ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents):
Revision 1583 by gezelter, Thu Jun 16 22:00:08 2011 UTC vs.
Revision 1688 by gezelter, Wed Mar 14 17:56:01 2012 UTC

# Line 36 | Line 36
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42   #include "parallel/ForceMatrixDecomposition.hpp"
43   #include "math/SquareMatrix3.hpp"
# Line 47 | Line 48 | namespace OpenMD {
48   using namespace std;
49   namespace OpenMD {
50  
51 +  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52 +
53 +    // In a parallel computation, row and colum scans must visit all
54 +    // surrounding cells (not just the 14 upper triangular blocks that
55 +    // are used when the processor can see all pairs)
56 + #ifdef IS_MPI
57 +    cellOffsets_.clear();
58 +    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59 +    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60 +    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                          
61 +    cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62 +    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63 +    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64 +    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65 +    cellOffsets_.push_back( Vector3i( 0, 1,-1) );      
66 +    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 +    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68 +    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69 +    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 +    cellOffsets_.push_back( Vector3i(-1, 0, 0) );      
71 +    cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72 +    cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73 +    cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74 +    cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75 +    cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76 +    cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77 +    cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78 +    cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 +    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 +    cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81 +    cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82 +    cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83 +    cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84 +    cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 + #endif    
86 +  }
87 +
88 +
89    /**
90     * distributeInitialData is essentially a copy of the older fortran
91     * SimulationSetup
92     */
54  
93    void ForceMatrixDecomposition::distributeInitialData() {
94      snap_ = sman_->getCurrentSnapshot();
95      storageLayout_ = sman_->getStorageLayout();
96      ff_ = info_->getForceField();
97      nLocal_ = snap_->getNumberOfAtoms();
98 <
98 >    
99      nGroups_ = info_->getNLocalCutoffGroups();
62    cerr << "in dId, nGroups = " << nGroups_ << "\n";
100      // gather the information for atomtype IDs (atids):
101      idents = info_->getIdentArray();
102      AtomLocalToGlobal = info_->getGlobalAtomIndices();
103      cgLocalToGlobal = info_->getGlobalGroupIndices();
104      vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
105 +
106      massFactors = info_->getMassFactors();
69    PairList excludes = info_->getExcludedInteractions();
70    PairList oneTwo = info_->getOneTwoInteractions();
71    PairList oneThree = info_->getOneThreeInteractions();
72    PairList oneFour = info_->getOneFourInteractions();
107  
108 +    PairList* excludes = info_->getExcludedInteractions();
109 +    PairList* oneTwo = info_->getOneTwoInteractions();
110 +    PairList* oneThree = info_->getOneThreeInteractions();
111 +    PairList* oneFour = info_->getOneFourInteractions();
112 +
113   #ifdef IS_MPI
114  
115 <    AtomCommIntRow = new Communicator<Row,int>(nLocal_);
116 <    AtomCommRealRow = new Communicator<Row,RealType>(nLocal_);
78 <    AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_);
79 <    AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_);
80 <    AtomCommPotRow = new Communicator<Row,potVec>(nLocal_);
115 >    MPI::Intracomm row = rowComm.getComm();
116 >    MPI::Intracomm col = colComm.getComm();
117  
118 <    AtomCommIntColumn = new Communicator<Column,int>(nLocal_);
119 <    AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_);
120 <    AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_);
121 <    AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_);
122 <    AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_);
118 >    AtomPlanIntRow = new Plan<int>(row, nLocal_);
119 >    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
120 >    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
121 >    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
122 >    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
123  
124 <    cgCommIntRow = new Communicator<Row,int>(nGroups_);
125 <    cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_);
126 <    cgCommIntColumn = new Communicator<Column,int>(nGroups_);
127 <    cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_);
124 >    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
125 >    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
126 >    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
127 >    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
128 >    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
129  
130 <    nAtomsInRow_ = AtomCommIntRow->getSize();
131 <    nAtomsInCol_ = AtomCommIntColumn->getSize();
132 <    nGroupsInRow_ = cgCommIntRow->getSize();
133 <    nGroupsInCol_ = cgCommIntColumn->getSize();
130 >    cgPlanIntRow = new Plan<int>(row, nGroups_);
131 >    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
132 >    cgPlanIntColumn = new Plan<int>(col, nGroups_);
133 >    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
134  
135 +    nAtomsInRow_ = AtomPlanIntRow->getSize();
136 +    nAtomsInCol_ = AtomPlanIntColumn->getSize();
137 +    nGroupsInRow_ = cgPlanIntRow->getSize();
138 +    nGroupsInCol_ = cgPlanIntColumn->getSize();
139 +
140      // Modify the data storage objects with the correct layouts and sizes:
141      atomRowData.resize(nAtomsInRow_);
142      atomRowData.setStorageLayout(storageLayout_);
# Line 108 | Line 150 | namespace OpenMD {
150      identsRow.resize(nAtomsInRow_);
151      identsCol.resize(nAtomsInCol_);
152      
153 <    AtomCommIntRow->gather(idents, identsRow);
154 <    AtomCommIntColumn->gather(idents, identsCol);
153 >    AtomPlanIntRow->gather(idents, identsRow);
154 >    AtomPlanIntColumn->gather(idents, identsCol);
155      
156 <    AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
157 <    AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
158 <    
117 <    cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
118 <    cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
156 >    // allocate memory for the parallel objects
157 >    atypesRow.resize(nAtomsInRow_);
158 >    atypesCol.resize(nAtomsInCol_);
159  
160 <    AtomCommRealRow->gather(massFactors, massFactorsRow);
161 <    AtomCommRealColumn->gather(massFactors, massFactorsCol);
160 >    for (int i = 0; i < nAtomsInRow_; i++)
161 >      atypesRow[i] = ff_->getAtomType(identsRow[i]);
162 >    for (int i = 0; i < nAtomsInCol_; i++)
163 >      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
164  
165 +    pot_row.resize(nAtomsInRow_);
166 +    pot_col.resize(nAtomsInCol_);
167 +
168 +    AtomRowToGlobal.resize(nAtomsInRow_);
169 +    AtomColToGlobal.resize(nAtomsInCol_);
170 +    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
171 +    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
172 +
173 +    cgRowToGlobal.resize(nGroupsInRow_);
174 +    cgColToGlobal.resize(nGroupsInCol_);
175 +    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
176 +    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
177 +
178 +    massFactorsRow.resize(nAtomsInRow_);
179 +    massFactorsCol.resize(nAtomsInCol_);
180 +    AtomPlanRealRow->gather(massFactors, massFactorsRow);
181 +    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
182 +
183      groupListRow_.clear();
184      groupListRow_.resize(nGroupsInRow_);
185      for (int i = 0; i < nGroupsInRow_; i++) {
# Line 142 | Line 202 | namespace OpenMD {
202        }      
203      }
204  
205 <    skipsForAtom.clear();
206 <    skipsForAtom.resize(nAtomsInRow_);
205 >    excludesForAtom.clear();
206 >    excludesForAtom.resize(nAtomsInRow_);
207      toposForAtom.clear();
208      toposForAtom.resize(nAtomsInRow_);
209      topoDist.clear();
# Line 154 | Line 214 | namespace OpenMD {
214        for (int j = 0; j < nAtomsInCol_; j++) {
215          int jglob = AtomColToGlobal[j];
216  
217 <        if (excludes.hasPair(iglob, jglob))
218 <          skipsForAtom[i].push_back(j);      
217 >        if (excludes->hasPair(iglob, jglob))
218 >          excludesForAtom[i].push_back(j);      
219          
220 <        if (oneTwo.hasPair(iglob, jglob)) {
220 >        if (oneTwo->hasPair(iglob, jglob)) {
221            toposForAtom[i].push_back(j);
222            topoDist[i].push_back(1);
223          } else {
224 <          if (oneThree.hasPair(iglob, jglob)) {
224 >          if (oneThree->hasPair(iglob, jglob)) {
225              toposForAtom[i].push_back(j);
226              topoDist[i].push_back(2);
227            } else {
228 <            if (oneFour.hasPair(iglob, jglob)) {
228 >            if (oneFour->hasPair(iglob, jglob)) {
229                toposForAtom[i].push_back(j);
230                topoDist[i].push_back(3);
231              }
# Line 174 | Line 234 | namespace OpenMD {
234        }      
235      }
236  
237 < #endif
238 <
239 <    groupList_.clear();
180 <    groupList_.resize(nGroups_);
181 <    for (int i = 0; i < nGroups_; i++) {
182 <      int gid = cgLocalToGlobal[i];
183 <      for (int j = 0; j < nLocal_; j++) {
184 <        int aid = AtomLocalToGlobal[j];
185 <        if (globalGroupMembership[aid] == gid) {
186 <          groupList_[i].push_back(j);
187 <        }
188 <      }      
189 <    }
190 <
191 <    skipsForAtom.clear();
192 <    skipsForAtom.resize(nLocal_);
237 > #else
238 >    excludesForAtom.clear();
239 >    excludesForAtom.resize(nLocal_);
240      toposForAtom.clear();
241      toposForAtom.resize(nLocal_);
242      topoDist.clear();
# Line 201 | Line 248 | namespace OpenMD {
248        for (int j = 0; j < nLocal_; j++) {
249          int jglob = AtomLocalToGlobal[j];
250  
251 <        if (excludes.hasPair(iglob, jglob))
252 <          skipsForAtom[i].push_back(j);              
251 >        if (excludes->hasPair(iglob, jglob))
252 >          excludesForAtom[i].push_back(j);              
253          
254 <        if (oneTwo.hasPair(iglob, jglob)) {
254 >        if (oneTwo->hasPair(iglob, jglob)) {
255            toposForAtom[i].push_back(j);
256            topoDist[i].push_back(1);
257          } else {
258 <          if (oneThree.hasPair(iglob, jglob)) {
258 >          if (oneThree->hasPair(iglob, jglob)) {
259              toposForAtom[i].push_back(j);
260              topoDist[i].push_back(2);
261            } else {
262 <            if (oneFour.hasPair(iglob, jglob)) {
262 >            if (oneFour->hasPair(iglob, jglob)) {
263                toposForAtom[i].push_back(j);
264                topoDist[i].push_back(3);
265              }
# Line 220 | Line 267 | namespace OpenMD {
267          }
268        }      
269      }
270 <    
270 > #endif
271 >
272 >    // allocate memory for the parallel objects
273 >    atypesLocal.resize(nLocal_);
274 >
275 >    for (int i = 0; i < nLocal_; i++)
276 >      atypesLocal[i] = ff_->getAtomType(idents[i]);
277 >
278 >    groupList_.clear();
279 >    groupList_.resize(nGroups_);
280 >    for (int i = 0; i < nGroups_; i++) {
281 >      int gid = cgLocalToGlobal[i];
282 >      for (int j = 0; j < nLocal_; j++) {
283 >        int aid = AtomLocalToGlobal[j];
284 >        if (globalGroupMembership[aid] == gid) {
285 >          groupList_[i].push_back(j);
286 >        }
287 >      }      
288 >    }
289 >
290 >
291      createGtypeCutoffMap();
292 +
293    }
294    
295    void ForceMatrixDecomposition::createGtypeCutoffMap() {
296 <
296 >    
297      RealType tol = 1e-6;
298 +    largestRcut_ = 0.0;
299      RealType rc;
300      int atid;
301      set<AtomType*> atypes = info_->getSimulatedAtomTypes();
302 <    vector<RealType> atypeCutoff;
303 <    atypeCutoff.resize( atypes.size() );
302 >    
303 >    map<int, RealType> atypeCutoff;
304        
305      for (set<AtomType*>::iterator at = atypes.begin();
306           at != atypes.end(); ++at){
307        atid = (*at)->getIdent();
308 <
240 <      if (userChoseCutoff_)
308 >      if (userChoseCutoff_)
309          atypeCutoff[atid] = userCutoff_;
310        else
311          atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
312      }
313 <
313 >    
314      vector<RealType> gTypeCutoffs;
247
315      // first we do a single loop over the cutoff groups to find the
316      // largest cutoff for any atypes present in this group.
317   #ifdef IS_MPI
# Line 302 | Line 369 | namespace OpenMD {
369  
370      vector<RealType> groupCutoff(nGroups_, 0.0);
371      groupToGtype.resize(nGroups_);
305
306    cerr << "nGroups = " << nGroups_ << "\n";
372      for (int cg1 = 0; cg1 < nGroups_; cg1++) {
308
373        groupCutoff[cg1] = 0.0;
374        vector<int> atomList = getAtomsInGroupRow(cg1);
311
375        for (vector<int>::iterator ia = atomList.begin();
376             ia != atomList.end(); ++ia) {            
377          int atom1 = (*ia);
378          atid = idents[atom1];
379 <        if (atypeCutoff[atid] > groupCutoff[cg1]) {
379 >        if (atypeCutoff[atid] > groupCutoff[cg1])
380            groupCutoff[cg1] = atypeCutoff[atid];
318        }
381        }
382 <
382 >      
383        bool gTypeFound = false;
384        for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
385          if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
# Line 325 | Line 387 | namespace OpenMD {
387            gTypeFound = true;
388          }
389        }
390 <      if (!gTypeFound) {
390 >      if (!gTypeFound) {      
391          gTypeCutoffs.push_back( groupCutoff[cg1] );
392          groupToGtype[cg1] = gTypeCutoffs.size() - 1;
393        }      
394      }
395   #endif
396  
335    cerr << "gTypeCutoffs.size() = " << gTypeCutoffs.size() << "\n";
397      // Now we find the maximum group cutoff value present in the simulation
398  
399 <    RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end());
399 >    RealType groupMax = *max_element(gTypeCutoffs.begin(),
400 >                                     gTypeCutoffs.end());
401  
402   #ifdef IS_MPI
403 <    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX);
403 >    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
404 >                              MPI::MAX);
405   #endif
406      
407      RealType tradRcut = groupMax;
# Line 368 | Line 431 | namespace OpenMD {
431  
432          pair<int,int> key = make_pair(i,j);
433          gTypeCutoffMap[key].first = thisRcut;
371
434          if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
373
435          gTypeCutoffMap[key].second = thisRcut*thisRcut;
375        
436          gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
377
437          // sanity check
438          
439          if (userChoseCutoff_) {
# Line 434 | Line 493 | namespace OpenMD {
493           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
494  
495      if (storageLayout_ & DataStorage::dslParticlePot) {    
496 <      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0);
497 <      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0);
496 >      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
497 >           0.0);
498 >      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
499 >           0.0);
500      }
501  
502      if (storageLayout_ & DataStorage::dslDensity) {      
# Line 444 | Line 505 | namespace OpenMD {
505      }
506  
507      if (storageLayout_ & DataStorage::dslFunctional) {  
508 <      fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0);
509 <      fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0);
508 >      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
509 >           0.0);
510 >      fill(atomColData.functional.begin(), atomColData.functional.end(),
511 >           0.0);
512      }
513  
514      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
# Line 455 | Line 518 | namespace OpenMD {
518             atomColData.functionalDerivative.end(), 0.0);
519      }
520  
521 < #else
522 <    
521 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
522 >      fill(atomRowData.skippedCharge.begin(),
523 >           atomRowData.skippedCharge.end(), 0.0);
524 >      fill(atomColData.skippedCharge.begin(),
525 >           atomColData.skippedCharge.end(), 0.0);
526 >    }
527 >
528 > #endif
529 >    // even in parallel, we need to zero out the local arrays:
530 >
531      if (storageLayout_ & DataStorage::dslParticlePot) {      
532        fill(snap_->atomData.particlePot.begin(),
533             snap_->atomData.particlePot.end(), 0.0);
# Line 474 | Line 545 | namespace OpenMD {
545        fill(snap_->atomData.functionalDerivative.begin(),
546             snap_->atomData.functionalDerivative.end(), 0.0);
547      }
548 < #endif
548 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
549 >      fill(snap_->atomData.skippedCharge.begin(),
550 >           snap_->atomData.skippedCharge.end(), 0.0);
551 >    }
552      
553    }
554  
# Line 485 | Line 559 | namespace OpenMD {
559   #ifdef IS_MPI
560      
561      // gather up the atomic positions
562 <    AtomCommVectorRow->gather(snap_->atomData.position,
562 >    AtomPlanVectorRow->gather(snap_->atomData.position,
563                                atomRowData.position);
564 <    AtomCommVectorColumn->gather(snap_->atomData.position,
564 >    AtomPlanVectorColumn->gather(snap_->atomData.position,
565                                   atomColData.position);
566      
567      // gather up the cutoff group positions
568 <    cgCommVectorRow->gather(snap_->cgData.position,
568 >
569 >    cgPlanVectorRow->gather(snap_->cgData.position,
570                              cgRowData.position);
571 <    cgCommVectorColumn->gather(snap_->cgData.position,
571 >
572 >    cgPlanVectorColumn->gather(snap_->cgData.position,
573                                 cgColData.position);
574 +
575      
576      // if needed, gather the atomic rotation matrices
577      if (storageLayout_ & DataStorage::dslAmat) {
578 <      AtomCommMatrixRow->gather(snap_->atomData.aMat,
578 >      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
579                                  atomRowData.aMat);
580 <      AtomCommMatrixColumn->gather(snap_->atomData.aMat,
580 >      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
581                                     atomColData.aMat);
582      }
583      
584      // if needed, gather the atomic eletrostatic frames
585      if (storageLayout_ & DataStorage::dslElectroFrame) {
586 <      AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
586 >      AtomPlanMatrixRow->gather(snap_->atomData.electroFrame,
587                                  atomRowData.electroFrame);
588 <      AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
588 >      AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame,
589                                     atomColData.electroFrame);
590      }
591 +
592   #endif      
593    }
594    
# Line 524 | Line 602 | namespace OpenMD {
602      
603      if (storageLayout_ & DataStorage::dslDensity) {
604        
605 <      AtomCommRealRow->scatter(atomRowData.density,
605 >      AtomPlanRealRow->scatter(atomRowData.density,
606                                 snap_->atomData.density);
607        
608        int n = snap_->atomData.density.size();
609        vector<RealType> rho_tmp(n, 0.0);
610 <      AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
610 >      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
611        for (int i = 0; i < n; i++)
612          snap_->atomData.density[i] += rho_tmp[i];
613      }
# Line 545 | Line 623 | namespace OpenMD {
623      storageLayout_ = sman_->getStorageLayout();
624   #ifdef IS_MPI
625      if (storageLayout_ & DataStorage::dslFunctional) {
626 <      AtomCommRealRow->gather(snap_->atomData.functional,
626 >      AtomPlanRealRow->gather(snap_->atomData.functional,
627                                atomRowData.functional);
628 <      AtomCommRealColumn->gather(snap_->atomData.functional,
628 >      AtomPlanRealColumn->gather(snap_->atomData.functional,
629                                   atomColData.functional);
630      }
631      
632      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
633 <      AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
633 >      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
634                                atomRowData.functionalDerivative);
635 <      AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
635 >      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
636                                   atomColData.functionalDerivative);
637      }
638   #endif
# Line 568 | Line 646 | namespace OpenMD {
646      int n = snap_->atomData.force.size();
647      vector<Vector3d> frc_tmp(n, V3Zero);
648      
649 <    AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
649 >    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
650      for (int i = 0; i < n; i++) {
651        snap_->atomData.force[i] += frc_tmp[i];
652        frc_tmp[i] = 0.0;
653      }
654      
655 <    AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
656 <    for (int i = 0; i < n; i++)
655 >    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
656 >    for (int i = 0; i < n; i++) {
657        snap_->atomData.force[i] += frc_tmp[i];
658 <    
659 <    
658 >    }
659 >        
660      if (storageLayout_ & DataStorage::dslTorque) {
661  
662 <      int nt = snap_->atomData.force.size();
662 >      int nt = snap_->atomData.torque.size();
663        vector<Vector3d> trq_tmp(nt, V3Zero);
664  
665 <      AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
666 <      for (int i = 0; i < n; i++) {
665 >      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
666 >      for (int i = 0; i < nt; i++) {
667          snap_->atomData.torque[i] += trq_tmp[i];
668          trq_tmp[i] = 0.0;
669        }
670        
671 <      AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
672 <      for (int i = 0; i < n; i++)
671 >      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
672 >      for (int i = 0; i < nt; i++)
673          snap_->atomData.torque[i] += trq_tmp[i];
674      }
675 +
676 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
677 +
678 +      int ns = snap_->atomData.skippedCharge.size();
679 +      vector<RealType> skch_tmp(ns, 0.0);
680 +
681 +      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
682 +      for (int i = 0; i < ns; i++) {
683 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
684 +        skch_tmp[i] = 0.0;
685 +      }
686 +      
687 +      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
688 +      for (int i = 0; i < ns; i++)
689 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
690 +            
691 +    }
692      
693      nLocal_ = snap_->getNumberOfAtoms();
694  
# Line 602 | Line 697 | namespace OpenMD {
697  
698      // scatter/gather pot_row into the members of my column
699            
700 <    AtomCommPotRow->scatter(pot_row, pot_temp);
700 >    AtomPlanPotRow->scatter(pot_row, pot_temp);
701  
702      for (int ii = 0;  ii < pot_temp.size(); ii++ )
703        pairwisePot += pot_temp[ii];
# Line 610 | Line 705 | namespace OpenMD {
705      fill(pot_temp.begin(), pot_temp.end(),
706           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
707        
708 <    AtomCommPotColumn->scatter(pot_col, pot_temp);    
708 >    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
709      
710      for (int ii = 0;  ii < pot_temp.size(); ii++ )
711        pairwisePot += pot_temp[ii];    
712 +    
713 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
714 +      RealType ploc1 = pairwisePot[ii];
715 +      RealType ploc2 = 0.0;
716 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
717 +      pairwisePot[ii] = ploc2;
718 +    }
719 +
720 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
721 +      RealType ploc1 = embeddingPot[ii];
722 +      RealType ploc2 = 0.0;
723 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
724 +      embeddingPot[ii] = ploc2;
725 +    }
726 +
727   #endif
728  
729    }
# Line 716 | Line 826 | namespace OpenMD {
826      return d;    
827    }
828  
829 <  vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) {
830 <    return skipsForAtom[atom1];
829 >  vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
830 >    return excludesForAtom[atom1];
831    }
832  
833    /**
834 <   * There are a number of reasons to skip a pair or a
725 <   * particle. Mostly we do this to exclude atoms who are involved in
726 <   * short range interactions (bonds, bends, torsions), but we also
727 <   * need to exclude some overcounted interactions that result from
834 >   * We need to exclude some overcounted interactions that result from
835     * the parallel decomposition.
836     */
837    bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
838      int unique_id_1, unique_id_2;
839 <
839 >        
840   #ifdef IS_MPI
841      // in MPI, we have to look up the unique IDs for each atom
842      unique_id_1 = AtomRowToGlobal[atom1];
843      unique_id_2 = AtomColToGlobal[atom2];
844 + #else
845 +    unique_id_1 = AtomLocalToGlobal[atom1];
846 +    unique_id_2 = AtomLocalToGlobal[atom2];
847 + #endif  
848  
738    // this situation should only arise in MPI simulations
849      if (unique_id_1 == unique_id_2) return true;
850 <    
850 >
851 > #ifdef IS_MPI
852      // this prevents us from doing the pair on multiple processors
853      if (unique_id_1 < unique_id_2) {
854        if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
855      } else {
856 <      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
856 >      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
857      }
747 #else
748    // in the normal loop, the atom numbers are unique
749    unique_id_1 = atom1;
750    unique_id_2 = atom2;
858   #endif
859      
860 <    for (vector<int>::iterator i = skipsForAtom[atom1].begin();
861 <         i != skipsForAtom[atom1].end(); ++i) {
862 <      if ( (*i) == unique_id_2 ) return true;
860 >    return false;
861 >  }
862 >
863 >  /**
864 >   * We need to handle the interactions for atoms who are involved in
865 >   * the same rigid body as well as some short range interactions
866 >   * (bonds, bends, torsions) differently from other interactions.
867 >   * We'll still visit the pairwise routines, but with a flag that
868 >   * tells those routines to exclude the pair from direct long range
869 >   * interactions.  Some indirect interactions (notably reaction
870 >   * field) must still be handled for these pairs.
871 >   */
872 >  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
873 >
874 >    // excludesForAtom was constructed to use row/column indices in the MPI
875 >    // version, and to use local IDs in the non-MPI version:
876 >    
877 >    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
878 >         i != excludesForAtom[atom1].end(); ++i) {
879 >      if ( (*i) == atom2 ) return true;
880      }
881  
882      return false;
# Line 777 | Line 901 | namespace OpenMD {
901  
902      // filling interaction blocks with pointers
903    void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
904 <                                                     int atom1, int atom2) {    
904 >                                                     int atom1, int atom2) {
905 >
906 >    idat.excluded = excludeAtomPair(atom1, atom2);
907 >  
908   #ifdef IS_MPI
909 +    idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
910 +    //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
911 +    //                         ff_->getAtomType(identsCol[atom2]) );
912      
783    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
784                             ff_->getAtomType(identsCol[atom2]) );
785    
913      if (storageLayout_ & DataStorage::dslAmat) {
914        idat.A1 = &(atomRowData.aMat[atom1]);
915        idat.A2 = &(atomColData.aMat[atom2]);
# Line 818 | Line 945 | namespace OpenMD {
945        idat.particlePot2 = &(atomColData.particlePot[atom2]);
946      }
947  
948 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
949 +      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
950 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
951 +    }
952 +
953   #else
954 +    
955  
956 <    idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
957 <                             ff_->getAtomType(idents[atom2]) );
956 >    // cerr << "atoms = " << atom1 << " " << atom2 << "\n";
957 >    // cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n";
958 >    // cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n";
959  
960 +    idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
961 +    //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
962 +    //                         ff_->getAtomType(idents[atom2]) );
963 +
964      if (storageLayout_ & DataStorage::dslAmat) {
965        idat.A1 = &(snap_->atomData.aMat[atom1]);
966        idat.A2 = &(snap_->atomData.aMat[atom2]);
# Line 858 | Line 996 | namespace OpenMD {
996        idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
997      }
998  
999 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
1000 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1001 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1002 +    }
1003   #endif
1004    }
1005  
1006    
1007    void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
1008   #ifdef IS_MPI
1009 <    pot_row[atom1] += 0.5 *  *(idat.pot);
1010 <    pot_col[atom2] += 0.5 *  *(idat.pot);
1009 >    pot_row[atom1] += RealType(0.5) *  *(idat.pot);
1010 >    pot_col[atom2] += RealType(0.5) *  *(idat.pot);
1011  
1012      atomRowData.force[atom1] += *(idat.f1);
1013      atomColData.force[atom2] -= *(idat.f1);
# Line 875 | Line 1017 | namespace OpenMD {
1017      snap_->atomData.force[atom1] += *(idat.f1);
1018      snap_->atomData.force[atom2] -= *(idat.f1);
1019   #endif
1020 <
1020 >    
1021    }
1022  
881
882  void ForceMatrixDecomposition::fillSkipData(InteractionData &idat,
883                                              int atom1, int atom2) {
884    // Still Missing:: skippedCharge fill must be added to DataStorage
885 #ifdef IS_MPI
886    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
887                             ff_->getAtomType(identsCol[atom2]) );
888
889    if (storageLayout_ & DataStorage::dslElectroFrame) {
890      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
891      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
892    }
893    if (storageLayout_ & DataStorage::dslTorque) {
894      idat.t1 = &(atomRowData.torque[atom1]);
895      idat.t2 = &(atomColData.torque[atom2]);
896    }
897 #else
898    idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
899                             ff_->getAtomType(idents[atom2]) );
900
901    if (storageLayout_ & DataStorage::dslElectroFrame) {
902      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
903      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
904    }
905    if (storageLayout_ & DataStorage::dslTorque) {
906      idat.t1 = &(snap_->atomData.torque[atom1]);
907      idat.t2 = &(snap_->atomData.torque[atom2]);
908    }
909 #endif    
910  }
911
912
913  void ForceMatrixDecomposition::unpackSkipData(InteractionData &idat, int atom1, int atom2) {    
914 #ifdef IS_MPI
915    pot_row[atom1] += 0.5 *  *(idat.pot);
916    pot_col[atom2] += 0.5 *  *(idat.pot);
917 #else
918    pairwisePot += *(idat.pot);  
919 #endif
920
921  }
922
923
1023    /*
1024     * buildNeighborList
1025     *
# Line 931 | Line 1030 | namespace OpenMD {
1030        
1031      vector<pair<int, int> > neighborList;
1032      groupCutoffs cuts;
1033 +    bool doAllPairs = false;
1034 +
1035   #ifdef IS_MPI
1036      cellListRow_.clear();
1037      cellListCol_.clear();
# Line 950 | Line 1051 | namespace OpenMD {
1051      nCells_.y() = (int) ( Hy.length() )/ rList_;
1052      nCells_.z() = (int) ( Hz.length() )/ rList_;
1053  
1054 +    // handle small boxes where the cell offsets can end up repeating cells
1055 +    
1056 +    if (nCells_.x() < 3) doAllPairs = true;
1057 +    if (nCells_.y() < 3) doAllPairs = true;
1058 +    if (nCells_.z() < 3) doAllPairs = true;
1059 +
1060      Mat3x3d invHmat = snap_->getInvHmat();
1061      Vector3d rs, scaled, dr;
1062      Vector3i whichCell;
# Line 963 | Line 1070 | namespace OpenMD {
1070      cellList_.resize(nCtot);
1071   #endif
1072  
1073 +    if (!doAllPairs) {
1074   #ifdef IS_MPI
967    for (int i = 0; i < nGroupsInRow_; i++) {
968      rs = cgRowData.position[i];
1075  
1076 <      // scaled positions relative to the box vectors
1077 <      scaled = invHmat * rs;
1078 <
1079 <      // wrap the vector back into the unit box by subtracting integer box
1080 <      // numbers
1081 <      for (int j = 0; j < 3; j++) {
1082 <        scaled[j] -= roundMe(scaled[j]);
1083 <        scaled[j] += 0.5;
1076 >      for (int i = 0; i < nGroupsInRow_; i++) {
1077 >        rs = cgRowData.position[i];
1078 >        
1079 >        // scaled positions relative to the box vectors
1080 >        scaled = invHmat * rs;
1081 >        
1082 >        // wrap the vector back into the unit box by subtracting integer box
1083 >        // numbers
1084 >        for (int j = 0; j < 3; j++) {
1085 >          scaled[j] -= roundMe(scaled[j]);
1086 >          scaled[j] += 0.5;
1087 >        }
1088 >        
1089 >        // find xyz-indices of cell that cutoffGroup is in.
1090 >        whichCell.x() = nCells_.x() * scaled.x();
1091 >        whichCell.y() = nCells_.y() * scaled.y();
1092 >        whichCell.z() = nCells_.z() * scaled.z();
1093 >        
1094 >        // find single index of this cell:
1095 >        cellIndex = Vlinear(whichCell, nCells_);
1096 >        
1097 >        // add this cutoff group to the list of groups in this cell;
1098 >        cellListRow_[cellIndex].push_back(i);
1099        }
1100 <    
1101 <      // find xyz-indices of cell that cutoffGroup is in.
1102 <      whichCell.x() = nCells_.x() * scaled.x();
1103 <      whichCell.y() = nCells_.y() * scaled.y();
1104 <      whichCell.z() = nCells_.z() * scaled.z();
1105 <
1106 <      // find single index of this cell:
1107 <      cellIndex = Vlinear(whichCell, nCells_);
1108 <
1109 <      // add this cutoff group to the list of groups in this cell;
1110 <      cellListRow_[cellIndex].push_back(i);
1111 <    }
1112 <
1113 <    for (int i = 0; i < nGroupsInCol_; i++) {
1114 <      rs = cgColData.position[i];
1115 <
1116 <      // scaled positions relative to the box vectors
1117 <      scaled = invHmat * rs;
1118 <
1119 <      // wrap the vector back into the unit box by subtracting integer box
1120 <      // numbers
1121 <      for (int j = 0; j < 3; j++) {
1122 <        scaled[j] -= roundMe(scaled[j]);
1002 <        scaled[j] += 0.5;
1100 >      for (int i = 0; i < nGroupsInCol_; i++) {
1101 >        rs = cgColData.position[i];
1102 >        
1103 >        // scaled positions relative to the box vectors
1104 >        scaled = invHmat * rs;
1105 >        
1106 >        // wrap the vector back into the unit box by subtracting integer box
1107 >        // numbers
1108 >        for (int j = 0; j < 3; j++) {
1109 >          scaled[j] -= roundMe(scaled[j]);
1110 >          scaled[j] += 0.5;
1111 >        }
1112 >        
1113 >        // find xyz-indices of cell that cutoffGroup is in.
1114 >        whichCell.x() = nCells_.x() * scaled.x();
1115 >        whichCell.y() = nCells_.y() * scaled.y();
1116 >        whichCell.z() = nCells_.z() * scaled.z();
1117 >        
1118 >        // find single index of this cell:
1119 >        cellIndex = Vlinear(whichCell, nCells_);
1120 >        
1121 >        // add this cutoff group to the list of groups in this cell;
1122 >        cellListCol_[cellIndex].push_back(i);
1123        }
1124 <
1005 <      // find xyz-indices of cell that cutoffGroup is in.
1006 <      whichCell.x() = nCells_.x() * scaled.x();
1007 <      whichCell.y() = nCells_.y() * scaled.y();
1008 <      whichCell.z() = nCells_.z() * scaled.z();
1009 <
1010 <      // find single index of this cell:
1011 <      cellIndex = Vlinear(whichCell, nCells_);
1012 <
1013 <      // add this cutoff group to the list of groups in this cell;
1014 <      cellListCol_[cellIndex].push_back(i);
1015 <    }
1124 >    
1125   #else
1126 <    for (int i = 0; i < nGroups_; i++) {
1127 <      rs = snap_->cgData.position[i];
1128 <
1129 <      // scaled positions relative to the box vectors
1130 <      scaled = invHmat * rs;
1131 <
1132 <      // wrap the vector back into the unit box by subtracting integer box
1133 <      // numbers
1134 <      for (int j = 0; j < 3; j++) {
1135 <        scaled[j] -= roundMe(scaled[j]);
1136 <        scaled[j] += 0.5;
1126 >      for (int i = 0; i < nGroups_; i++) {
1127 >        rs = snap_->cgData.position[i];
1128 >        
1129 >        // scaled positions relative to the box vectors
1130 >        scaled = invHmat * rs;
1131 >        
1132 >        // wrap the vector back into the unit box by subtracting integer box
1133 >        // numbers
1134 >        for (int j = 0; j < 3; j++) {
1135 >          scaled[j] -= roundMe(scaled[j]);
1136 >          scaled[j] += 0.5;
1137 >        }
1138 >        
1139 >        // find xyz-indices of cell that cutoffGroup is in.
1140 >        whichCell.x() = nCells_.x() * scaled.x();
1141 >        whichCell.y() = nCells_.y() * scaled.y();
1142 >        whichCell.z() = nCells_.z() * scaled.z();
1143 >        
1144 >        // find single index of this cell:
1145 >        cellIndex = Vlinear(whichCell, nCells_);
1146 >        
1147 >        // add this cutoff group to the list of groups in this cell;
1148 >        cellList_[cellIndex].push_back(i);
1149        }
1150  
1030      // find xyz-indices of cell that cutoffGroup is in.
1031      whichCell.x() = nCells_.x() * scaled.x();
1032      whichCell.y() = nCells_.y() * scaled.y();
1033      whichCell.z() = nCells_.z() * scaled.z();
1034
1035      // find single index of this cell:
1036      cellIndex = Vlinear(whichCell, nCells_);      
1037
1038      // add this cutoff group to the list of groups in this cell;
1039      cellList_[cellIndex].push_back(i);
1040    }
1151   #endif
1152  
1153 <    for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1154 <      for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1155 <        for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1156 <          Vector3i m1v(m1x, m1y, m1z);
1157 <          int m1 = Vlinear(m1v, nCells_);
1048 <
1049 <          for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1050 <               os != cellOffsets_.end(); ++os) {
1153 >      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1154 >        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1155 >          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1156 >            Vector3i m1v(m1x, m1y, m1z);
1157 >            int m1 = Vlinear(m1v, nCells_);
1158              
1159 <            Vector3i m2v = m1v + (*os);
1160 <            
1161 <            if (m2v.x() >= nCells_.x()) {
1162 <              m2v.x() = 0;          
1163 <            } else if (m2v.x() < 0) {
1057 <              m2v.x() = nCells_.x() - 1;
1058 <            }
1059 <            
1060 <            if (m2v.y() >= nCells_.y()) {
1061 <              m2v.y() = 0;          
1062 <            } else if (m2v.y() < 0) {
1063 <              m2v.y() = nCells_.y() - 1;
1064 <            }
1065 <            
1066 <            if (m2v.z() >= nCells_.z()) {
1067 <              m2v.z() = 0;          
1068 <            } else if (m2v.z() < 0) {
1069 <              m2v.z() = nCells_.z() - 1;
1070 <            }
1071 <            
1072 <            int m2 = Vlinear (m2v, nCells_);
1159 >            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1160 >                 os != cellOffsets_.end(); ++os) {
1161 >              
1162 >              Vector3i m2v = m1v + (*os);
1163 >            
1164  
1165 < #ifdef IS_MPI
1166 <            for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1167 <                 j1 != cellListRow_[m1].end(); ++j1) {
1168 <              for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1169 <                   j2 != cellListCol_[m2].end(); ++j2) {
1170 <                              
1171 <                // Always do this if we're in different cells or if
1172 <                // we're in the same cell and the global index of the
1173 <                // j2 cutoff group is less than the j1 cutoff group
1165 >              if (m2v.x() >= nCells_.x()) {
1166 >                m2v.x() = 0;          
1167 >              } else if (m2v.x() < 0) {
1168 >                m2v.x() = nCells_.x() - 1;
1169 >              }
1170 >              
1171 >              if (m2v.y() >= nCells_.y()) {
1172 >                m2v.y() = 0;          
1173 >              } else if (m2v.y() < 0) {
1174 >                m2v.y() = nCells_.y() - 1;
1175 >              }
1176 >              
1177 >              if (m2v.z() >= nCells_.z()) {
1178 >                m2v.z() = 0;          
1179 >              } else if (m2v.z() < 0) {
1180 >                m2v.z() = nCells_.z() - 1;
1181 >              }
1182  
1183 <                if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1183 >              int m2 = Vlinear (m2v, nCells_);
1184 >              
1185 > #ifdef IS_MPI
1186 >              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1187 >                   j1 != cellListRow_[m1].end(); ++j1) {
1188 >                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1189 >                     j2 != cellListCol_[m2].end(); ++j2) {
1190 >                  
1191 >                  // In parallel, we need to visit *all* pairs of row
1192 >                  // & column indicies and will divide labor in the
1193 >                  // force evaluation later.
1194                    dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1195                    snap_->wrapVector(dr);
1196                    cuts = getGroupCutoffs( (*j1), (*j2) );
1197                    if (dr.lengthSquare() < cuts.third) {
1198                      neighborList.push_back(make_pair((*j1), (*j2)));
1199 <                  }
1199 >                  }                  
1200                  }
1201                }
1093            }
1202   #else
1203 +              for (vector<int>::iterator j1 = cellList_[m1].begin();
1204 +                   j1 != cellList_[m1].end(); ++j1) {
1205 +                for (vector<int>::iterator j2 = cellList_[m2].begin();
1206 +                     j2 != cellList_[m2].end(); ++j2) {
1207 +    
1208 +                  // Always do this if we're in different cells or if
1209 +                  // we're in the same cell and the global index of
1210 +                  // the j2 cutoff group is greater than or equal to
1211 +                  // the j1 cutoff group.  Note that Rappaport's code
1212 +                  // has a "less than" conditional here, but that
1213 +                  // deals with atom-by-atom computation.  OpenMD
1214 +                  // allows atoms within a single cutoff group to
1215 +                  // interact with each other.
1216  
1096            for (vector<int>::iterator j1 = cellList_[m1].begin();
1097                 j1 != cellList_[m1].end(); ++j1) {
1098              for (vector<int>::iterator j2 = cellList_[m2].begin();
1099                   j2 != cellList_[m2].end(); ++j2) {
1217  
1101                // Always do this if we're in different cells or if
1102                // we're in the same cell and the global index of the
1103                // j2 cutoff group is less than the j1 cutoff group
1218  
1219 <                if (m2 != m1 || (*j2) < (*j1)) {
1220 <                  dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1221 <                  snap_->wrapVector(dr);
1222 <                  cuts = getGroupCutoffs( (*j1), (*j2) );
1223 <                  if (dr.lengthSquare() < cuts.third) {
1224 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1219 >                  if (m2 != m1 || (*j2) >= (*j1) ) {
1220 >
1221 >                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1222 >                    snap_->wrapVector(dr);
1223 >                    cuts = getGroupCutoffs( (*j1), (*j2) );
1224 >                    if (dr.lengthSquare() < cuts.third) {
1225 >                      neighborList.push_back(make_pair((*j1), (*j2)));
1226 >                    }
1227                    }
1228                  }
1229                }
1114            }
1230   #endif
1231 +            }
1232            }
1233          }
1234        }
1235 +    } else {
1236 +      // branch to do all cutoff group pairs
1237 + #ifdef IS_MPI
1238 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1239 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {    
1240 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1241 +          snap_->wrapVector(dr);
1242 +          cuts = getGroupCutoffs( j1, j2 );
1243 +          if (dr.lengthSquare() < cuts.third) {
1244 +            neighborList.push_back(make_pair(j1, j2));
1245 +          }
1246 +        }
1247 +      }      
1248 + #else
1249 +      // include all groups here.
1250 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1251 +        // include self group interactions j2 == j1
1252 +        for (int j2 = j1; j2 < nGroups_; j2++) {
1253 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1254 +          snap_->wrapVector(dr);
1255 +          cuts = getGroupCutoffs( j1, j2 );
1256 +          if (dr.lengthSquare() < cuts.third) {
1257 +            neighborList.push_back(make_pair(j1, j2));
1258 +          }
1259 +        }    
1260 +      }
1261 + #endif
1262      }
1263 <    
1263 >      
1264      // save the local cutoff group positions for the check that is
1265      // done on each loop:
1266      saved_CG_positions_.clear();
1267      for (int i = 0; i < nGroups_; i++)
1268        saved_CG_positions_.push_back(snap_->cgData.position[i]);
1269 <  
1269 >    
1270      return neighborList;
1271    }
1272   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines