ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents):
Revision 1567 by gezelter, Tue May 24 21:24:45 2011 UTC vs.
Revision 1588 by gezelter, Sat Jul 9 15:05:59 2011 UTC

# Line 42 | Line 42
42   #include "math/SquareMatrix3.hpp"
43   #include "nonbonded/NonBondedInteraction.hpp"
44   #include "brains/SnapshotManager.hpp"
45 + #include "brains/PairList.hpp"
46  
47   using namespace std;
48   namespace OpenMD {
# Line 54 | Line 55 | namespace OpenMD {
55    void ForceMatrixDecomposition::distributeInitialData() {
56      snap_ = sman_->getCurrentSnapshot();
57      storageLayout_ = sman_->getStorageLayout();
58 +    ff_ = info_->getForceField();
59      nLocal_ = snap_->getNumberOfAtoms();
60 <    nGroups_ = snap_->getNumberOfCutoffGroups();
60 >    
61 >    nGroups_ = info_->getNLocalCutoffGroups();
62 >    // gather the information for atomtype IDs (atids):
63 >    idents = info_->getIdentArray();
64 >    AtomLocalToGlobal = info_->getGlobalAtomIndices();
65 >    cgLocalToGlobal = info_->getGlobalGroupIndices();
66 >    vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
67  
68 +    massFactors = info_->getMassFactors();
69 +
70 +    PairList* excludes = info_->getExcludedInteractions();
71 +    PairList* oneTwo = info_->getOneTwoInteractions();
72 +    PairList* oneThree = info_->getOneThreeInteractions();
73 +    PairList* oneFour = info_->getOneFourInteractions();
74 +
75   #ifdef IS_MPI
76  
77      AtomCommIntRow = new Communicator<Row,int>(nLocal_);
78      AtomCommRealRow = new Communicator<Row,RealType>(nLocal_);
79      AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_);
80      AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_);
81 +    AtomCommPotRow = new Communicator<Row,potVec>(nLocal_);
82  
83      AtomCommIntColumn = new Communicator<Column,int>(nLocal_);
84      AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_);
85      AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_);
86      AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_);
87 +    AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_);
88  
89      cgCommIntRow = new Communicator<Row,int>(nGroups_);
90      cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_);
# Line 88 | Line 105 | namespace OpenMD {
105      cgRowData.setStorageLayout(DataStorage::dslPosition);
106      cgColData.resize(nGroupsInCol_);
107      cgColData.setStorageLayout(DataStorage::dslPosition);
108 +        
109 +    identsRow.resize(nAtomsInRow_);
110 +    identsCol.resize(nAtomsInCol_);
111      
112 <    vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES,
113 <                                      vector<RealType> (nAtomsInRow_, 0.0));
94 <    vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES,
95 <                                      vector<RealType> (nAtomsInCol_, 0.0));
96 <
97 <
98 <    vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0);
112 >    AtomCommIntRow->gather(idents, identsRow);
113 >    AtomCommIntColumn->gather(idents, identsCol);
114      
115 <    // gather the information for atomtype IDs (atids):
116 <    vector<int> identsLocal = info_->getIdentArray();
117 <    identsRow.reserve(nAtomsInRow_);
118 <    identsCol.reserve(nAtomsInCol_);
104 <    
105 <    AtomCommIntRow->gather(identsLocal, identsRow);
106 <    AtomCommIntColumn->gather(identsLocal, identsCol);
107 <    
108 <    AtomLocalToGlobal = info_->getGlobalAtomIndices();
115 >    vector<int>::iterator it;
116 >    for (it = AtomLocalToGlobal.begin(); it != AtomLocalToGlobal.end(); ++it) {
117 >      cerr << "my AtomLocalToGlobal = " << (*it) << "\n";
118 >    }
119      AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
120      AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
121      
112    cgLocalToGlobal = info_->getGlobalGroupIndices();
122      cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
123      cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
124  
125 <    // still need:
126 <    // topoDist
127 <    // exclude
125 >    AtomCommRealRow->gather(massFactors, massFactorsRow);
126 >    AtomCommRealColumn->gather(massFactors, massFactorsCol);
127 >
128 >    groupListRow_.clear();
129 >    groupListRow_.resize(nGroupsInRow_);
130 >    for (int i = 0; i < nGroupsInRow_; i++) {
131 >      int gid = cgRowToGlobal[i];
132 >      for (int j = 0; j < nAtomsInRow_; j++) {
133 >        int aid = AtomRowToGlobal[j];
134 >        if (globalGroupMembership[aid] == gid)
135 >          groupListRow_[i].push_back(j);
136 >      }      
137 >    }
138 >
139 >    groupListCol_.clear();
140 >    groupListCol_.resize(nGroupsInCol_);
141 >    for (int i = 0; i < nGroupsInCol_; i++) {
142 >      int gid = cgColToGlobal[i];
143 >      for (int j = 0; j < nAtomsInCol_; j++) {
144 >        int aid = AtomColToGlobal[j];
145 >        if (globalGroupMembership[aid] == gid)
146 >          groupListCol_[i].push_back(j);
147 >      }      
148 >    }
149 >
150 >    excludesForAtom.clear();
151 >    excludesForAtom.resize(nAtomsInRow_);
152 >    toposForAtom.clear();
153 >    toposForAtom.resize(nAtomsInRow_);
154 >    topoDist.clear();
155 >    topoDist.resize(nAtomsInRow_);
156 >    for (int i = 0; i < nAtomsInRow_; i++) {
157 >      int iglob = AtomRowToGlobal[i];
158 >
159 >      for (int j = 0; j < nAtomsInCol_; j++) {
160 >        int jglob = AtomColToGlobal[j];
161 >
162 >        if (excludes->hasPair(iglob, jglob))
163 >          excludesForAtom[i].push_back(j);      
164 >        
165 >        if (oneTwo->hasPair(iglob, jglob)) {
166 >          toposForAtom[i].push_back(j);
167 >          topoDist[i].push_back(1);
168 >        } else {
169 >          if (oneThree->hasPair(iglob, jglob)) {
170 >            toposForAtom[i].push_back(j);
171 >            topoDist[i].push_back(2);
172 >          } else {
173 >            if (oneFour->hasPair(iglob, jglob)) {
174 >              toposForAtom[i].push_back(j);
175 >              topoDist[i].push_back(3);
176 >            }
177 >          }
178 >        }
179 >      }      
180 >    }
181 >
182   #endif
183 +
184 +    groupList_.clear();
185 +    groupList_.resize(nGroups_);
186 +    for (int i = 0; i < nGroups_; i++) {
187 +      int gid = cgLocalToGlobal[i];
188 +      for (int j = 0; j < nLocal_; j++) {
189 +        int aid = AtomLocalToGlobal[j];
190 +        if (globalGroupMembership[aid] == gid) {
191 +          groupList_[i].push_back(j);
192 +        }
193 +      }      
194 +    }
195 +
196 +    excludesForAtom.clear();
197 +    excludesForAtom.resize(nLocal_);
198 +    toposForAtom.clear();
199 +    toposForAtom.resize(nLocal_);
200 +    topoDist.clear();
201 +    topoDist.resize(nLocal_);
202 +
203 +    for (int i = 0; i < nLocal_; i++) {
204 +      int iglob = AtomLocalToGlobal[i];
205 +
206 +      for (int j = 0; j < nLocal_; j++) {
207 +        int jglob = AtomLocalToGlobal[j];
208 +
209 +        if (excludes->hasPair(iglob, jglob))
210 +          excludesForAtom[i].push_back(j);              
211 +        
212 +        if (oneTwo->hasPair(iglob, jglob)) {
213 +          toposForAtom[i].push_back(j);
214 +          topoDist[i].push_back(1);
215 +        } else {
216 +          if (oneThree->hasPair(iglob, jglob)) {
217 +            toposForAtom[i].push_back(j);
218 +            topoDist[i].push_back(2);
219 +          } else {
220 +            if (oneFour->hasPair(iglob, jglob)) {
221 +              toposForAtom[i].push_back(j);
222 +              topoDist[i].push_back(3);
223 +            }
224 +          }
225 +        }
226 +      }      
227 +    }
228 +    
229 +    createGtypeCutoffMap();
230 +
231    }
232 +  
233 +  void ForceMatrixDecomposition::createGtypeCutoffMap() {
234      
235 +    RealType tol = 1e-6;
236 +    RealType rc;
237 +    int atid;
238 +    set<AtomType*> atypes = info_->getSimulatedAtomTypes();
239 +    map<int, RealType> atypeCutoff;
240 +      
241 +    for (set<AtomType*>::iterator at = atypes.begin();
242 +         at != atypes.end(); ++at){
243 +      atid = (*at)->getIdent();
244 +      if (userChoseCutoff_)
245 +        atypeCutoff[atid] = userCutoff_;
246 +      else
247 +        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
248 +    }
249  
250 +    vector<RealType> gTypeCutoffs;
251 +    // first we do a single loop over the cutoff groups to find the
252 +    // largest cutoff for any atypes present in this group.
253 + #ifdef IS_MPI
254 +    vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
255 +    groupRowToGtype.resize(nGroupsInRow_);
256 +    for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
257 +      vector<int> atomListRow = getAtomsInGroupRow(cg1);
258 +      for (vector<int>::iterator ia = atomListRow.begin();
259 +           ia != atomListRow.end(); ++ia) {            
260 +        int atom1 = (*ia);
261 +        atid = identsRow[atom1];
262 +        if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
263 +          groupCutoffRow[cg1] = atypeCutoff[atid];
264 +        }
265 +      }
266  
267 +      bool gTypeFound = false;
268 +      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
269 +        if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
270 +          groupRowToGtype[cg1] = gt;
271 +          gTypeFound = true;
272 +        }
273 +      }
274 +      if (!gTypeFound) {
275 +        gTypeCutoffs.push_back( groupCutoffRow[cg1] );
276 +        groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
277 +      }
278 +      
279 +    }
280 +    vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
281 +    groupColToGtype.resize(nGroupsInCol_);
282 +    for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
283 +      vector<int> atomListCol = getAtomsInGroupColumn(cg2);
284 +      for (vector<int>::iterator jb = atomListCol.begin();
285 +           jb != atomListCol.end(); ++jb) {            
286 +        int atom2 = (*jb);
287 +        atid = identsCol[atom2];
288 +        if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
289 +          groupCutoffCol[cg2] = atypeCutoff[atid];
290 +        }
291 +      }
292 +      bool gTypeFound = false;
293 +      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
294 +        if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
295 +          groupColToGtype[cg2] = gt;
296 +          gTypeFound = true;
297 +        }
298 +      }
299 +      if (!gTypeFound) {
300 +        gTypeCutoffs.push_back( groupCutoffCol[cg2] );
301 +        groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
302 +      }
303 +    }
304 + #else
305 +
306 +    vector<RealType> groupCutoff(nGroups_, 0.0);
307 +    groupToGtype.resize(nGroups_);
308 +    for (int cg1 = 0; cg1 < nGroups_; cg1++) {
309 +
310 +      groupCutoff[cg1] = 0.0;
311 +      vector<int> atomList = getAtomsInGroupRow(cg1);
312 +
313 +      for (vector<int>::iterator ia = atomList.begin();
314 +           ia != atomList.end(); ++ia) {            
315 +        int atom1 = (*ia);
316 +        atid = idents[atom1];
317 +        if (atypeCutoff[atid] > groupCutoff[cg1]) {
318 +          groupCutoff[cg1] = atypeCutoff[atid];
319 +        }
320 +      }
321 +
322 +      bool gTypeFound = false;
323 +      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
324 +        if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
325 +          groupToGtype[cg1] = gt;
326 +          gTypeFound = true;
327 +        }
328 +      }
329 +      if (!gTypeFound) {
330 +        gTypeCutoffs.push_back( groupCutoff[cg1] );
331 +        groupToGtype[cg1] = gTypeCutoffs.size() - 1;
332 +      }      
333 +    }
334 + #endif
335 +
336 +    // Now we find the maximum group cutoff value present in the simulation
337 +
338 +    RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end());
339 +
340 + #ifdef IS_MPI
341 +    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX);
342 + #endif
343 +    
344 +    RealType tradRcut = groupMax;
345 +
346 +    for (int i = 0; i < gTypeCutoffs.size();  i++) {
347 +      for (int j = 0; j < gTypeCutoffs.size();  j++) {      
348 +        RealType thisRcut;
349 +        switch(cutoffPolicy_) {
350 +        case TRADITIONAL:
351 +          thisRcut = tradRcut;
352 +          break;
353 +        case MIX:
354 +          thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
355 +          break;
356 +        case MAX:
357 +          thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
358 +          break;
359 +        default:
360 +          sprintf(painCave.errMsg,
361 +                  "ForceMatrixDecomposition::createGtypeCutoffMap "
362 +                  "hit an unknown cutoff policy!\n");
363 +          painCave.severity = OPENMD_ERROR;
364 +          painCave.isFatal = 1;
365 +          simError();
366 +          break;
367 +        }
368 +
369 +        pair<int,int> key = make_pair(i,j);
370 +        gTypeCutoffMap[key].first = thisRcut;
371 +
372 +        if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
373 +
374 +        gTypeCutoffMap[key].second = thisRcut*thisRcut;
375 +        
376 +        gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
377 +
378 +        // sanity check
379 +        
380 +        if (userChoseCutoff_) {
381 +          if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
382 +            sprintf(painCave.errMsg,
383 +                    "ForceMatrixDecomposition::createGtypeCutoffMap "
384 +                    "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
385 +            painCave.severity = OPENMD_ERROR;
386 +            painCave.isFatal = 1;
387 +            simError();            
388 +          }
389 +        }
390 +      }
391 +    }
392 +  }
393 +
394 +
395 +  groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
396 +    int i, j;  
397 + #ifdef IS_MPI
398 +    i = groupRowToGtype[cg1];
399 +    j = groupColToGtype[cg2];
400 + #else
401 +    i = groupToGtype[cg1];
402 +    j = groupToGtype[cg2];
403 + #endif    
404 +    return gTypeCutoffMap[make_pair(i,j)];
405 +  }
406 +
407 +  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
408 +    for (int j = 0; j < toposForAtom[atom1].size(); j++) {
409 +      if (toposForAtom[atom1][j] == atom2)
410 +        return topoDist[atom1][j];
411 +    }
412 +    return 0;
413 +  }
414 +
415 +  void ForceMatrixDecomposition::zeroWorkArrays() {
416 +    pairwisePot = 0.0;
417 +    embeddingPot = 0.0;
418 +
419 + #ifdef IS_MPI
420 +    if (storageLayout_ & DataStorage::dslForce) {
421 +      fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
422 +      fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
423 +    }
424 +
425 +    if (storageLayout_ & DataStorage::dslTorque) {
426 +      fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
427 +      fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
428 +    }
429 +    
430 +    fill(pot_row.begin(), pot_row.end(),
431 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
432 +
433 +    fill(pot_col.begin(), pot_col.end(),
434 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
435 +
436 +    if (storageLayout_ & DataStorage::dslParticlePot) {    
437 +      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0);
438 +      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0);
439 +    }
440 +
441 +    if (storageLayout_ & DataStorage::dslDensity) {      
442 +      fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
443 +      fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
444 +    }
445 +
446 +    if (storageLayout_ & DataStorage::dslFunctional) {  
447 +      fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0);
448 +      fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0);
449 +    }
450 +
451 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
452 +      fill(atomRowData.functionalDerivative.begin(),
453 +           atomRowData.functionalDerivative.end(), 0.0);
454 +      fill(atomColData.functionalDerivative.begin(),
455 +           atomColData.functionalDerivative.end(), 0.0);
456 +    }
457 +
458 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
459 +      fill(atomRowData.skippedCharge.begin(),
460 +           atomRowData.skippedCharge.end(), 0.0);
461 +      fill(atomColData.skippedCharge.begin(),
462 +           atomColData.skippedCharge.end(), 0.0);
463 +    }
464 +
465 + #else
466 +    
467 +    if (storageLayout_ & DataStorage::dslParticlePot) {      
468 +      fill(snap_->atomData.particlePot.begin(),
469 +           snap_->atomData.particlePot.end(), 0.0);
470 +    }
471 +    
472 +    if (storageLayout_ & DataStorage::dslDensity) {      
473 +      fill(snap_->atomData.density.begin(),
474 +           snap_->atomData.density.end(), 0.0);
475 +    }
476 +    if (storageLayout_ & DataStorage::dslFunctional) {
477 +      fill(snap_->atomData.functional.begin(),
478 +           snap_->atomData.functional.end(), 0.0);
479 +    }
480 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
481 +      fill(snap_->atomData.functionalDerivative.begin(),
482 +           snap_->atomData.functionalDerivative.end(), 0.0);
483 +    }
484 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
485 +      fill(snap_->atomData.skippedCharge.begin(),
486 +           snap_->atomData.skippedCharge.end(), 0.0);
487 +    }
488 + #endif
489 +    
490 +  }
491 +
492 +
493    void ForceMatrixDecomposition::distributeData()  {
494      snap_ = sman_->getCurrentSnapshot();
495      storageLayout_ = sman_->getStorageLayout();
# Line 156 | Line 525 | namespace OpenMD {
525   #endif      
526    }
527    
528 +  /* collects information obtained during the pre-pair loop onto local
529 +   * data structures.
530 +   */
531    void ForceMatrixDecomposition::collectIntermediateData() {
532      snap_ = sman_->getCurrentSnapshot();
533      storageLayout_ = sman_->getStorageLayout();
# Line 167 | Line 539 | namespace OpenMD {
539                                 snap_->atomData.density);
540        
541        int n = snap_->atomData.density.size();
542 <      std::vector<RealType> rho_tmp(n, 0.0);
542 >      vector<RealType> rho_tmp(n, 0.0);
543        AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
544        for (int i = 0; i < n; i++)
545          snap_->atomData.density[i] += rho_tmp[i];
546      }
547   #endif
548    }
549 <  
549 >
550 >  /*
551 >   * redistributes information obtained during the pre-pair loop out to
552 >   * row and column-indexed data structures
553 >   */
554    void ForceMatrixDecomposition::distributeIntermediateData() {
555      snap_ = sman_->getCurrentSnapshot();
556      storageLayout_ = sman_->getStorageLayout();
# Line 216 | Line 592 | namespace OpenMD {
592      
593      if (storageLayout_ & DataStorage::dslTorque) {
594  
595 <      int nt = snap_->atomData.force.size();
595 >      int nt = snap_->atomData.torque.size();
596        vector<Vector3d> trq_tmp(nt, V3Zero);
597  
598        AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
599 <      for (int i = 0; i < n; i++) {
599 >      for (int i = 0; i < nt; i++) {
600          snap_->atomData.torque[i] += trq_tmp[i];
601          trq_tmp[i] = 0.0;
602        }
603        
604        AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
605 <      for (int i = 0; i < n; i++)
605 >      for (int i = 0; i < nt; i++)
606          snap_->atomData.torque[i] += trq_tmp[i];
607      }
608 +
609 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
610 +
611 +      int ns = snap_->atomData.skippedCharge.size();
612 +      vector<RealType> skch_tmp(ns, 0.0);
613 +
614 +      AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
615 +      for (int i = 0; i < ns; i++) {
616 +        snap_->atomData.skippedCharge[i] = skch_tmp[i];
617 +        skch_tmp[i] = 0.0;
618 +      }
619 +      
620 +      AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
621 +      for (int i = 0; i < ns; i++)
622 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
623 +    }
624      
625      nLocal_ = snap_->getNumberOfAtoms();
626  
627 <    vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES,
628 <                                       vector<RealType> (nLocal_, 0.0));
627 >    vector<potVec> pot_temp(nLocal_,
628 >                            Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
629 >
630 >    // scatter/gather pot_row into the members of my column
631 >          
632 >    AtomCommPotRow->scatter(pot_row, pot_temp);
633 >
634 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
635 >      pairwisePot += pot_temp[ii];
636      
637 <    for (int i = 0; i < N_INTERACTION_FAMILIES; i++) {
638 <      AtomCommRealRow->scatter(pot_row[i], pot_temp[i]);
639 <      for (int ii = 0;  ii < pot_temp[i].size(); ii++ ) {
640 <        pot_local[i] += pot_temp[i][ii];
641 <      }
642 <    }
637 >    fill(pot_temp.begin(), pot_temp.end(),
638 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
639 >      
640 >    AtomCommPotColumn->scatter(pot_col, pot_temp);    
641 >    
642 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
643 >      pairwisePot += pot_temp[ii];    
644   #endif
645 +
646    }
647  
648 +  int ForceMatrixDecomposition::getNAtomsInRow() {  
649 + #ifdef IS_MPI
650 +    return nAtomsInRow_;
651 + #else
652 +    return nLocal_;
653 + #endif
654 +  }
655 +
656 +  /**
657 +   * returns the list of atoms belonging to this group.  
658 +   */
659 +  vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
660 + #ifdef IS_MPI
661 +    return groupListRow_[cg1];
662 + #else
663 +    return groupList_[cg1];
664 + #endif
665 +  }
666 +
667 +  vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
668 + #ifdef IS_MPI
669 +    return groupListCol_[cg2];
670 + #else
671 +    return groupList_[cg2];
672 + #endif
673 +  }
674    
675    Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
676      Vector3d d;
# Line 284 | Line 711 | namespace OpenMD {
711      
712      snap_->wrapVector(d);
713      return d;    
714 +  }
715 +
716 +  RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
717 + #ifdef IS_MPI
718 +    return massFactorsRow[atom1];
719 + #else
720 +    return massFactors[atom1];
721 + #endif
722 +  }
723 +
724 +  RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
725 + #ifdef IS_MPI
726 +    return massFactorsCol[atom2];
727 + #else
728 +    return massFactors[atom2];
729 + #endif
730 +
731    }
732      
733    Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
# Line 299 | Line 743 | namespace OpenMD {
743      return d;    
744    }
745  
746 +  vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
747 +    return excludesForAtom[atom1];
748 +  }
749 +
750 +  /**
751 +   * We need to exclude some overcounted interactions that result from
752 +   * the parallel decomposition.
753 +   */
754 +  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
755 +    int unique_id_1, unique_id_2;
756 +
757 + #ifdef IS_MPI
758 +    // in MPI, we have to look up the unique IDs for each atom
759 +    unique_id_1 = AtomRowToGlobal[atom1];
760 +    unique_id_2 = AtomColToGlobal[atom2];
761 +
762 +    // this situation should only arise in MPI simulations
763 +    if (unique_id_1 == unique_id_2) return true;
764 +    
765 +    // this prevents us from doing the pair on multiple processors
766 +    if (unique_id_1 < unique_id_2) {
767 +      if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
768 +    } else {
769 +      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
770 +    }
771 + #endif
772 +    return false;
773 +  }
774 +
775 +  /**
776 +   * We need to handle the interactions for atoms who are involved in
777 +   * the same rigid body as well as some short range interactions
778 +   * (bonds, bends, torsions) differently from other interactions.
779 +   * We'll still visit the pairwise routines, but with a flag that
780 +   * tells those routines to exclude the pair from direct long range
781 +   * interactions.  Some indirect interactions (notably reaction
782 +   * field) must still be handled for these pairs.
783 +   */
784 +  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
785 +    int unique_id_2;
786 +    
787 + #ifdef IS_MPI
788 +    // in MPI, we have to look up the unique IDs for the row atom.
789 +    unique_id_2 = AtomColToGlobal[atom2];
790 + #else
791 +    // in the normal loop, the atom numbers are unique
792 +    unique_id_2 = atom2;
793 + #endif
794 +    
795 +    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
796 +         i != excludesForAtom[atom1].end(); ++i) {
797 +      if ( (*i) == unique_id_2 ) return true;
798 +    }
799 +
800 +    return false;
801 +  }
802 +
803 +
804    void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
805   #ifdef IS_MPI
806      atomRowData.force[atom1] += fg;
# Line 316 | Line 818 | namespace OpenMD {
818    }
819  
820      // filling interaction blocks with pointers
821 <  InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) {    
822 <    InteractionData idat;
821 >  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
822 >                                                     int atom1, int atom2) {
823  
824 +    idat.excluded = excludeAtomPair(atom1, atom2);
825 +  
826   #ifdef IS_MPI
827 +    
828 +    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
829 +                             ff_->getAtomType(identsCol[atom2]) );
830 +    
831      if (storageLayout_ & DataStorage::dslAmat) {
832        idat.A1 = &(atomRowData.aMat[atom1]);
833        idat.A2 = &(atomColData.aMat[atom2]);
# Line 340 | Line 848 | namespace OpenMD {
848        idat.rho2 = &(atomColData.density[atom2]);
849      }
850  
851 +    if (storageLayout_ & DataStorage::dslFunctional) {
852 +      idat.frho1 = &(atomRowData.functional[atom1]);
853 +      idat.frho2 = &(atomColData.functional[atom2]);
854 +    }
855 +
856      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
857        idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
858        idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
859      }
860 +
861 +    if (storageLayout_ & DataStorage::dslParticlePot) {
862 +      idat.particlePot1 = &(atomRowData.particlePot[atom1]);
863 +      idat.particlePot2 = &(atomColData.particlePot[atom2]);
864 +    }
865 +
866 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
867 +      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
868 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
869 +    }
870 +
871   #else
872 +
873 +    idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
874 +                             ff_->getAtomType(idents[atom2]) );
875 +
876      if (storageLayout_ & DataStorage::dslAmat) {
877        idat.A1 = &(snap_->atomData.aMat[atom1]);
878        idat.A2 = &(snap_->atomData.aMat[atom2]);
# Line 360 | Line 888 | namespace OpenMD {
888        idat.t2 = &(snap_->atomData.torque[atom2]);
889      }
890  
891 <    if (storageLayout_ & DataStorage::dslDensity) {
891 >    if (storageLayout_ & DataStorage::dslDensity) {    
892        idat.rho1 = &(snap_->atomData.density[atom1]);
893        idat.rho2 = &(snap_->atomData.density[atom2]);
894      }
895  
896 +    if (storageLayout_ & DataStorage::dslFunctional) {
897 +      idat.frho1 = &(snap_->atomData.functional[atom1]);
898 +      idat.frho2 = &(snap_->atomData.functional[atom2]);
899 +    }
900 +
901      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
902        idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
903        idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
904      }
905 +
906 +    if (storageLayout_ & DataStorage::dslParticlePot) {
907 +      idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
908 +      idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
909 +    }
910 +
911 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
912 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
913 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
914 +    }
915   #endif
373    return idat;
916    }
917  
918 <  InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){
919 <
378 <    InteractionData idat;
918 >  
919 >  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
920   #ifdef IS_MPI
921 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
922 <      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
923 <      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
924 <    }
925 <    if (storageLayout_ & DataStorage::dslTorque) {
385 <      idat.t1 = &(atomRowData.torque[atom1]);
386 <      idat.t2 = &(atomColData.torque[atom2]);
387 <    }
388 <    if (storageLayout_ & DataStorage::dslForce) {
389 <      idat.t1 = &(atomRowData.force[atom1]);
390 <      idat.t2 = &(atomColData.force[atom2]);
391 <    }
921 >    pot_row[atom1] += 0.5 *  *(idat.pot);
922 >    pot_col[atom2] += 0.5 *  *(idat.pot);
923 >
924 >    atomRowData.force[atom1] += *(idat.f1);
925 >    atomColData.force[atom2] -= *(idat.f1);
926   #else
927 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
928 <      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
929 <      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
930 <    }
397 <    if (storageLayout_ & DataStorage::dslTorque) {
398 <      idat.t1 = &(snap_->atomData.torque[atom1]);
399 <      idat.t2 = &(snap_->atomData.torque[atom2]);
400 <    }
401 <    if (storageLayout_ & DataStorage::dslForce) {
402 <      idat.t1 = &(snap_->atomData.force[atom1]);
403 <      idat.t2 = &(snap_->atomData.force[atom2]);
404 <    }
927 >    pairwisePot += *(idat.pot);
928 >
929 >    snap_->atomData.force[atom1] += *(idat.f1);
930 >    snap_->atomData.force[atom2] -= *(idat.f1);
931   #endif
932      
933    }
934  
409  SelfData ForceMatrixDecomposition::fillSelfData(int atom1) {
410    SelfData sdat;
411    // Still Missing atype, skippedCharge, potVec pot,
412    if (storageLayout_ & DataStorage::dslElectroFrame) {
413      sdat.eFrame = &(snap_->atomData.electroFrame[atom1]);
414    }
415    
416    if (storageLayout_ & DataStorage::dslTorque) {
417      sdat.t = &(snap_->atomData.torque[atom1]);
418    }
419    
420    if (storageLayout_ & DataStorage::dslDensity) {
421      sdat.rho = &(snap_->atomData.density[atom1]);
422    }
423    
424    if (storageLayout_ & DataStorage::dslFunctional) {
425      sdat.frho = &(snap_->atomData.functional[atom1]);
426    }
427    
428    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
429      sdat.dfrhodrho = &(snap_->atomData.functionalDerivative[atom1]);
430    }
431
432    return sdat;    
433  }
434
435
436
935    /*
936     * buildNeighborList
937     *
# Line 443 | Line 941 | namespace OpenMD {
941    vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
942        
943      vector<pair<int, int> > neighborList;
944 +    groupCutoffs cuts;
945 +    bool doAllPairs = false;
946 +
947   #ifdef IS_MPI
948 <    CellListRow.clear();
949 <    CellListCol.clear();
948 >    cellListRow_.clear();
949 >    cellListCol_.clear();
950   #else
951 <    CellList.clear();
951 >    cellList_.clear();
952   #endif
953  
954 <    // dangerous to not do error checking.
454 <    RealType skinThickness_ = info_->getSimParams()->getSkinThickness();
455 <    RealType rCut_;
456 <
457 <    RealType rList_ = (rCut_ + skinThickness_);
954 >    RealType rList_ = (largestRcut_ + skinThickness_);
955      RealType rl2 = rList_ * rList_;
956      Snapshot* snap_ = sman_->getCurrentSnapshot();
957      Mat3x3d Hmat = snap_->getHmat();
958      Vector3d Hx = Hmat.getColumn(0);
959      Vector3d Hy = Hmat.getColumn(1);
960      Vector3d Hz = Hmat.getColumn(2);
464    Vector3i nCells;
961  
962 <    nCells.x() = (int) ( Hx.length() )/ rList_;
963 <    nCells.y() = (int) ( Hy.length() )/ rList_;
964 <    nCells.z() = (int) ( Hz.length() )/ rList_;
962 >    nCells_.x() = (int) ( Hx.length() )/ rList_;
963 >    nCells_.y() = (int) ( Hy.length() )/ rList_;
964 >    nCells_.z() = (int) ( Hz.length() )/ rList_;
965  
966 +    // handle small boxes where the cell offsets can end up repeating cells
967 +    
968 +    if (nCells_.x() < 3) doAllPairs = true;
969 +    if (nCells_.y() < 3) doAllPairs = true;
970 +    if (nCells_.z() < 3) doAllPairs = true;
971 +
972      Mat3x3d invHmat = snap_->getInvHmat();
973      Vector3d rs, scaled, dr;
974      Vector3i whichCell;
975      int cellIndex;
976 +    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
977  
978   #ifdef IS_MPI
979 <    for (int i = 0; i < nGroupsInRow_; i++) {
980 <      rs = cgRowData.position[i];
981 <      // scaled positions relative to the box vectors
982 <      scaled = invHmat * rs;
983 <      // wrap the vector back into the unit box by subtracting integer box
481 <      // numbers
482 <      for (int j = 0; j < 3; j++)
483 <        scaled[j] -= roundMe(scaled[j]);
484 <    
485 <      // find xyz-indices of cell that cutoffGroup is in.
486 <      whichCell.x() = nCells.x() * scaled.x();
487 <      whichCell.y() = nCells.y() * scaled.y();
488 <      whichCell.z() = nCells.z() * scaled.z();
979 >    cellListRow_.resize(nCtot);
980 >    cellListCol_.resize(nCtot);
981 > #else
982 >    cellList_.resize(nCtot);
983 > #endif
984  
985 <      // find single index of this cell:
986 <      cellIndex = Vlinear(whichCell, nCells);
492 <      // add this cutoff group to the list of groups in this cell;
493 <      CellListRow[cellIndex].push_back(i);
494 <    }
985 >    if (!doAllPairs) {
986 > #ifdef IS_MPI
987  
988 <    for (int i = 0; i < nGroupsInCol_; i++) {
989 <      rs = cgColData.position[i];
990 <      // scaled positions relative to the box vectors
991 <      scaled = invHmat * rs;
992 <      // wrap the vector back into the unit box by subtracting integer box
993 <      // numbers
994 <      for (int j = 0; j < 3; j++)
995 <        scaled[j] -= roundMe(scaled[j]);
996 <
997 <      // find xyz-indices of cell that cutoffGroup is in.
998 <      whichCell.x() = nCells.x() * scaled.x();
999 <      whichCell.y() = nCells.y() * scaled.y();
1000 <      whichCell.z() = nCells.z() * scaled.z();
1001 <
1002 <      // find single index of this cell:
1003 <      cellIndex = Vlinear(whichCell, nCells);
1004 <      // add this cutoff group to the list of groups in this cell;
1005 <      CellListCol[cellIndex].push_back(i);
1006 <    }
988 >      for (int i = 0; i < nGroupsInRow_; i++) {
989 >        rs = cgRowData.position[i];
990 >        
991 >        // scaled positions relative to the box vectors
992 >        scaled = invHmat * rs;
993 >        
994 >        // wrap the vector back into the unit box by subtracting integer box
995 >        // numbers
996 >        for (int j = 0; j < 3; j++) {
997 >          scaled[j] -= roundMe(scaled[j]);
998 >          scaled[j] += 0.5;
999 >        }
1000 >        
1001 >        // find xyz-indices of cell that cutoffGroup is in.
1002 >        whichCell.x() = nCells_.x() * scaled.x();
1003 >        whichCell.y() = nCells_.y() * scaled.y();
1004 >        whichCell.z() = nCells_.z() * scaled.z();
1005 >        
1006 >        // find single index of this cell:
1007 >        cellIndex = Vlinear(whichCell, nCells_);
1008 >        
1009 >        // add this cutoff group to the list of groups in this cell;
1010 >        cellListRow_[cellIndex].push_back(i);
1011 >      }
1012 >      
1013 >      for (int i = 0; i < nGroupsInCol_; i++) {
1014 >        rs = cgColData.position[i];
1015 >        
1016 >        // scaled positions relative to the box vectors
1017 >        scaled = invHmat * rs;
1018 >        
1019 >        // wrap the vector back into the unit box by subtracting integer box
1020 >        // numbers
1021 >        for (int j = 0; j < 3; j++) {
1022 >          scaled[j] -= roundMe(scaled[j]);
1023 >          scaled[j] += 0.5;
1024 >        }
1025 >        
1026 >        // find xyz-indices of cell that cutoffGroup is in.
1027 >        whichCell.x() = nCells_.x() * scaled.x();
1028 >        whichCell.y() = nCells_.y() * scaled.y();
1029 >        whichCell.z() = nCells_.z() * scaled.z();
1030 >        
1031 >        // find single index of this cell:
1032 >        cellIndex = Vlinear(whichCell, nCells_);
1033 >        
1034 >        // add this cutoff group to the list of groups in this cell;
1035 >        cellListCol_[cellIndex].push_back(i);
1036 >      }
1037   #else
1038 <    for (int i = 0; i < nGroups_; i++) {
1039 <      rs = snap_->cgData.position[i];
1040 <      // scaled positions relative to the box vectors
1041 <      scaled = invHmat * rs;
1042 <      // wrap the vector back into the unit box by subtracting integer box
1043 <      // numbers
1044 <      for (int j = 0; j < 3; j++)
1045 <        scaled[j] -= roundMe(scaled[j]);
1046 <
1047 <      // find xyz-indices of cell that cutoffGroup is in.
1048 <      whichCell.x() = nCells.x() * scaled.x();
1049 <      whichCell.y() = nCells.y() * scaled.y();
1050 <      whichCell.z() = nCells.z() * scaled.z();
1051 <
1052 <      // find single index of this cell:
1053 <      cellIndex = Vlinear(whichCell, nCells);
1054 <      // add this cutoff group to the list of groups in this cell;
1055 <      CellList[cellIndex].push_back(i);
1056 <    }
1038 >      for (int i = 0; i < nGroups_; i++) {
1039 >        rs = snap_->cgData.position[i];
1040 >        
1041 >        // scaled positions relative to the box vectors
1042 >        scaled = invHmat * rs;
1043 >        
1044 >        // wrap the vector back into the unit box by subtracting integer box
1045 >        // numbers
1046 >        for (int j = 0; j < 3; j++) {
1047 >          scaled[j] -= roundMe(scaled[j]);
1048 >          scaled[j] += 0.5;
1049 >        }
1050 >        
1051 >        // find xyz-indices of cell that cutoffGroup is in.
1052 >        whichCell.x() = nCells_.x() * scaled.x();
1053 >        whichCell.y() = nCells_.y() * scaled.y();
1054 >        whichCell.z() = nCells_.z() * scaled.z();
1055 >        
1056 >        // find single index of this cell:
1057 >        cellIndex = Vlinear(whichCell, nCells_);      
1058 >        
1059 >        // add this cutoff group to the list of groups in this cell;
1060 >        cellList_[cellIndex].push_back(i);
1061 >      }
1062   #endif
1063  
1064 <
1065 <
1066 <    for (int m1z = 0; m1z < nCells.z(); m1z++) {
1067 <      for (int m1y = 0; m1y < nCells.y(); m1y++) {
1068 <        for (int m1x = 0; m1x < nCells.x(); m1x++) {
1069 <          Vector3i m1v(m1x, m1y, m1z);
1070 <          int m1 = Vlinear(m1v, nCells);
1071 <          for (int offset = 0; offset < nOffset_; offset++) {
1072 <            Vector3i m2v = m1v + cellOffsets_[offset];
1073 <
1074 <            if (m2v.x() >= nCells.x()) {
1075 <              m2v.x() = 0;          
1076 <            } else if (m2v.x() < 0) {
1077 <              m2v.x() = nCells.x() - 1;
1078 <            }
1079 <
1080 <            if (m2v.y() >= nCells.y()) {
1081 <              m2v.y() = 0;          
1082 <            } else if (m2v.y() < 0) {
1083 <              m2v.y() = nCells.y() - 1;
1084 <            }
1085 <
1086 <            if (m2v.z() >= nCells.z()) {
1087 <              m2v.z() = 0;          
1088 <            } else if (m2v.z() < 0) {
1089 <              m2v.z() = nCells.z() - 1;
1090 <            }
1091 <
1092 <            int m2 = Vlinear (m2v, nCells);
1093 <
1064 >      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1065 >        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1066 >          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1067 >            Vector3i m1v(m1x, m1y, m1z);
1068 >            int m1 = Vlinear(m1v, nCells_);
1069 >            
1070 >            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1071 >                 os != cellOffsets_.end(); ++os) {
1072 >              
1073 >              Vector3i m2v = m1v + (*os);
1074 >              
1075 >              if (m2v.x() >= nCells_.x()) {
1076 >                m2v.x() = 0;          
1077 >              } else if (m2v.x() < 0) {
1078 >                m2v.x() = nCells_.x() - 1;
1079 >              }
1080 >              
1081 >              if (m2v.y() >= nCells_.y()) {
1082 >                m2v.y() = 0;          
1083 >              } else if (m2v.y() < 0) {
1084 >                m2v.y() = nCells_.y() - 1;
1085 >              }
1086 >              
1087 >              if (m2v.z() >= nCells_.z()) {
1088 >                m2v.z() = 0;          
1089 >              } else if (m2v.z() < 0) {
1090 >                m2v.z() = nCells_.z() - 1;
1091 >              }
1092 >              
1093 >              int m2 = Vlinear (m2v, nCells_);
1094 >              
1095   #ifdef IS_MPI
1096 <            for (vector<int>::iterator j1 = CellListRow[m1].begin();
1097 <                 j1 != CellListRow[m1].end(); ++j1) {
1098 <              for (vector<int>::iterator j2 = CellListCol[m2].begin();
1099 <                   j2 != CellListCol[m2].end(); ++j2) {
1100 <                              
1101 <                // Always do this if we're in different cells or if
1102 <                // we're in the same cell and the global index of the
1103 <                // j2 cutoff group is less than the j1 cutoff group
1104 <
1105 <                if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1106 <                  dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1107 <                  snap_->wrapVector(dr);
1108 <                  if (dr.lengthSquare() < rl2) {
1109 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1096 >              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1097 >                   j1 != cellListRow_[m1].end(); ++j1) {
1098 >                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1099 >                     j2 != cellListCol_[m2].end(); ++j2) {
1100 >                  
1101 >                  // Always do this if we're in different cells or if
1102 >                  // we're in the same cell and the global index of the
1103 >                  // j2 cutoff group is less than the j1 cutoff group
1104 >                  
1105 >                  if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1106 >                    dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1107 >                    snap_->wrapVector(dr);
1108 >                    cuts = getGroupCutoffs( (*j1), (*j2) );
1109 >                    if (dr.lengthSquare() < cuts.third) {
1110 >                      neighborList.push_back(make_pair((*j1), (*j2)));
1111 >                    }
1112                    }
1113                  }
1114                }
585            }
1115   #else
1116 <            for (vector<int>::iterator j1 = CellList[m1].begin();
1117 <                 j1 != CellList[m1].end(); ++j1) {
1118 <              for (vector<int>::iterator j2 = CellList[m2].begin();
1119 <                   j2 != CellList[m2].end(); ++j2) {
1120 <                              
1121 <                // Always do this if we're in different cells or if
1122 <                // we're in the same cell and the global index of the
1123 <                // j2 cutoff group is less than the j1 cutoff group
1124 <
1125 <                if (m2 != m1 || (*j2) < (*j1)) {
1126 <                  dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1127 <                  snap_->wrapVector(dr);
1128 <                  if (dr.lengthSquare() < rl2) {
1129 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1116 >              
1117 >              for (vector<int>::iterator j1 = cellList_[m1].begin();
1118 >                   j1 != cellList_[m1].end(); ++j1) {
1119 >                for (vector<int>::iterator j2 = cellList_[m2].begin();
1120 >                     j2 != cellList_[m2].end(); ++j2) {
1121 >                  
1122 >                  // Always do this if we're in different cells or if
1123 >                  // we're in the same cell and the global index of the
1124 >                  // j2 cutoff group is less than the j1 cutoff group
1125 >                  
1126 >                  if (m2 != m1 || (*j2) < (*j1)) {
1127 >                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1128 >                    snap_->wrapVector(dr);
1129 >                    cuts = getGroupCutoffs( (*j1), (*j2) );
1130 >                    if (dr.lengthSquare() < cuts.third) {
1131 >                      neighborList.push_back(make_pair((*j1), (*j2)));
1132 >                    }
1133                    }
1134                  }
1135                }
604            }
1136   #endif
1137 +            }
1138            }
1139          }
1140        }
1141 +    } else {
1142 +      // branch to do all cutoff group pairs
1143 + #ifdef IS_MPI
1144 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1145 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {      
1146 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1147 +          snap_->wrapVector(dr);
1148 +          cuts = getGroupCutoffs( j1, j2 );
1149 +          if (dr.lengthSquare() < cuts.third) {
1150 +            neighborList.push_back(make_pair(j1, j2));
1151 +          }
1152 +        }
1153 +      }
1154 + #else
1155 +      for (int j1 = 0; j1 < nGroups_ - 1; j1++) {
1156 +        for (int j2 = j1 + 1; j2 < nGroups_; j2++) {
1157 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1158 +          snap_->wrapVector(dr);
1159 +          cuts = getGroupCutoffs( j1, j2 );
1160 +          if (dr.lengthSquare() < cuts.third) {
1161 +            neighborList.push_back(make_pair(j1, j2));
1162 +          }
1163 +        }
1164 +      }        
1165 + #endif
1166      }
1167 +      
1168 +    // save the local cutoff group positions for the check that is
1169 +    // done on each loop:
1170 +    saved_CG_positions_.clear();
1171 +    for (int i = 0; i < nGroups_; i++)
1172 +      saved_CG_positions_.push_back(snap_->cgData.position[i]);
1173 +    
1174      return neighborList;
1175    }
1176   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines