95 |
|
storageLayout_ = sman_->getStorageLayout(); |
96 |
|
ff_ = info_->getForceField(); |
97 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
98 |
< |
|
98 |
> |
|
99 |
|
nGroups_ = info_->getNLocalCutoffGroups(); |
100 |
|
// gather the information for atomtype IDs (atids): |
101 |
|
idents = info_->getIdentArray(); |
109 |
|
PairList* oneTwo = info_->getOneTwoInteractions(); |
110 |
|
PairList* oneThree = info_->getOneThreeInteractions(); |
111 |
|
PairList* oneFour = info_->getOneFourInteractions(); |
112 |
< |
|
112 |
> |
|
113 |
> |
if (needVelocities_) |
114 |
> |
snap_->cgData.setStorageLayout(DataStorage::dslPosition | |
115 |
> |
DataStorage::dslVelocity); |
116 |
> |
else |
117 |
> |
snap_->cgData.setStorageLayout(DataStorage::dslPosition); |
118 |
> |
|
119 |
|
#ifdef IS_MPI |
120 |
|
|
121 |
|
MPI::Intracomm row = rowComm.getComm(); |
151 |
|
cgRowData.resize(nGroupsInRow_); |
152 |
|
cgRowData.setStorageLayout(DataStorage::dslPosition); |
153 |
|
cgColData.resize(nGroupsInCol_); |
154 |
< |
cgColData.setStorageLayout(DataStorage::dslPosition); |
155 |
< |
|
154 |
> |
if (needVelocities_) |
155 |
> |
// we only need column velocities if we need them. |
156 |
> |
cgColData.setStorageLayout(DataStorage::dslPosition | |
157 |
> |
DataStorage::dslVelocity); |
158 |
> |
else |
159 |
> |
cgColData.setStorageLayout(DataStorage::dslPosition); |
160 |
> |
|
161 |
|
identsRow.resize(nAtomsInRow_); |
162 |
|
identsCol.resize(nAtomsInCol_); |
163 |
|
|
534 |
|
atomRowData.skippedCharge.end(), 0.0); |
535 |
|
fill(atomColData.skippedCharge.begin(), |
536 |
|
atomColData.skippedCharge.end(), 0.0); |
537 |
+ |
} |
538 |
+ |
|
539 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
540 |
+ |
fill(atomRowData.flucQFrc.begin(), |
541 |
+ |
atomRowData.flucQFrc.end(), 0.0); |
542 |
+ |
fill(atomColData.flucQFrc.begin(), |
543 |
+ |
atomColData.flucQFrc.end(), 0.0); |
544 |
|
} |
545 |
|
|
546 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
547 |
+ |
fill(atomRowData.electricField.begin(), |
548 |
+ |
atomRowData.electricField.end(), V3Zero); |
549 |
+ |
fill(atomColData.electricField.begin(), |
550 |
+ |
atomColData.electricField.end(), V3Zero); |
551 |
+ |
} |
552 |
+ |
|
553 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
554 |
+ |
fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), |
555 |
+ |
0.0); |
556 |
+ |
fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), |
557 |
+ |
0.0); |
558 |
+ |
} |
559 |
+ |
|
560 |
|
#endif |
561 |
|
// even in parallel, we need to zero out the local arrays: |
562 |
|
|
569 |
|
fill(snap_->atomData.density.begin(), |
570 |
|
snap_->atomData.density.end(), 0.0); |
571 |
|
} |
572 |
+ |
|
573 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
574 |
|
fill(snap_->atomData.functional.begin(), |
575 |
|
snap_->atomData.functional.end(), 0.0); |
576 |
|
} |
577 |
+ |
|
578 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
579 |
|
fill(snap_->atomData.functionalDerivative.begin(), |
580 |
|
snap_->atomData.functionalDerivative.end(), 0.0); |
581 |
|
} |
582 |
+ |
|
583 |
|
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
584 |
|
fill(snap_->atomData.skippedCharge.begin(), |
585 |
|
snap_->atomData.skippedCharge.end(), 0.0); |
586 |
|
} |
587 |
< |
|
587 |
> |
|
588 |
> |
if (storageLayout_ & DataStorage::dslElectricField) { |
589 |
> |
fill(snap_->atomData.electricField.begin(), |
590 |
> |
snap_->atomData.electricField.end(), V3Zero); |
591 |
> |
} |
592 |
|
} |
593 |
|
|
594 |
|
|
610 |
|
|
611 |
|
cgPlanVectorColumn->gather(snap_->cgData.position, |
612 |
|
cgColData.position); |
613 |
+ |
|
614 |
+ |
|
615 |
+ |
|
616 |
+ |
if (needVelocities_) { |
617 |
+ |
// gather up the atomic velocities |
618 |
+ |
AtomPlanVectorColumn->gather(snap_->atomData.velocity, |
619 |
+ |
atomColData.velocity); |
620 |
+ |
|
621 |
+ |
cgPlanVectorColumn->gather(snap_->cgData.velocity, |
622 |
+ |
cgColData.velocity); |
623 |
+ |
} |
624 |
|
|
625 |
|
|
626 |
|
// if needed, gather the atomic rotation matrices |
639 |
|
atomColData.electroFrame); |
640 |
|
} |
641 |
|
|
642 |
+ |
// if needed, gather the atomic fluctuating charge values |
643 |
+ |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
644 |
+ |
AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
645 |
+ |
atomRowData.flucQPos); |
646 |
+ |
AtomPlanRealColumn->gather(snap_->atomData.flucQPos, |
647 |
+ |
atomColData.flucQPos); |
648 |
+ |
} |
649 |
+ |
|
650 |
|
#endif |
651 |
|
} |
652 |
|
|
669 |
|
for (int i = 0; i < n; i++) |
670 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
671 |
|
} |
672 |
+ |
|
673 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
674 |
+ |
|
675 |
+ |
AtomPlanVectorRow->scatter(atomRowData.electricField, |
676 |
+ |
snap_->atomData.electricField); |
677 |
+ |
|
678 |
+ |
int n = snap_->atomData.electricField.size(); |
679 |
+ |
vector<Vector3d> field_tmp(n, V3Zero); |
680 |
+ |
AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); |
681 |
+ |
for (int i = 0; i < n; i++) |
682 |
+ |
snap_->atomData.electricField[i] += field_tmp[i]; |
683 |
+ |
} |
684 |
|
#endif |
685 |
|
} |
686 |
|
|
760 |
|
|
761 |
|
} |
762 |
|
|
763 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
764 |
+ |
|
765 |
+ |
int nq = snap_->atomData.flucQFrc.size(); |
766 |
+ |
vector<RealType> fqfrc_tmp(nq, 0.0); |
767 |
+ |
|
768 |
+ |
AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); |
769 |
+ |
for (int i = 0; i < nq; i++) { |
770 |
+ |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
771 |
+ |
fqfrc_tmp[i] = 0.0; |
772 |
+ |
} |
773 |
+ |
|
774 |
+ |
AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); |
775 |
+ |
for (int i = 0; i < nq; i++) |
776 |
+ |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
777 |
+ |
|
778 |
+ |
} |
779 |
+ |
|
780 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
781 |
|
|
782 |
|
vector<potVec> pot_temp(nLocal_, |
788 |
|
|
789 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
790 |
|
pairwisePot += pot_temp[ii]; |
791 |
< |
|
791 |
> |
|
792 |
> |
if (storageLayout_ & DataStorage::dslParticlePot) { |
793 |
> |
// This is the pairwise contribution to the particle pot. The |
794 |
> |
// embedding contribution is added in each of the low level |
795 |
> |
// non-bonded routines. In single processor, this is done in |
796 |
> |
// unpackInteractionData, not in collectData. |
797 |
> |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
798 |
> |
for (int i = 0; i < nLocal_; i++) { |
799 |
> |
// factor of two is because the total potential terms are divided |
800 |
> |
// by 2 in parallel due to row/ column scatter |
801 |
> |
snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
802 |
> |
} |
803 |
> |
} |
804 |
> |
} |
805 |
> |
|
806 |
|
fill(pot_temp.begin(), pot_temp.end(), |
807 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
808 |
|
|
810 |
|
|
811 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
812 |
|
pairwisePot += pot_temp[ii]; |
813 |
+ |
|
814 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
815 |
+ |
// This is the pairwise contribution to the particle pot. The |
816 |
+ |
// embedding contribution is added in each of the low level |
817 |
+ |
// non-bonded routines. In single processor, this is done in |
818 |
+ |
// unpackInteractionData, not in collectData. |
819 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
820 |
+ |
for (int i = 0; i < nLocal_; i++) { |
821 |
+ |
// factor of two is because the total potential terms are divided |
822 |
+ |
// by 2 in parallel due to row/ column scatter |
823 |
+ |
snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
824 |
+ |
} |
825 |
+ |
} |
826 |
+ |
} |
827 |
|
|
828 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
829 |
+ |
int npp = snap_->atomData.particlePot.size(); |
830 |
+ |
vector<RealType> ppot_temp(npp, 0.0); |
831 |
+ |
|
832 |
+ |
// This is the direct or embedding contribution to the particle |
833 |
+ |
// pot. |
834 |
+ |
|
835 |
+ |
AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); |
836 |
+ |
for (int i = 0; i < npp; i++) { |
837 |
+ |
snap_->atomData.particlePot[i] += ppot_temp[i]; |
838 |
+ |
} |
839 |
+ |
|
840 |
+ |
fill(ppot_temp.begin(), ppot_temp.end(), 0.0); |
841 |
+ |
|
842 |
+ |
AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); |
843 |
+ |
for (int i = 0; i < npp; i++) { |
844 |
+ |
snap_->atomData.particlePot[i] += ppot_temp[i]; |
845 |
+ |
} |
846 |
+ |
} |
847 |
+ |
|
848 |
|
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
849 |
|
RealType ploc1 = pairwisePot[ii]; |
850 |
|
RealType ploc2 = 0.0; |
858 |
|
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
859 |
|
embeddingPot[ii] = ploc2; |
860 |
|
} |
861 |
+ |
|
862 |
+ |
// Here be dragons. |
863 |
+ |
MPI::Intracomm col = colComm.getComm(); |
864 |
|
|
865 |
+ |
col.Allreduce(MPI::IN_PLACE, |
866 |
+ |
&snap_->frameData.conductiveHeatFlux[0], 3, |
867 |
+ |
MPI::REALTYPE, MPI::SUM); |
868 |
+ |
|
869 |
+ |
|
870 |
|
#endif |
871 |
|
|
872 |
|
} |
909 |
|
|
910 |
|
snap_->wrapVector(d); |
911 |
|
return d; |
912 |
+ |
} |
913 |
+ |
|
914 |
+ |
Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
915 |
+ |
#ifdef IS_MPI |
916 |
+ |
return cgColData.velocity[cg2]; |
917 |
+ |
#else |
918 |
+ |
return snap_->cgData.velocity[cg2]; |
919 |
+ |
#endif |
920 |
|
} |
921 |
|
|
922 |
+ |
Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
923 |
+ |
#ifdef IS_MPI |
924 |
+ |
return atomColData.velocity[atom2]; |
925 |
+ |
#else |
926 |
+ |
return snap_->atomData.velocity[atom2]; |
927 |
+ |
#endif |
928 |
+ |
} |
929 |
|
|
930 |
+ |
|
931 |
|
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ |
932 |
|
|
933 |
|
Vector3d d; |
1107 |
|
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1108 |
|
idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
1109 |
|
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
1110 |
+ |
} |
1111 |
+ |
|
1112 |
+ |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1113 |
+ |
idat.flucQ1 = &(atomRowData.flucQPos[atom1]); |
1114 |
+ |
idat.flucQ2 = &(atomColData.flucQPos[atom2]); |
1115 |
|
} |
1116 |
|
|
1117 |
|
#else |
1164 |
|
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
1165 |
|
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
1166 |
|
} |
1167 |
+ |
|
1168 |
+ |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1169 |
+ |
idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); |
1170 |
+ |
idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); |
1171 |
+ |
} |
1172 |
+ |
|
1173 |
|
#endif |
1174 |
|
} |
1175 |
|
|
1181 |
|
|
1182 |
|
atomRowData.force[atom1] += *(idat.f1); |
1183 |
|
atomColData.force[atom2] -= *(idat.f1); |
1184 |
+ |
|
1185 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
1186 |
+ |
atomRowData.flucQFrc[atom1] += *(idat.dVdFQ1); |
1187 |
+ |
atomColData.flucQFrc[atom2] += *(idat.dVdFQ2); |
1188 |
+ |
} |
1189 |
+ |
|
1190 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
1191 |
+ |
atomRowData.electricField[atom1] += *(idat.eField1); |
1192 |
+ |
atomColData.electricField[atom2] += *(idat.eField2); |
1193 |
+ |
} |
1194 |
+ |
|
1195 |
|
#else |
1196 |
|
pairwisePot += *(idat.pot); |
1197 |
|
|
1198 |
|
snap_->atomData.force[atom1] += *(idat.f1); |
1199 |
|
snap_->atomData.force[atom2] -= *(idat.f1); |
1200 |
+ |
|
1201 |
+ |
if (idat.doParticlePot) { |
1202 |
+ |
// This is the pairwise contribution to the particle pot. The |
1203 |
+ |
// embedding contribution is added in each of the low level |
1204 |
+ |
// non-bonded routines. In parallel, this calculation is done |
1205 |
+ |
// in collectData, not in unpackInteractionData. |
1206 |
+ |
snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
1207 |
+ |
snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); |
1208 |
+ |
} |
1209 |
+ |
|
1210 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
1211 |
+ |
snap_->atomData.flucQFrc[atom1] += *(idat.dVdFQ1); |
1212 |
+ |
snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1213 |
+ |
} |
1214 |
+ |
|
1215 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
1216 |
+ |
snap_->atomData.electricField[atom1] += *(idat.eField1); |
1217 |
+ |
snap_->atomData.electricField[atom2] += *(idat.eField2); |
1218 |
+ |
} |
1219 |
+ |
|
1220 |
|
#endif |
1221 |
|
|
1222 |
|
} |