI::Comm newComm = MPI:COMM_WORLD.Split(myRank_,0);
122 <  
123 <  isColumn_ = false;
124 <  
125 < }
183 >    pot_row.resize(nAtomsInRow_);
184 >    pot_col.resize(nAtomsInCol_);
185  
186 < ForceDecomposition::gather(sendbuf, receivebuf){
187 <  communicators(myIndex_).Allgatherv();
188 < }
186 >    expot_row.resize(nAtomsInRow_);
187 >    expot_col.resize(nAtomsInCol_);
188 >
189 >    AtomRowToGlobal.resize(nAtomsInRow_);
190 >    AtomColToGlobal.resize(nAtomsInCol_);
191 >    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
192 >    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
193  
194 +    cgRowToGlobal.resize(nGroupsInRow_);
195 +    cgColToGlobal.resize(nGroupsInCol_);
196 +    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
197 +    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
198  
199 +    massFactorsRow.resize(nAtomsInRow_);
200 +    massFactorsCol.resize(nAtomsInCol_);
201 +    AtomPlanRealRow->gather(massFactors, massFactorsRow);
202 +    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
203 +
204 +    groupListRow_.clear();
205 +    groupListRow_.resize(nGroupsInRow_);
206 +    for (int i = 0; i < nGroupsInRow_; i++) {
207 +      int gid = cgRowToGlobal[i];
208 +      for (int j = 0; j < nAtomsInRow_; j++) {
209 +        int aid = AtomRowToGlobal[j];
210 +        if (globalGroupMembership[aid] == gid)
211 +          groupListRow_[i].push_back(j);
212 +      }      
213 +    }
214 +
215 +    groupListCol_.clear();
216 +    groupListCol_.resize(nGroupsInCol_);
217 +    for (int i = 0; i < nGroupsInCol_; i++) {
218 +      int gid = cgColToGlobal[i];
219 +      for (int j = 0; j < nAtomsInCol_; j++) {
220 +        int aid = AtomColToGlobal[j];
221 +        if (globalGroupMembership[aid] == gid)
222 +          groupListCol_[i].push_back(j);
223 +      }      
224 +    }
225 +
226 +    excludesForAtom.clear();
227 +    excludesForAtom.resize(nAtomsInRow_);
228 +    toposForAtom.clear();
229 +    toposForAtom.resize(nAtomsInRow_);
230 +    topoDist.clear();
231 +    topoDist.resize(nAtomsInRow_);
232 +    for (int i = 0; i < nAtomsInRow_; i++) {
233 +      int iglob = AtomRowToGlobal[i];
234 +
235 +      for (int j = 0; j < nAtomsInCol_; j++) {
236 +        int jglob = AtomColToGlobal[j];
237 +
238 +        if (excludes->hasPair(iglob, jglob))
239 +          excludesForAtom[i].push_back(j);      
240 +        
241 +        if (oneTwo->hasPair(iglob, jglob)) {
242 +          toposForAtom[i].push_back(j);
243 +          topoDist[i].push_back(1);
244 +        } else {
245 +          if (oneThree->hasPair(iglob, jglob)) {
246 +            toposForAtom[i].push_back(j);
247 +            topoDist[i].push_back(2);
248 +          } else {
249 +            if (oneFour->hasPair(iglob, jglob)) {
250 +              toposForAtom[i].push_back(j);
251 +              topoDist[i].push_back(3);
252 +            }
253 +          }
254 +        }
255 +      }      
256 +    }
257 +
258 + #else
259 +    excludesForAtom.clear();
260 +    excludesForAtom.resize(nLocal_);
261 +    toposForAtom.clear();
262 +    toposForAtom.resize(nLocal_);
263 +    topoDist.clear();
264 +    topoDist.resize(nLocal_);
265 +
266 +    for (int i = 0; i < nLocal_; i++) {
267 +      int iglob = AtomLocalToGlobal[i];
268 +
269 +      for (int j = 0; j < nLocal_; j++) {
270 +        int jglob = AtomLocalToGlobal[j];
271 +
272 +        if (excludes->hasPair(iglob, jglob))
273 +          excludesForAtom[i].push_back(j);              
274 +        
275 +        if (oneTwo->hasPair(iglob, jglob)) {
276 +          toposForAtom[i].push_back(j);
277 +          topoDist[i].push_back(1);
278 +        } else {
279 +          if (oneThree->hasPair(iglob, jglob)) {
280 +            toposForAtom[i].push_back(j);
281 +            topoDist[i].push_back(2);
282 +          } else {
283 +            if (oneFour->hasPair(iglob, jglob)) {
284 +              toposForAtom[i].push_back(j);
285 +              topoDist[i].push_back(3);
286 +            }
287 +          }
288 +        }
289 +      }      
290 +    }
291 + #endif
292 +
293 +    // allocate memory for the parallel objects
294 +    atypesLocal.resize(nLocal_);
295 +
296 +    for (int i = 0; i < nLocal_; i++)
297 +      atypesLocal[i] = ff_->getAtomType(idents[i]);
298 +
299 +    groupList_.clear();
300 +    groupList_.resize(nGroups_);
301 +    for (int i = 0; i < nGroups_; i++) {
302 +      int gid = cgLocalToGlobal[i];
303 +      for (int j = 0; j < nLocal_; j++) {
304 +        int aid = AtomLocalToGlobal[j];
305 +        if (globalGroupMembership[aid] == gid) {
306 +          groupList_[i].push_back(j);
307 +        }
308 +      }      
309 +    }
310 +
311 +
312 +    createGtypeCutoffMap();
313 +
314 +  }
315 +  
316 +  void ForceMatrixDecomposition::createGtypeCutoffMap() {
317 +    
318 +    GrCut.clear();
319 +    GrCutSq.clear();
320 +    GrlistSq.clear();
321 +
322 +    RealType tol = 1e-6;
323 +    largestRcut_ = 0.0;
324 +    int atid;
325 +    set<AtomType*> atypes = info_->getSimulatedAtomTypes();
326 +    
327 +    map<int, RealType> atypeCutoff;
328 +      
329 +    for (set<AtomType*>::iterator at = atypes.begin();
330 +         at != atypes.end(); ++at){
331 +      atid = (*at)->getIdent();
332 +      if (userChoseCutoff_)
333 +        atypeCutoff[atid] = userCutoff_;
334 +      else
335 +        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
336 +    }
337 +    
338 +    vector<RealType> gTypeCutoffs;
339 +    // first we do a single loop over the cutoff groups to find the
340 +    // largest cutoff for any atypes present in this group.
341 + #ifdef IS_MPI
342 +    vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
343 +    groupRowToGtype.resize(nGroupsInRow_);
344 +    for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
345 +      vector<int> atomListRow = getAtomsInGroupRow(cg1);
346 +      for (vector<int>::iterator ia = atomListRow.begin();
347 +           ia != atomListRow.end(); ++ia) {            
348 +        int atom1 = (*ia);
349 +        atid = identsRow[atom1];
350 +        if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
351 +          groupCutoffRow[cg1] = atypeCutoff[atid];
352 +        }
353 +      }
354 +
355 +      bool gTypeFound = false;
356 +      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
357 +        if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
358 +          groupRowToGtype[cg1] = gt;
359 +          gTypeFound = true;
360 +        }
361 +      }
362 +      if (!gTypeFound) {
363 +        gTypeCutoffs.push_back( groupCutoffRow[cg1] );
364 +        groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
365 +      }
366 +      
367 +    }
368 +    vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
369 +    groupColToGtype.resize(nGroupsInCol_);
370 +    for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
371 +      vector<int> atomListCol = getAtomsInGroupColumn(cg2);
372 +      for (vector<int>::iterator jb = atomListCol.begin();
373 +           jb != atomListCol.end(); ++jb) {            
374 +        int atom2 = (*jb);
375 +        atid = identsCol[atom2];
376 +        if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
377 +          groupCutoffCol[cg2] = atypeCutoff[atid];
378 +        }
379 +      }
380 +      bool gTypeFound = false;
381 +      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
382 +        if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
383 +          groupColToGtype[cg2] = gt;
384 +          gTypeFound = true;
385 +        }
386 +      }
387 +      if (!gTypeFound) {
388 +        gTypeCutoffs.push_back( groupCutoffCol[cg2] );
389 +        groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
390 +      }
391 +    }
392 + #else
393 +
394 +    vector<RealType> groupCutoff(nGroups_, 0.0);
395 +    groupToGtype.resize(nGroups_);
396 +    for (int cg1 = 0; cg1 < nGroups_; cg1++) {
397 +      groupCutoff[cg1] = 0.0;
398 +      vector<int> atomList = getAtomsInGroupRow(cg1);
399 +      for (vector<int>::iterator ia = atomList.begin();
400 +           ia != atomList.end(); ++ia) {            
401 +        int atom1 = (*ia);
402 +        atid = idents[atom1];
403 +        if (atypeCutoff[atid] > groupCutoff[cg1])
404 +          groupCutoff[cg1] = atypeCutoff[atid];
405 +      }
406 +      
407 +      bool gTypeFound = false;
408 +      for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) {
409 +        if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
410 +          groupToGtype[cg1] = gt;
411 +          gTypeFound = true;
412 +        }
413 +      }
414 +      if (!gTypeFound) {      
415 +        gTypeCutoffs.push_back( groupCutoff[cg1] );
416 +        groupToGtype[cg1] = gTypeCutoffs.size() - 1;
417 +      }      
418 +    }
419 + #endif
420  
421 < ForceDecomposition::scatter(sbuffer, rbuffer){
422 <  communicators(myIndex_).Reduce_scatter(sbuffer, recevbuf. recvcounts, MPI::DOUBLE, MPI::SUM);
423 < }
421 >    // Now we find the maximum group cutoff value present in the simulation
422 >
423 >    RealType groupMax = *max_element(gTypeCutoffs.begin(),
424 >                                     gTypeCutoffs.end());
425 >
426 > #ifdef IS_MPI
427 >    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
428 >                              MPI::MAX);
429 > #endif
430 >    
431 >    RealType tradRcut = groupMax;
432 >
433 >    GrCut.resize( gTypeCutoffs.size() );
434 >    GrCutSq.resize( gTypeCutoffs.size() );
435 >    GrlistSq.resize( gTypeCutoffs.size() );
436 >
437 >
438 >    for (unsigned int i = 0; i < gTypeCutoffs.size();  i++) {
439 >      GrCut[i].resize( gTypeCutoffs.size() , 0.0);
440 >      GrCutSq[i].resize( gTypeCutoffs.size(), 0.0 );
441 >      GrlistSq[i].resize( gTypeCutoffs.size(), 0.0 );
442 >
443 >      for (unsigned int j = 0; j < gTypeCutoffs.size();  j++) {      
444 >        RealType thisRcut;
445 >        switch(cutoffPolicy_) {
446 >        case TRADITIONAL:
447 >          thisRcut = tradRcut;
448 >          break;
449 >        case MIX:
450 >          thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
451 >          break;
452 >        case MAX:
453 >          thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
454 >          break;
455 >        default:
456 >          sprintf(painCave.errMsg,
457 >                  "ForceMatrixDecomposition::createGtypeCutoffMap "
458 >                  "hit an unknown cutoff policy!\n");
459 >          painCave.severity = OPENMD_ERROR;
460 >          painCave.isFatal = 1;
461 >          simError();
462 >          break;
463 >        }
464 >
465 >        GrCut[i][j] = thisRcut;
466 >        if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
467 >        GrCutSq[i][j] = thisRcut * thisRcut;
468 >        GrlistSq[i][j] = pow(thisRcut + skinThickness_, 2);
469 >
470 >        // pair<int,int> key = make_pair(i,j);
471 >        // gTypeCutoffMap[key].first = thisRcut;
472 >        // gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
473 >        // sanity check
474 >        
475 >        if (userChoseCutoff_) {
476 >          if (abs(GrCut[i][j] - userCutoff_) > 0.0001) {
477 >            sprintf(painCave.errMsg,
478 >                    "ForceMatrixDecomposition::createGtypeCutoffMap "
479 >                    "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
480 >            painCave.severity = OPENMD_ERROR;
481 >            painCave.isFatal = 1;
482 >            simError();            
483 >          }
484 >        }
485 >      }
486 >    }
487 >  }
488 >
489 >  void ForceMatrixDecomposition::getGroupCutoffs(int &cg1, int &cg2, RealType &rcut, RealType &rcutsq, RealType &rlistsq) {
490 >    int i, j;  
491 > #ifdef IS_MPI
492 >    i = groupRowToGtype[cg1];
493 >    j = groupColToGtype[cg2];
494 > #else
495 >    i = groupToGtype[cg1];
496 >    j = groupToGtype[cg2];
497 > #endif    
498 >    rcut = GrCut[i][j];
499 >    rcutsq = GrCutSq[i][j];
500 >    rlistsq = GrlistSq[i][j];
501 >    return;
502 >    //return gTypeCutoffMap[make_pair(i,j)];
503 >  }
504 >
505 >  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
506 >    for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) {
507 >      if (toposForAtom[atom1][j] == atom2)
508 >        return topoDist[atom1][j];
509 >    }                                          
510 >    return 0;
511 >  }
512 >
513 >  void ForceMatrixDecomposition::zeroWorkArrays() {
514 >    pairwisePot = 0.0;
515 >    embeddingPot = 0.0;
516 >    excludedPot = 0.0;
517 >    excludedSelfPot = 0.0;
518 >
519 > #ifdef IS_MPI
520 >    if (storageLayout_ & DataStorage::dslForce) {
521 >      fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
522 >      fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
523 >    }
524 >
525 >    if (storageLayout_ & DataStorage::dslTorque) {
526 >      fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
527 >      fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
528 >    }
529 >    
530 >    fill(pot_row.begin(), pot_row.end(),
531 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
532 >
533 >    fill(pot_col.begin(), pot_col.end(),
534 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
535 >
536 >    fill(expot_row.begin(), expot_row.end(),
537 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
538 >
539 >    fill(expot_col.begin(), expot_col.end(),
540 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
541 >
542 >    if (storageLayout_ & DataStorage::dslParticlePot) {    
543 >      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
544 >           0.0);
545 >      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
546 >           0.0);
547 >    }
548 >
549 >    if (storageLayout_ & DataStorage::dslDensity) {      
550 >      fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
551 >      fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
552 >    }
553 >
554 >    if (storageLayout_ & DataStorage::dslFunctional) {  
555 >      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
556 >           0.0);
557 >      fill(atomColData.functional.begin(), atomColData.functional.end(),
558 >           0.0);
559 >    }
560 >
561 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
562 >      fill(atomRowData.functionalDerivative.begin(),
563 >           atomRowData.functionalDerivative.end(), 0.0);
564 >      fill(atomColData.functionalDerivative.begin(),
565 >           atomColData.functionalDerivative.end(), 0.0);
566 >    }
567 >
568 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
569 >      fill(atomRowData.skippedCharge.begin(),
570 >           atomRowData.skippedCharge.end(), 0.0);
571 >      fill(atomColData.skippedCharge.begin(),
572 >           atomColData.skippedCharge.end(), 0.0);
573 >    }
574 >
575 >    if (storageLayout_ & DataStorage::dslFlucQForce) {      
576 >      fill(atomRowData.flucQFrc.begin(),
577 >           atomRowData.flucQFrc.end(), 0.0);
578 >      fill(atomColData.flucQFrc.begin(),
579 >           atomColData.flucQFrc.end(), 0.0);
580 >    }
581 >
582 >    if (storageLayout_ & DataStorage::dslElectricField) {    
583 >      fill(atomRowData.electricField.begin(),
584 >           atomRowData.electricField.end(), V3Zero);
585 >      fill(atomColData.electricField.begin(),
586 >           atomColData.electricField.end(), V3Zero);
587 >    }
588 >
589 > #endif
590 >    // even in parallel, we need to zero out the local arrays:
591 >
592 >    if (storageLayout_ & DataStorage::dslParticlePot) {      
593 >      fill(snap_->atomData.particlePot.begin(),
594 >           snap_->atomData.particlePot.end(), 0.0);
595 >    }
596 >    
597 >    if (storageLayout_ & DataStorage::dslDensity) {      
598 >      fill(snap_->atomData.density.begin(),
599 >           snap_->atomData.density.end(), 0.0);
600 >    }
601 >
602 >    if (storageLayout_ & DataStorage::dslFunctional) {
603 >      fill(snap_->atomData.functional.begin(),
604 >           snap_->atomData.functional.end(), 0.0);
605 >    }
606 >
607 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
608 >      fill(snap_->atomData.functionalDerivative.begin(),
609 >           snap_->atomData.functionalDerivative.end(), 0.0);
610 >    }
611 >
612 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
613 >      fill(snap_->atomData.skippedCharge.begin(),
614 >           snap_->atomData.skippedCharge.end(), 0.0);
615 >    }
616 >
617 >    if (storageLayout_ & DataStorage::dslElectricField) {      
618 >      fill(snap_->atomData.electricField.begin(),
619 >           snap_->atomData.electricField.end(), V3Zero);
620 >    }
621 >  }
622 >
623 >
624 >  void ForceMatrixDecomposition::distributeData()  {
625 >    snap_ = sman_->getCurrentSnapshot();
626 >    storageLayout_ = sman_->getStorageLayout();
627 > #ifdef IS_MPI
628 >    
629 >    // gather up the atomic positions
630 >    AtomPlanVectorRow->gather(snap_->atomData.position,
631 >                              atomRowData.position);
632 >    AtomPlanVectorColumn->gather(snap_->atomData.position,
633 >                                 atomColData.position);
634 >    
635 >    // gather up the cutoff group positions
636 >
637 >    cgPlanVectorRow->gather(snap_->cgData.position,
638 >                            cgRowData.position);
639 >
640 >    cgPlanVectorColumn->gather(snap_->cgData.position,
641 >                               cgColData.position);
642 >
643 >
644 >
645 >    if (needVelocities_) {
646 >      // gather up the atomic velocities
647 >      AtomPlanVectorColumn->gather(snap_->atomData.velocity,
648 >                                   atomColData.velocity);
649 >      
650 >      cgPlanVectorColumn->gather(snap_->cgData.velocity,
651 >                                 cgColData.velocity);
652 >    }
653 >
654 >    
655 >    // if needed, gather the atomic rotation matrices
656 >    if (storageLayout_ & DataStorage::dslAmat) {
657 >      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
658 >                                atomRowData.aMat);
659 >      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
660 >                                   atomColData.aMat);
661 >    }
662 >
663 >    // if needed, gather the atomic eletrostatic information
664 >    if (storageLayout_ & DataStorage::dslDipole) {
665 >      AtomPlanVectorRow->gather(snap_->atomData.dipole,
666 >                                atomRowData.dipole);
667 >      AtomPlanVectorColumn->gather(snap_->atomData.dipole,
668 >                                   atomColData.dipole);
669 >    }
670 >
671 >    if (storageLayout_ & DataStorage::dslQuadrupole) {
672 >      AtomPlanMatrixRow->gather(snap_->atomData.quadrupole,
673 >                                atomRowData.quadrupole);
674 >      AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole,
675 >                                   atomColData.quadrupole);
676 >    }
677 >        
678 >    // if needed, gather the atomic fluctuating charge values
679 >    if (storageLayout_ & DataStorage::dslFlucQPosition) {
680 >      AtomPlanRealRow->gather(snap_->atomData.flucQPos,
681 >                              atomRowData.flucQPos);
682 >      AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
683 >                                 atomColData.flucQPos);
684 >    }
685 >
686 > #endif      
687 >  }
688 >  
689 >  /* collects information obtained during the pre-pair loop onto local
690 >   * data structures.
691 >   */
692 >  void ForceMatrixDecomposition::collectIntermediateData() {
693 >    snap_ = sman_->getCurrentSnapshot();
694 >    storageLayout_ = sman_->getStorageLayout();
695 > #ifdef IS_MPI
696 >    
697 >    if (storageLayout_ & DataStorage::dslDensity) {
698 >      
699 >      AtomPlanRealRow->scatter(atomRowData.density,
700 >                               snap_->atomData.density);
701 >      
702 >      int n = snap_->atomData.density.size();
703 >      vector<RealType> rho_tmp(n, 0.0);
704 >      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
705 >      for (int i = 0; i < n; i++)
706 >        snap_->atomData.density[i] += rho_tmp[i];
707 >    }
708 >
709 >    // this isn't necessary if we don't have polarizable atoms, but
710 >    // we'll leave it here for now.
711 >    if (storageLayout_ & DataStorage::dslElectricField) {
712 >      
713 >      AtomPlanVectorRow->scatter(atomRowData.electricField,
714 >                                 snap_->atomData.electricField);
715 >      
716 >      int n = snap_->atomData.electricField.size();
717 >      vector<Vector3d> field_tmp(n, V3Zero);
718 >      AtomPlanVectorColumn->scatter(atomColData.electricField,
719 >                                    field_tmp);
720 >      for (int i = 0; i < n; i++)
721 >        snap_->atomData.electricField[i] += field_tmp[i];
722 >    }
723 > #endif
724 >  }
725 >
726 >  /*
727 >   * redistributes information obtained during the pre-pair loop out to
728 >   * row and column-indexed data structures
729 >   */
730 >  void ForceMatrixDecomposition::distributeIntermediateData() {
731 >    snap_ = sman_->getCurrentSnapshot();
732 >    storageLayout_ = sman_->getStorageLayout();
733 > #ifdef IS_MPI
734 >    if (storageLayout_ & DataStorage::dslFunctional) {
735 >      AtomPlanRealRow->gather(snap_->atomData.functional,
736 >                              atomRowData.functional);
737 >      AtomPlanRealColumn->gather(snap_->atomData.functional,
738 >                                 atomColData.functional);
739 >    }
740 >    
741 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
742 >      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
743 >                              atomRowData.functionalDerivative);
744 >      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
745 >                                 atomColData.functionalDerivative);
746 >    }
747 > #endif
748 >  }
749 >  
750 >  
751 >  void ForceMatrixDecomposition::collectData() {
752 >    snap_ = sman_->getCurrentSnapshot();
753 >    storageLayout_ = sman_->getStorageLayout();
754 > #ifdef IS_MPI    
755 >    int n = snap_->atomData.force.size();
756 >    vector<Vector3d> frc_tmp(n, V3Zero);
757 >    
758 >    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
759 >    for (int i = 0; i < n; i++) {
760 >      snap_->atomData.force[i] += frc_tmp[i];
761 >      frc_tmp[i] = 0.0;
762 >    }
763 >    
764 >    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
765 >    for (int i = 0; i < n; i++) {
766 >      snap_->atomData.force[i] += frc_tmp[i];
767 >    }
768 >        
769 >    if (storageLayout_ & DataStorage::dslTorque) {
770 >
771 >      int nt = snap_->atomData.torque.size();
772 >      vector<Vector3d> trq_tmp(nt, V3Zero);
773 >
774 >      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
775 >      for (int i = 0; i < nt; i++) {
776 >        snap_->atomData.torque[i] += trq_tmp[i];
777 >        trq_tmp[i] = 0.0;
778 >      }
779 >      
780 >      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
781 >      for (int i = 0; i < nt; i++)
782 >        snap_->atomData.torque[i] += trq_tmp[i];
783 >    }
784 >
785 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {
786 >
787 >      int ns = snap_->atomData.skippedCharge.size();
788 >      vector<RealType> skch_tmp(ns, 0.0);
789 >
790 >      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
791 >      for (int i = 0; i < ns; i++) {
792 >        snap_->atomData.skippedCharge[i] += skch_tmp[i];
793 >        skch_tmp[i] = 0.0;
794 >      }
795 >      
796 >      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
797 >      for (int i = 0; i < ns; i++)
798 >        snap_->atomData.skippedCharge[i] += skch_tmp[i];
799 >            
800 >    }
801 >    
802 >    if (storageLayout_ & DataStorage::dslFlucQForce) {
803 >
804 >      int nq = snap_->atomData.flucQFrc.size();
805 >      vector<RealType> fqfrc_tmp(nq, 0.0);
806 >
807 >      AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
808 >      for (int i = 0; i < nq; i++) {
809 >        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
810 >        fqfrc_tmp[i] = 0.0;
811 >      }
812 >      
813 >      AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
814 >      for (int i = 0; i < nq; i++)
815 >        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
816 >            
817 >    }
818 >
819 >    if (storageLayout_ & DataStorage::dslElectricField) {
820 >
821 >      int nef = snap_->atomData.electricField.size();
822 >      vector<Vector3d> efield_tmp(nef, V3Zero);
823 >
824 >      AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp);
825 >      for (int i = 0; i < nef; i++) {
826 >        snap_->atomData.electricField[i] += efield_tmp[i];
827 >        efield_tmp[i] = 0.0;
828 >      }
829 >      
830 >      AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp);
831 >      for (int i = 0; i < nef; i++)
832 >        snap_->atomData.electricField[i] += efield_tmp[i];
833 >    }
834 >
835 >
836 >    nLocal_ = snap_->getNumberOfAtoms();
837 >
838 >    vector<potVec> pot_temp(nLocal_,
839 >                            Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
840 >    vector<potVec> expot_temp(nLocal_,
841 >                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
842 >
843 >    // scatter/gather pot_row into the members of my column
844 >          
845 >    AtomPlanPotRow->scatter(pot_row, pot_temp);
846 >    AtomPlanPotRow->scatter(expot_row, expot_temp);
847 >
848 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
849 >      pairwisePot += pot_temp[ii];
850 >
851 >    for (int ii = 0;  ii < expot_temp.size(); ii++ )
852 >      excludedPot += expot_temp[ii];
853 >        
854 >    if (storageLayout_ & DataStorage::dslParticlePot) {
855 >      // This is the pairwise contribution to the particle pot.  The
856 >      // embedding contribution is added in each of the low level
857 >      // non-bonded routines.  In single processor, this is done in
858 >      // unpackInteractionData, not in collectData.
859 >      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
860 >        for (int i = 0; i < nLocal_; i++) {
861 >          // factor of two is because the total potential terms are divided
862 >          // by 2 in parallel due to row/ column scatter      
863 >          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
864 >        }
865 >      }
866 >    }
867 >
868 >    fill(pot_temp.begin(), pot_temp.end(),
869 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
870 >    fill(expot_temp.begin(), expot_temp.end(),
871 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
872 >      
873 >    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
874 >    AtomPlanPotColumn->scatter(expot_col, expot_temp);    
875 >    
876 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
877 >      pairwisePot += pot_temp[ii];    
878 >
879 >    for (int ii = 0;  ii < expot_temp.size(); ii++ )
880 >      excludedPot += expot_temp[ii];    
881 >
882 >    if (storageLayout_ & DataStorage::dslParticlePot) {
883 >      // This is the pairwise contribution to the particle pot.  The
884 >      // embedding contribution is added in each of the low level
885 >      // non-bonded routines.  In single processor, this is done in
886 >      // unpackInteractionData, not in collectData.
887 >      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
888 >        for (int i = 0; i < nLocal_; i++) {
889 >          // factor of two is because the total potential terms are divided
890 >          // by 2 in parallel due to row/ column scatter      
891 >          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
892 >        }
893 >      }
894 >    }
895 >    
896 >    if (storageLayout_ & DataStorage::dslParticlePot) {
897 >      int npp = snap_->atomData.particlePot.size();
898 >      vector<RealType> ppot_temp(npp, 0.0);
899 >
900 >      // This is the direct or embedding contribution to the particle
901 >      // pot.
902 >      
903 >      AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
904 >      for (int i = 0; i < npp; i++) {
905 >        snap_->atomData.particlePot[i] += ppot_temp[i];
906 >      }
907 >
908 >      fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
909 >      
910 >      AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
911 >      for (int i = 0; i < npp; i++) {
912 >        snap_->atomData.particlePot[i] += ppot_temp[i];
913 >      }
914 >    }
915 >
916 >    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
917 >      RealType ploc1 = pairwisePot[ii];
918 >      RealType ploc2 = 0.0;
919 >      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
920 >      pairwisePot[ii] = ploc2;
921 >    }
922 >
923 >    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
924 >      RealType ploc1 = excludedPot[ii];
925 >      RealType ploc2 = 0.0;
926 >      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
927 >      excludedPot[ii] = ploc2;
928 >    }
929 >
930 >    // Here be dragons.
931 >    MPI::Intracomm col = colComm.getComm();
932 >
933 >    col.Allreduce(MPI::IN_PLACE,
934 >                  &snap_->frameData.conductiveHeatFlux[0], 3,
935 >                  MPI::REALTYPE, MPI::SUM);
936 >
937 >
938 > #endif
939 >
940 >  }
941 >
942 >  /**
943 >   * Collects information obtained during the post-pair (and embedding
944 >   * functional) loops onto local data structures.
945 >   */
946 >  void ForceMatrixDecomposition::collectSelfData() {
947 >    snap_ = sman_->getCurrentSnapshot();
948 >    storageLayout_ = sman_->getStorageLayout();
949 >
950 > #ifdef IS_MPI
951 >    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
952 >      RealType ploc1 = embeddingPot[ii];
953 >      RealType ploc2 = 0.0;
954 >      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
955 >      embeddingPot[ii] = ploc2;
956 >    }    
957 >    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
958 >      RealType ploc1 = excludedSelfPot[ii];
959 >      RealType ploc2 = 0.0;
960 >      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
961 >      excludedSelfPot[ii] = ploc2;
962 >    }    
963 > #endif
964 >    
965 >  }
966 >
967 >
968 >
969 >  int& ForceMatrixDecomposition::getNAtomsInRow() {  
970 > #ifdef IS_MPI
971 >    return nAtomsInRow_;
972 > #else
973 >    return nLocal_;
974 > #endif
975 >  }
976 >
977 >  /**
978 >   * returns the list of atoms belonging to this group.  
979 >   */
980 >  vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
981 > #ifdef IS_MPI
982 >    return groupListRow_[cg1];
983 > #else
984 >    return groupList_[cg1];
985 > #endif
986 >  }
987 >
988 >  vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
989 > #ifdef IS_MPI
990 >    return groupListCol_[cg2];
991 > #else
992 >    return groupList_[cg2];
993 > #endif
994 >  }
995 >  
996 >  Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
997 >    Vector3d d;
998 >    
999 > #ifdef IS_MPI
1000 >    d = cgColData.position[cg2] - cgRowData.position[cg1];
1001 > #else
1002 >    d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
1003 > #endif
1004 >    
1005 >    if (usePeriodicBoundaryConditions_) {
1006 >      snap_->wrapVector(d);
1007 >    }
1008 >    return d;    
1009 >  }
1010 >
1011 >  Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
1012 > #ifdef IS_MPI
1013 >    return cgColData.velocity[cg2];
1014 > #else
1015 >    return snap_->cgData.velocity[cg2];
1016 > #endif
1017 >  }
1018 >
1019 >  Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
1020 > #ifdef IS_MPI
1021 >    return atomColData.velocity[atom2];
1022 > #else
1023 >    return snap_->atomData.velocity[atom2];
1024 > #endif
1025 >  }
1026 >
1027 >
1028 >  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
1029 >
1030 >    Vector3d d;
1031 >    
1032 > #ifdef IS_MPI
1033 >    d = cgRowData.position[cg1] - atomRowData.position[atom1];
1034 > #else
1035 >    d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
1036 > #endif
1037 >    if (usePeriodicBoundaryConditions_) {
1038 >      snap_->wrapVector(d);
1039 >    }
1040 >    return d;    
1041 >  }
1042 >  
1043 >  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
1044 >    Vector3d d;
1045 >    
1046 > #ifdef IS_MPI
1047 >    d = cgColData.position[cg2] - atomColData.position[atom2];
1048 > #else
1049 >    d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
1050 > #endif
1051 >    if (usePeriodicBoundaryConditions_) {
1052 >      snap_->wrapVector(d);
1053 >    }
1054 >    return d;    
1055 >  }
1056 >
1057 >  RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) {
1058 > #ifdef IS_MPI
1059 >    return massFactorsRow[atom1];
1060 > #else
1061 >    return massFactors[atom1];
1062 > #endif
1063 >  }
1064 >
1065 >  RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
1066 > #ifdef IS_MPI
1067 >    return massFactorsCol[atom2];
1068 > #else
1069 >    return massFactors[atom2];
1070 > #endif
1071 >
1072 >  }
1073 >    
1074 >  Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
1075 >    Vector3d d;
1076 >    
1077 > #ifdef IS_MPI
1078 >    d = atomColData.position[atom2] - atomRowData.position[atom1];
1079 > #else
1080 >    d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
1081 > #endif
1082 >    if (usePeriodicBoundaryConditions_) {
1083 >      snap_->wrapVector(d);
1084 >    }
1085 >    return d;    
1086 >  }
1087 >
1088 >  vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
1089 >    return excludesForAtom[atom1];
1090 >  }
1091 >
1092 >  /**
1093 >   * We need to exclude some overcounted interactions that result from
1094 >   * the parallel decomposition.
1095 >   */
1096 >  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) {
1097 >    int unique_id_1, unique_id_2;
1098 >        
1099 > #ifdef IS_MPI
1100 >    // in MPI, we have to look up the unique IDs for each atom
1101 >    unique_id_1 = AtomRowToGlobal[atom1];
1102 >    unique_id_2 = AtomColToGlobal[atom2];
1103 >    // group1 = cgRowToGlobal[cg1];
1104 >    // group2 = cgColToGlobal[cg2];
1105 > #else
1106 >    unique_id_1 = AtomLocalToGlobal[atom1];
1107 >    unique_id_2 = AtomLocalToGlobal[atom2];
1108 >    int group1 = cgLocalToGlobal[cg1];
1109 >    int group2 = cgLocalToGlobal[cg2];
1110 > #endif  
1111 >
1112 >    if (unique_id_1 == unique_id_2) return true;
1113 >
1114 > #ifdef IS_MPI
1115 >    // this prevents us from doing the pair on multiple processors
1116 >    if (unique_id_1 < unique_id_2) {
1117 >      if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
1118 >    } else {
1119 >      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1120 >    }
1121 > #endif    
1122 >
1123 > #ifndef IS_MPI
1124 >    if (group1 == group2) {
1125 >      if (unique_id_1 < unique_id_2) return true;
1126 >    }
1127 > #endif
1128 >    
1129 >    return false;
1130 >  }
1131 >
1132 >  /**
1133 >   * We need to handle the interactions for atoms who are involved in
1134 >   * the same rigid body as well as some short range interactions
1135 >   * (bonds, bends, torsions) differently from other interactions.
1136 >   * We'll still visit the pairwise routines, but with a flag that
1137 >   * tells those routines to exclude the pair from direct long range
1138 >   * interactions.  Some indirect interactions (notably reaction
1139 >   * field) must still be handled for these pairs.
1140 >   */
1141 >  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
1142 >
1143 >    // excludesForAtom was constructed to use row/column indices in the MPI
1144 >    // version, and to use local IDs in the non-MPI version:
1145 >    
1146 >    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
1147 >         i != excludesForAtom[atom1].end(); ++i) {
1148 >      if ( (*i) == atom2 ) return true;
1149 >    }
1150 >
1151 >    return false;
1152 >  }
1153 >
1154 >
1155 >  void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
1156 > #ifdef IS_MPI
1157 >    atomRowData.force[atom1] += fg;
1158 > #else
1159 >    snap_->atomData.force[atom1] += fg;
1160 > #endif
1161 >  }
1162 >
1163 >  void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
1164 > #ifdef IS_MPI
1165 >    atomColData.force[atom2] += fg;
1166 > #else
1167 >    snap_->atomData.force[atom2] += fg;
1168 > #endif
1169 >  }
1170 >
1171 >    // filling interaction blocks with pointers
1172 >  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1173 >                                                     int atom1, int atom2) {
1174 >
1175 >    idat.excluded = excludeAtomPair(atom1, atom2);
1176 >  
1177 > #ifdef IS_MPI
1178 >    //idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
1179 >    idat.atid1 = identsRow[atom1];
1180 >    idat.atid2 = identsCol[atom2];
1181 >
1182 >    if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0)
1183 >      idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]);
1184 >      
1185 >    if (storageLayout_ & DataStorage::dslAmat) {
1186 >      idat.A1 = &(atomRowData.aMat[atom1]);
1187 >      idat.A2 = &(atomColData.aMat[atom2]);
1188 >    }
1189 >    
1190 >    if (storageLayout_ & DataStorage::dslTorque) {
1191 >      idat.t1 = &(atomRowData.torque[atom1]);
1192 >      idat.t2 = &(atomColData.torque[atom2]);
1193 >    }
1194 >
1195 >    if (storageLayout_ & DataStorage::dslDipole) {
1196 >      idat.dipole1 = &(atomRowData.dipole[atom1]);
1197 >      idat.dipole2 = &(atomColData.dipole[atom2]);
1198 >    }
1199 >
1200 >    if (storageLayout_ & DataStorage::dslQuadrupole) {
1201 >      idat.quadrupole1 = &(atomRowData.quadrupole[atom1]);
1202 >      idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1203 >    }
1204 >
1205 >    if (storageLayout_ & DataStorage::dslDensity) {
1206 >      idat.rho1 = &(atomRowData.density[atom1]);
1207 >      idat.rho2 = &(atomColData.density[atom2]);
1208 >    }
1209 >
1210 >    if (storageLayout_ & DataStorage::dslFunctional) {
1211 >      idat.frho1 = &(atomRowData.functional[atom1]);
1212 >      idat.frho2 = &(atomColData.functional[atom2]);
1213 >    }
1214 >
1215 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1216 >      idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1217 >      idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1218 >    }
1219  
1220 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1221 +      idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1222 +      idat.particlePot2 = &(atomColData.particlePot[atom2]);
1223 +    }
1224  
1225 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1226 +      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1227 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1228 +    }
1229 +
1230 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1231 +      idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1232 +      idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1233 +    }
1234 +
1235 + #else
1236 +    
1237 +    //idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
1238 +    idat.atid1 = idents[atom1];
1239 +    idat.atid2 = idents[atom2];
1240 +
1241 +    if (regions[atom1] >= 0 && regions[atom2] >= 0)
1242 +      idat.sameRegion = (regions[atom1] == regions[atom2]);
1243 +
1244 +    if (storageLayout_ & DataStorage::dslAmat) {
1245 +      idat.A1 = &(snap_->atomData.aMat[atom1]);
1246 +      idat.A2 = &(snap_->atomData.aMat[atom2]);
1247 +    }
1248 +
1249 +    if (storageLayout_ & DataStorage::dslTorque) {
1250 +      idat.t1 = &(snap_->atomData.torque[atom1]);
1251 +      idat.t2 = &(snap_->atomData.torque[atom2]);
1252 +    }
1253 +
1254 +    if (storageLayout_ & DataStorage::dslDipole) {
1255 +      idat.dipole1 = &(snap_->atomData.dipole[atom1]);
1256 +      idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1257 +    }
1258 +
1259 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1260 +      idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]);
1261 +      idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1262 +    }
1263 +
1264 +    if (storageLayout_ & DataStorage::dslDensity) {    
1265 +      idat.rho1 = &(snap_->atomData.density[atom1]);
1266 +      idat.rho2 = &(snap_->atomData.density[atom2]);
1267 +    }
1268 +
1269 +    if (storageLayout_ & DataStorage::dslFunctional) {
1270 +      idat.frho1 = &(snap_->atomData.functional[atom1]);
1271 +      idat.frho2 = &(snap_->atomData.functional[atom2]);
1272 +    }
1273 +
1274 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1275 +      idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1276 +      idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1277 +    }
1278 +
1279 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1280 +      idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1281 +      idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1282 +    }
1283 +
1284 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
1285 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1286 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1287 +    }
1288 +
1289 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1290 +      idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1291 +      idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1292 +    }
1293 +
1294 + #endif
1295 +  }
1296 +
1297 +  
1298 +  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
1299 + #ifdef IS_MPI
1300 +    pot_row[atom1] += RealType(0.5) *  *(idat.pot);
1301 +    pot_col[atom2] += RealType(0.5) *  *(idat.pot);
1302 +    expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot);
1303 +    expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot);
1304 +
1305 +    atomRowData.force[atom1] += *(idat.f1);
1306 +    atomColData.force[atom2] -= *(idat.f1);
1307 +
1308 +    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1309 +      atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1310 +      atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1311 +    }
1312 +
1313 +    if (storageLayout_ & DataStorage::dslElectricField) {              
1314 +      atomRowData.electricField[atom1] += *(idat.eField1);
1315 +      atomColData.electricField[atom2] += *(idat.eField2);
1316 +    }
1317 +
1318 + #else
1319 +    pairwisePot += *(idat.pot);
1320 +    excludedPot += *(idat.excludedPot);
1321 +
1322 +    snap_->atomData.force[atom1] += *(idat.f1);
1323 +    snap_->atomData.force[atom2] -= *(idat.f1);
1324 +
1325 +    if (idat.doParticlePot) {
1326 +      // This is the pairwise contribution to the particle pot.  The
1327 +      // embedding contribution is added in each of the low level
1328 +      // non-bonded routines.  In parallel, this calculation is done
1329 +      // in collectData, not in unpackInteractionData.
1330 +      snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1331 +      snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1332 +    }
1333 +    
1334 +    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1335 +      snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1336 +      snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1337 +    }
1338 +
1339 +    if (storageLayout_ & DataStorage::dslElectricField) {              
1340 +      snap_->atomData.electricField[atom1] += *(idat.eField1);
1341 +      snap_->atomData.electricField[atom2] += *(idat.eField2);
1342 +    }
1343 +
1344 + #endif
1345 +    
1346 +  }
1347 +
1348 +  /*
1349 +   * buildNeighborList
1350 +   *
1351 +   * first element of pair is row-indexed CutoffGroup
1352 +   * second element of pair is column-indexed CutoffGroup
1353 +   */
1354 +  void ForceMatrixDecomposition::buildNeighborList(vector<pair<int,int> >& neighborList) {
1355 +    
1356 +    neighborList.clear();
1357 +    groupCutoffs cuts;
1358 +    bool doAllPairs = false;
1359 +
1360 +    RealType rList_ = (largestRcut_ + skinThickness_);
1361 +    RealType rcut, rcutsq, rlistsq;
1362 +    Snapshot* snap_ = sman_->getCurrentSnapshot();
1363 +    Mat3x3d box;
1364 +    Mat3x3d invBox;
1365 +
1366 +    Vector3d rs, scaled, dr;
1367 +    Vector3i whichCell;
1368 +    int cellIndex;
1369 +
1370 + #ifdef IS_MPI
1371 +    cellListRow_.clear();
1372 +    cellListCol_.clear();
1373 + #else
1374 +    cellList_.clear();
1375 + #endif
1376 +    
1377 +    if (!usePeriodicBoundaryConditions_) {
1378 +      box = snap_->getBoundingBox();
1379 +      invBox = snap_->getInvBoundingBox();
1380 +    } else {
1381 +      box = snap_->getHmat();
1382 +      invBox = snap_->getInvHmat();
1383 +    }
1384 +    
1385 +    Vector3d boxX = box.getColumn(0);
1386 +    Vector3d boxY = box.getColumn(1);
1387 +    Vector3d boxZ = box.getColumn(2);
1388 +    
1389 +    nCells_.x() = (int) ( boxX.length() )/ rList_;
1390 +    nCells_.y() = (int) ( boxY.length() )/ rList_;
1391 +    nCells_.z() = (int) ( boxZ.length() )/ rList_;
1392 +    
1393 +    // handle small boxes where the cell offsets can end up repeating cells
1394 +    
1395 +    if (nCells_.x() < 3) doAllPairs = true;
1396 +    if (nCells_.y() < 3) doAllPairs = true;
1397 +    if (nCells_.z() < 3) doAllPairs = true;
1398 +    
1399 +    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1400 +    
1401 + #ifdef IS_MPI
1402 +    cellListRow_.resize(nCtot);
1403 +    cellListCol_.resize(nCtot);
1404 + #else
1405 +    cellList_.resize(nCtot);
1406 + #endif
1407 +    
1408 +    if (!doAllPairs) {
1409 + #ifdef IS_MPI
1410 +      
1411 +      for (int i = 0; i < nGroupsInRow_; i++) {
1412 +        rs = cgRowData.position[i];
1413 +        
1414 +        // scaled positions relative to the box vectors
1415 +        scaled = invBox * rs;
1416 +        
1417 +        // wrap the vector back into the unit box by subtracting integer box
1418 +        // numbers
1419 +        for (int j = 0; j < 3; j++) {
1420 +          scaled[j] -= roundMe(scaled[j]);
1421 +          scaled[j] += 0.5;
1422 +          // Handle the special case when an object is exactly on the
1423 +          // boundary (a scaled coordinate of 1.0 is the same as
1424 +          // scaled coordinate of 0.0)
1425 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1426 +        }
1427 +        
1428 +        // find xyz-indices of cell that cutoffGroup is in.
1429 +        whichCell.x() = nCells_.x() * scaled.x();
1430 +        whichCell.y() = nCells_.y() * scaled.y();
1431 +        whichCell.z() = nCells_.z() * scaled.z();
1432 +        
1433 +        // find single index of this cell:
1434 +        cellIndex = Vlinear(whichCell, nCells_);
1435 +        
1436 +        // add this cutoff group to the list of groups in this cell;
1437 +        cellListRow_[cellIndex].push_back(i);
1438 +      }
1439 +      for (int i = 0; i < nGroupsInCol_; i++) {
1440 +        rs = cgColData.position[i];
1441 +        
1442 +        // scaled positions relative to the box vectors
1443 +        scaled = invBox * rs;
1444 +        
1445 +        // wrap the vector back into the unit box by subtracting integer box
1446 +        // numbers
1447 +        for (int j = 0; j < 3; j++) {
1448 +          scaled[j] -= roundMe(scaled[j]);
1449 +          scaled[j] += 0.5;
1450 +          // Handle the special case when an object is exactly on the
1451 +          // boundary (a scaled coordinate of 1.0 is the same as
1452 +          // scaled coordinate of 0.0)
1453 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1454 +        }
1455 +        
1456 +        // find xyz-indices of cell that cutoffGroup is in.
1457 +        whichCell.x() = nCells_.x() * scaled.x();
1458 +        whichCell.y() = nCells_.y() * scaled.y();
1459 +        whichCell.z() = nCells_.z() * scaled.z();
1460 +        
1461 +        // find single index of this cell:
1462 +        cellIndex = Vlinear(whichCell, nCells_);
1463 +        
1464 +        // add this cutoff group to the list of groups in this cell;
1465 +        cellListCol_[cellIndex].push_back(i);
1466 +      }
1467 +      
1468 + #else
1469 +      for (int i = 0; i < nGroups_; i++) {
1470 +        rs = snap_->cgData.position[i];
1471 +        
1472 +        // scaled positions relative to the box vectors
1473 +        scaled = invBox * rs;
1474 +        
1475 +        // wrap the vector back into the unit box by subtracting integer box
1476 +        // numbers
1477 +        for (int j = 0; j < 3; j++) {
1478 +          scaled[j] -= roundMe(scaled[j]);
1479 +          scaled[j] += 0.5;
1480 +          // Handle the special case when an object is exactly on the
1481 +          // boundary (a scaled coordinate of 1.0 is the same as
1482 +          // scaled coordinate of 0.0)
1483 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1484 +        }
1485 +        
1486 +        // find xyz-indices of cell that cutoffGroup is in.
1487 +        whichCell.x() = nCells_.x() * scaled.x();
1488 +        whichCell.y() = nCells_.y() * scaled.y();
1489 +        whichCell.z() = nCells_.z() * scaled.z();
1490 +        
1491 +        // find single index of this cell:
1492 +        cellIndex = Vlinear(whichCell, nCells_);
1493 +        
1494 +        // add this cutoff group to the list of groups in this cell;
1495 +        cellList_[cellIndex].push_back(i);
1496 +      }
1497 +
1498 + #endif
1499 +
1500 +      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1501 +        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1502 +          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1503 +            Vector3i m1v(m1x, m1y, m1z);
1504 +            int m1 = Vlinear(m1v, nCells_);
1505 +            
1506 +            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1507 +                 os != cellOffsets_.end(); ++os) {
1508 +              
1509 +              Vector3i m2v = m1v + (*os);
1510 +            
1511 +
1512 +              if (m2v.x() >= nCells_.x()) {
1513 +                m2v.x() = 0;          
1514 +              } else if (m2v.x() < 0) {
1515 +                m2v.x() = nCells_.x() - 1;
1516 +              }
1517 +              
1518 +              if (m2v.y() >= nCells_.y()) {
1519 +                m2v.y() = 0;          
1520 +              } else if (m2v.y() < 0) {
1521 +                m2v.y() = nCells_.y() - 1;
1522 +              }
1523 +              
1524 +              if (m2v.z() >= nCells_.z()) {
1525 +                m2v.z() = 0;          
1526 +              } else if (m2v.z() < 0) {
1527 +                m2v.z() = nCells_.z() - 1;
1528 +              }
1529 +
1530 +              int m2 = Vlinear (m2v, nCells_);
1531 +              
1532 + #ifdef IS_MPI
1533 +              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1534 +                   j1 != cellListRow_[m1].end(); ++j1) {
1535 +                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1536 +                     j2 != cellListCol_[m2].end(); ++j2) {
1537 +                  
1538 +                  // In parallel, we need to visit *all* pairs of row
1539 +                  // & column indicies and will divide labor in the
1540 +                  // force evaluation later.
1541 +                  dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1542 +                  if (usePeriodicBoundaryConditions_) {
1543 +                    snap_->wrapVector(dr);
1544 +                  }
1545 +                  getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq );
1546 +                  if (dr.lengthSquare() < rlistsq) {
1547 +                    neighborList.push_back(make_pair((*j1), (*j2)));
1548 +                  }                  
1549 +                }
1550 +              }
1551 + #else
1552 +              for (vector<int>::iterator j1 = cellList_[m1].begin();
1553 +                   j1 != cellList_[m1].end(); ++j1) {
1554 +                for (vector<int>::iterator j2 = cellList_[m2].begin();
1555 +                     j2 != cellList_[m2].end(); ++j2) {
1556 +    
1557 +                  // Always do this if we're in different cells or if
1558 +                  // we're in the same cell and the global index of
1559 +                  // the j2 cutoff group is greater than or equal to
1560 +                  // the j1 cutoff group.  Note that Rappaport's code
1561 +                  // has a "less than" conditional here, but that
1562 +                  // deals with atom-by-atom computation.  OpenMD
1563 +                  // allows atoms within a single cutoff group to
1564 +                  // interact with each other.
1565 +
1566 +                  if (m2 != m1 || (*j2) >= (*j1) ) {
1567 +
1568 +                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1569 +                    if (usePeriodicBoundaryConditions_) {
1570 +                      snap_->wrapVector(dr);
1571 +                    }
1572 +                    getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq );
1573 +                    if (dr.lengthSquare() < rlistsq) {
1574 +                      neighborList.push_back(make_pair((*j1), (*j2)));
1575 +                    }
1576 +                  }
1577 +                }
1578 +              }
1579 + #endif
1580 +            }
1581 +          }
1582 +        }
1583 +      }
1584 +    } else {
1585 +      // branch to do all cutoff group pairs
1586 + #ifdef IS_MPI
1587 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1588 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {    
1589 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1590 +          if (usePeriodicBoundaryConditions_) {
1591 +            snap_->wrapVector(dr);
1592 +          }
1593 +          getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq);
1594 +          if (dr.lengthSquare() < rlistsq) {
1595 +            neighborList.push_back(make_pair(j1, j2));
1596 +          }
1597 +        }
1598 +      }      
1599 + #else
1600 +      // include all groups here.
1601 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1602 +        // include self group interactions j2 == j1
1603 +        for (int j2 = j1; j2 < nGroups_; j2++) {
1604 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1605 +          if (usePeriodicBoundaryConditions_) {
1606 +            snap_->wrapVector(dr);
1607 +          }
1608 +          getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq );
1609 +          if (dr.lengthSquare() < rlistsq) {
1610 +            neighborList.push_back(make_pair(j1, j2));
1611 +          }
1612 +        }    
1613 +      }
1614 + #endif
1615 +    }
1616 +      
1617 +    // save the local cutoff group positions for the check that is
1618 +    // done on each loop:
1619 +    saved_CG_positions_.clear();
1620 +    for (int i = 0; i < nGroups_; i++)
1621 +      saved_CG_positions_.push_back(snap_->cgData.position[i]);
1622 +  }
1623 + } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines