ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing:
branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 1568 by gezelter, Wed May 25 16:20:37 2011 UTC vs.
trunk/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 1895 by gezelter, Mon Jul 1 21:09:37 2013 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42   #include "parallel/ForceMatrixDecomposition.hpp"
43   #include "math/SquareMatrix3.hpp"
44   #include "nonbonded/NonBondedInteraction.hpp"
45   #include "brains/SnapshotManager.hpp"
46 + #include "brains/PairList.hpp"
47  
48   using namespace std;
49   namespace OpenMD {
50  
51 +  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52 +
53 +    // In a parallel computation, row and colum scans must visit all
54 +    // surrounding cells (not just the 14 upper triangular blocks that
55 +    // are used when the processor can see all pairs)
56 + #ifdef IS_MPI
57 +    cellOffsets_.clear();
58 +    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59 +    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60 +    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                          
61 +    cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62 +    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63 +    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64 +    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65 +    cellOffsets_.push_back( Vector3i( 0, 1,-1) );      
66 +    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 +    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68 +    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69 +    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 +    cellOffsets_.push_back( Vector3i(-1, 0, 0) );      
71 +    cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72 +    cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73 +    cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74 +    cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75 +    cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76 +    cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77 +    cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78 +    cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 +    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 +    cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81 +    cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82 +    cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83 +    cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84 +    cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 + #endif    
86 +  }
87 +
88 +
89    /**
90     * distributeInitialData is essentially a copy of the older fortran
91     * SimulationSetup
92     */
53  
93    void ForceMatrixDecomposition::distributeInitialData() {
94      snap_ = sman_->getCurrentSnapshot();
95      storageLayout_ = sman_->getStorageLayout();
96 +    ff_ = info_->getForceField();
97      nLocal_ = snap_->getNumberOfAtoms();
98 <    nGroups_ = snap_->getNumberOfCutoffGroups();
98 >  
99 >    nGroups_ = info_->getNLocalCutoffGroups();
100 >    // gather the information for atomtype IDs (atids):
101 >    idents = info_->getIdentArray();
102 >    AtomLocalToGlobal = info_->getGlobalAtomIndices();
103 >    cgLocalToGlobal = info_->getGlobalGroupIndices();
104 >    vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
105  
106 +    massFactors = info_->getMassFactors();
107 +
108 +    PairList* excludes = info_->getExcludedInteractions();
109 +    PairList* oneTwo = info_->getOneTwoInteractions();
110 +    PairList* oneThree = info_->getOneThreeInteractions();
111 +    PairList* oneFour = info_->getOneFourInteractions();
112 +    
113 +    if (needVelocities_)
114 +      snap_->cgData.setStorageLayout(DataStorage::dslPosition |
115 +                                     DataStorage::dslVelocity);
116 +    else
117 +      snap_->cgData.setStorageLayout(DataStorage::dslPosition);
118 +    
119   #ifdef IS_MPI
120  
121 <    AtomCommIntRow = new Communicator<Row,int>(nLocal_);
122 <    AtomCommRealRow = new Communicator<Row,RealType>(nLocal_);
64 <    AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_);
65 <    AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_);
121 >    MPI::Intracomm row = rowComm.getComm();
122 >    MPI::Intracomm col = colComm.getComm();
123  
124 <    AtomCommIntColumn = new Communicator<Column,int>(nLocal_);
125 <    AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_);
126 <    AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_);
127 <    AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_);
124 >    AtomPlanIntRow = new Plan<int>(row, nLocal_);
125 >    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
126 >    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
127 >    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
128 >    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
129  
130 <    cgCommIntRow = new Communicator<Row,int>(nGroups_);
131 <    cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_);
132 <    cgCommIntColumn = new Communicator<Column,int>(nGroups_);
133 <    cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_);
130 >    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
131 >    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
132 >    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
133 >    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
134 >    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
135  
136 <    nAtomsInRow_ = AtomCommIntRow->getSize();
137 <    nAtomsInCol_ = AtomCommIntColumn->getSize();
138 <    nGroupsInRow_ = cgCommIntRow->getSize();
139 <    nGroupsInCol_ = cgCommIntColumn->getSize();
136 >    cgPlanIntRow = new Plan<int>(row, nGroups_);
137 >    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
138 >    cgPlanIntColumn = new Plan<int>(col, nGroups_);
139 >    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
140  
141 +    nAtomsInRow_ = AtomPlanIntRow->getSize();
142 +    nAtomsInCol_ = AtomPlanIntColumn->getSize();
143 +    nGroupsInRow_ = cgPlanIntRow->getSize();
144 +    nGroupsInCol_ = cgPlanIntColumn->getSize();
145 +
146      // Modify the data storage objects with the correct layouts and sizes:
147      atomRowData.resize(nAtomsInRow_);
148      atomRowData.setStorageLayout(storageLayout_);
# Line 87 | Line 151 | namespace OpenMD {
151      cgRowData.resize(nGroupsInRow_);
152      cgRowData.setStorageLayout(DataStorage::dslPosition);
153      cgColData.resize(nGroupsInCol_);
154 <    cgColData.setStorageLayout(DataStorage::dslPosition);
154 >    if (needVelocities_)
155 >      // we only need column velocities if we need them.
156 >      cgColData.setStorageLayout(DataStorage::dslPosition |
157 >                                 DataStorage::dslVelocity);
158 >    else    
159 >      cgColData.setStorageLayout(DataStorage::dslPosition);
160 >      
161 >    identsRow.resize(nAtomsInRow_);
162 >    identsCol.resize(nAtomsInCol_);
163      
164 <    vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES,
165 <                                      vector<RealType> (nAtomsInRow_, 0.0));
166 <    vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES,
167 <                                      vector<RealType> (nAtomsInCol_, 0.0));
164 >    AtomPlanIntRow->gather(idents, identsRow);
165 >    AtomPlanIntColumn->gather(idents, identsCol);
166 >    
167 >    // allocate memory for the parallel objects
168 >    atypesRow.resize(nAtomsInRow_);
169 >    atypesCol.resize(nAtomsInCol_);
170  
171 +    for (int i = 0; i < nAtomsInRow_; i++)
172 +      atypesRow[i] = ff_->getAtomType(identsRow[i]);
173 +    for (int i = 0; i < nAtomsInCol_; i++)
174 +      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
175  
176 <    vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0);
177 <    
100 <    // gather the information for atomtype IDs (atids):
101 <    vector<int> identsLocal = info_->getIdentArray();
102 <    identsRow.reserve(nAtomsInRow_);
103 <    identsCol.reserve(nAtomsInCol_);
104 <    
105 <    AtomCommIntRow->gather(identsLocal, identsRow);
106 <    AtomCommIntColumn->gather(identsLocal, identsCol);
107 <    
108 <    AtomLocalToGlobal = info_->getGlobalAtomIndices();
109 <    AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
110 <    AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
111 <    
112 <    cgLocalToGlobal = info_->getGlobalGroupIndices();
113 <    cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
114 <    cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
176 >    pot_row.resize(nAtomsInRow_);
177 >    pot_col.resize(nAtomsInCol_);
178  
179 <    // still need:
180 <    // topoDist
181 <    // exclude
179 >    expot_row.resize(nAtomsInRow_);
180 >    expot_col.resize(nAtomsInCol_);
181 >
182 >    AtomRowToGlobal.resize(nAtomsInRow_);
183 >    AtomColToGlobal.resize(nAtomsInCol_);
184 >    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
185 >    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
186 >
187 >    cgRowToGlobal.resize(nGroupsInRow_);
188 >    cgColToGlobal.resize(nGroupsInCol_);
189 >    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
190 >    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
191 >
192 >    massFactorsRow.resize(nAtomsInRow_);
193 >    massFactorsCol.resize(nAtomsInCol_);
194 >    AtomPlanRealRow->gather(massFactors, massFactorsRow);
195 >    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
196 >
197 >    groupListRow_.clear();
198 >    groupListRow_.resize(nGroupsInRow_);
199 >    for (int i = 0; i < nGroupsInRow_; i++) {
200 >      int gid = cgRowToGlobal[i];
201 >      for (int j = 0; j < nAtomsInRow_; j++) {
202 >        int aid = AtomRowToGlobal[j];
203 >        if (globalGroupMembership[aid] == gid)
204 >          groupListRow_[i].push_back(j);
205 >      }      
206 >    }
207 >
208 >    groupListCol_.clear();
209 >    groupListCol_.resize(nGroupsInCol_);
210 >    for (int i = 0; i < nGroupsInCol_; i++) {
211 >      int gid = cgColToGlobal[i];
212 >      for (int j = 0; j < nAtomsInCol_; j++) {
213 >        int aid = AtomColToGlobal[j];
214 >        if (globalGroupMembership[aid] == gid)
215 >          groupListCol_[i].push_back(j);
216 >      }      
217 >    }
218 >
219 >    excludesForAtom.clear();
220 >    excludesForAtom.resize(nAtomsInRow_);
221 >    toposForAtom.clear();
222 >    toposForAtom.resize(nAtomsInRow_);
223 >    topoDist.clear();
224 >    topoDist.resize(nAtomsInRow_);
225 >    for (int i = 0; i < nAtomsInRow_; i++) {
226 >      int iglob = AtomRowToGlobal[i];
227 >
228 >      for (int j = 0; j < nAtomsInCol_; j++) {
229 >        int jglob = AtomColToGlobal[j];
230 >
231 >        if (excludes->hasPair(iglob, jglob))
232 >          excludesForAtom[i].push_back(j);      
233 >        
234 >        if (oneTwo->hasPair(iglob, jglob)) {
235 >          toposForAtom[i].push_back(j);
236 >          topoDist[i].push_back(1);
237 >        } else {
238 >          if (oneThree->hasPair(iglob, jglob)) {
239 >            toposForAtom[i].push_back(j);
240 >            topoDist[i].push_back(2);
241 >          } else {
242 >            if (oneFour->hasPair(iglob, jglob)) {
243 >              toposForAtom[i].push_back(j);
244 >              topoDist[i].push_back(3);
245 >            }
246 >          }
247 >        }
248 >      }      
249 >    }
250 >
251 > #else
252 >    excludesForAtom.clear();
253 >    excludesForAtom.resize(nLocal_);
254 >    toposForAtom.clear();
255 >    toposForAtom.resize(nLocal_);
256 >    topoDist.clear();
257 >    topoDist.resize(nLocal_);
258 >
259 >    for (int i = 0; i < nLocal_; i++) {
260 >      int iglob = AtomLocalToGlobal[i];
261 >
262 >      for (int j = 0; j < nLocal_; j++) {
263 >        int jglob = AtomLocalToGlobal[j];
264 >
265 >        if (excludes->hasPair(iglob, jglob))
266 >          excludesForAtom[i].push_back(j);              
267 >        
268 >        if (oneTwo->hasPair(iglob, jglob)) {
269 >          toposForAtom[i].push_back(j);
270 >          topoDist[i].push_back(1);
271 >        } else {
272 >          if (oneThree->hasPair(iglob, jglob)) {
273 >            toposForAtom[i].push_back(j);
274 >            topoDist[i].push_back(2);
275 >          } else {
276 >            if (oneFour->hasPair(iglob, jglob)) {
277 >              toposForAtom[i].push_back(j);
278 >              topoDist[i].push_back(3);
279 >            }
280 >          }
281 >        }
282 >      }      
283 >    }
284   #endif
285 +
286 +    // allocate memory for the parallel objects
287 +    atypesLocal.resize(nLocal_);
288 +
289 +    for (int i = 0; i < nLocal_; i++)
290 +      atypesLocal[i] = ff_->getAtomType(idents[i]);
291 +
292 +    groupList_.clear();
293 +    groupList_.resize(nGroups_);
294 +    for (int i = 0; i < nGroups_; i++) {
295 +      int gid = cgLocalToGlobal[i];
296 +      for (int j = 0; j < nLocal_; j++) {
297 +        int aid = AtomLocalToGlobal[j];
298 +        if (globalGroupMembership[aid] == gid) {
299 +          groupList_[i].push_back(j);
300 +        }
301 +      }      
302 +    }
303 +
304 +
305 +    createGtypeCutoffMap();
306 +
307 +  }
308 +  
309 +  void ForceMatrixDecomposition::createGtypeCutoffMap() {
310 +    
311 +    RealType tol = 1e-6;
312 +    largestRcut_ = 0.0;
313 +    int atid;
314 +    set<AtomType*> atypes = info_->getSimulatedAtomTypes();
315 +    
316 +    map<int, RealType> atypeCutoff;
317 +      
318 +    for (set<AtomType*>::iterator at = atypes.begin();
319 +         at != atypes.end(); ++at){
320 +      atid = (*at)->getIdent();
321 +      if (userChoseCutoff_)
322 +        atypeCutoff[atid] = userCutoff_;
323 +      else
324 +        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
325 +    }
326 +    
327 +    vector<RealType> gTypeCutoffs;
328 +    // first we do a single loop over the cutoff groups to find the
329 +    // largest cutoff for any atypes present in this group.
330 + #ifdef IS_MPI
331 +    vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
332 +    groupRowToGtype.resize(nGroupsInRow_);
333 +    for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
334 +      vector<int> atomListRow = getAtomsInGroupRow(cg1);
335 +      for (vector<int>::iterator ia = atomListRow.begin();
336 +           ia != atomListRow.end(); ++ia) {            
337 +        int atom1 = (*ia);
338 +        atid = identsRow[atom1];
339 +        if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
340 +          groupCutoffRow[cg1] = atypeCutoff[atid];
341 +        }
342 +      }
343 +
344 +      bool gTypeFound = false;
345 +      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
346 +        if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
347 +          groupRowToGtype[cg1] = gt;
348 +          gTypeFound = true;
349 +        }
350 +      }
351 +      if (!gTypeFound) {
352 +        gTypeCutoffs.push_back( groupCutoffRow[cg1] );
353 +        groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
354 +      }
355 +      
356 +    }
357 +    vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
358 +    groupColToGtype.resize(nGroupsInCol_);
359 +    for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
360 +      vector<int> atomListCol = getAtomsInGroupColumn(cg2);
361 +      for (vector<int>::iterator jb = atomListCol.begin();
362 +           jb != atomListCol.end(); ++jb) {            
363 +        int atom2 = (*jb);
364 +        atid = identsCol[atom2];
365 +        if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
366 +          groupCutoffCol[cg2] = atypeCutoff[atid];
367 +        }
368 +      }
369 +      bool gTypeFound = false;
370 +      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
371 +        if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
372 +          groupColToGtype[cg2] = gt;
373 +          gTypeFound = true;
374 +        }
375 +      }
376 +      if (!gTypeFound) {
377 +        gTypeCutoffs.push_back( groupCutoffCol[cg2] );
378 +        groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
379 +      }
380 +    }
381 + #else
382 +
383 +    vector<RealType> groupCutoff(nGroups_, 0.0);
384 +    groupToGtype.resize(nGroups_);
385 +    for (int cg1 = 0; cg1 < nGroups_; cg1++) {
386 +      groupCutoff[cg1] = 0.0;
387 +      vector<int> atomList = getAtomsInGroupRow(cg1);
388 +      for (vector<int>::iterator ia = atomList.begin();
389 +           ia != atomList.end(); ++ia) {            
390 +        int atom1 = (*ia);
391 +        atid = idents[atom1];
392 +        if (atypeCutoff[atid] > groupCutoff[cg1])
393 +          groupCutoff[cg1] = atypeCutoff[atid];
394 +      }
395 +      
396 +      bool gTypeFound = false;
397 +      for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) {
398 +        if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
399 +          groupToGtype[cg1] = gt;
400 +          gTypeFound = true;
401 +        }
402 +      }
403 +      if (!gTypeFound) {      
404 +        gTypeCutoffs.push_back( groupCutoff[cg1] );
405 +        groupToGtype[cg1] = gTypeCutoffs.size() - 1;
406 +      }      
407 +    }
408 + #endif
409 +
410 +    // Now we find the maximum group cutoff value present in the simulation
411 +
412 +    RealType groupMax = *max_element(gTypeCutoffs.begin(),
413 +                                     gTypeCutoffs.end());
414 +
415 + #ifdef IS_MPI
416 +    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
417 +                              MPI::MAX);
418 + #endif
419 +    
420 +    RealType tradRcut = groupMax;
421 +
422 +    for (unsigned int i = 0; i < gTypeCutoffs.size();  i++) {
423 +      for (unsigned int j = 0; j < gTypeCutoffs.size();  j++) {      
424 +        RealType thisRcut;
425 +        switch(cutoffPolicy_) {
426 +        case TRADITIONAL:
427 +          thisRcut = tradRcut;
428 +          break;
429 +        case MIX:
430 +          thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
431 +          break;
432 +        case MAX:
433 +          thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
434 +          break;
435 +        default:
436 +          sprintf(painCave.errMsg,
437 +                  "ForceMatrixDecomposition::createGtypeCutoffMap "
438 +                  "hit an unknown cutoff policy!\n");
439 +          painCave.severity = OPENMD_ERROR;
440 +          painCave.isFatal = 1;
441 +          simError();
442 +          break;
443 +        }
444 +
445 +        pair<int,int> key = make_pair(i,j);
446 +        gTypeCutoffMap[key].first = thisRcut;
447 +        if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
448 +        gTypeCutoffMap[key].second = thisRcut*thisRcut;
449 +        gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
450 +        // sanity check
451 +        
452 +        if (userChoseCutoff_) {
453 +          if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
454 +            sprintf(painCave.errMsg,
455 +                    "ForceMatrixDecomposition::createGtypeCutoffMap "
456 +                    "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
457 +            painCave.severity = OPENMD_ERROR;
458 +            painCave.isFatal = 1;
459 +            simError();            
460 +          }
461 +        }
462 +      }
463 +    }
464    }
465 +
466 +  groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
467 +    int i, j;  
468 + #ifdef IS_MPI
469 +    i = groupRowToGtype[cg1];
470 +    j = groupColToGtype[cg2];
471 + #else
472 +    i = groupToGtype[cg1];
473 +    j = groupToGtype[cg2];
474 + #endif    
475 +    return gTypeCutoffMap[make_pair(i,j)];
476 +  }
477 +
478 +  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
479 +    for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) {
480 +      if (toposForAtom[atom1][j] == atom2)
481 +        return topoDist[atom1][j];
482 +    }                                          
483 +    return 0;
484 +  }
485 +
486 +  void ForceMatrixDecomposition::zeroWorkArrays() {
487 +    pairwisePot = 0.0;
488 +    embeddingPot = 0.0;
489 +    excludedPot = 0.0;
490 +    excludedSelfPot = 0.0;
491 +
492 + #ifdef IS_MPI
493 +    if (storageLayout_ & DataStorage::dslForce) {
494 +      fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
495 +      fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
496 +    }
497 +
498 +    if (storageLayout_ & DataStorage::dslTorque) {
499 +      fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
500 +      fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
501 +    }
502      
503 +    fill(pot_row.begin(), pot_row.end(),
504 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
505  
506 +    fill(pot_col.begin(), pot_col.end(),
507 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
508  
509 +    fill(expot_row.begin(), expot_row.end(),
510 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
511 +
512 +    fill(expot_col.begin(), expot_col.end(),
513 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
514 +
515 +    if (storageLayout_ & DataStorage::dslParticlePot) {    
516 +      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
517 +           0.0);
518 +      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
519 +           0.0);
520 +    }
521 +
522 +    if (storageLayout_ & DataStorage::dslDensity) {      
523 +      fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
524 +      fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
525 +    }
526 +
527 +    if (storageLayout_ & DataStorage::dslFunctional) {  
528 +      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
529 +           0.0);
530 +      fill(atomColData.functional.begin(), atomColData.functional.end(),
531 +           0.0);
532 +    }
533 +
534 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
535 +      fill(atomRowData.functionalDerivative.begin(),
536 +           atomRowData.functionalDerivative.end(), 0.0);
537 +      fill(atomColData.functionalDerivative.begin(),
538 +           atomColData.functionalDerivative.end(), 0.0);
539 +    }
540 +
541 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
542 +      fill(atomRowData.skippedCharge.begin(),
543 +           atomRowData.skippedCharge.end(), 0.0);
544 +      fill(atomColData.skippedCharge.begin(),
545 +           atomColData.skippedCharge.end(), 0.0);
546 +    }
547 +
548 +    if (storageLayout_ & DataStorage::dslFlucQForce) {      
549 +      fill(atomRowData.flucQFrc.begin(),
550 +           atomRowData.flucQFrc.end(), 0.0);
551 +      fill(atomColData.flucQFrc.begin(),
552 +           atomColData.flucQFrc.end(), 0.0);
553 +    }
554 +
555 +    if (storageLayout_ & DataStorage::dslElectricField) {    
556 +      fill(atomRowData.electricField.begin(),
557 +           atomRowData.electricField.end(), V3Zero);
558 +      fill(atomColData.electricField.begin(),
559 +           atomColData.electricField.end(), V3Zero);
560 +    }
561 +
562 + #endif
563 +    // even in parallel, we need to zero out the local arrays:
564 +
565 +    if (storageLayout_ & DataStorage::dslParticlePot) {      
566 +      fill(snap_->atomData.particlePot.begin(),
567 +           snap_->atomData.particlePot.end(), 0.0);
568 +    }
569 +    
570 +    if (storageLayout_ & DataStorage::dslDensity) {      
571 +      fill(snap_->atomData.density.begin(),
572 +           snap_->atomData.density.end(), 0.0);
573 +    }
574 +
575 +    if (storageLayout_ & DataStorage::dslFunctional) {
576 +      fill(snap_->atomData.functional.begin(),
577 +           snap_->atomData.functional.end(), 0.0);
578 +    }
579 +
580 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
581 +      fill(snap_->atomData.functionalDerivative.begin(),
582 +           snap_->atomData.functionalDerivative.end(), 0.0);
583 +    }
584 +
585 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
586 +      fill(snap_->atomData.skippedCharge.begin(),
587 +           snap_->atomData.skippedCharge.end(), 0.0);
588 +    }
589 +
590 +    if (storageLayout_ & DataStorage::dslElectricField) {      
591 +      fill(snap_->atomData.electricField.begin(),
592 +           snap_->atomData.electricField.end(), V3Zero);
593 +    }
594 +  }
595 +
596 +
597    void ForceMatrixDecomposition::distributeData()  {
598      snap_ = sman_->getCurrentSnapshot();
599      storageLayout_ = sman_->getStorageLayout();
600   #ifdef IS_MPI
601      
602      // gather up the atomic positions
603 <    AtomCommVectorRow->gather(snap_->atomData.position,
603 >    AtomPlanVectorRow->gather(snap_->atomData.position,
604                                atomRowData.position);
605 <    AtomCommVectorColumn->gather(snap_->atomData.position,
605 >    AtomPlanVectorColumn->gather(snap_->atomData.position,
606                                   atomColData.position);
607      
608      // gather up the cutoff group positions
609 <    cgCommVectorRow->gather(snap_->cgData.position,
609 >
610 >    cgPlanVectorRow->gather(snap_->cgData.position,
611                              cgRowData.position);
612 <    cgCommVectorColumn->gather(snap_->cgData.position,
612 >
613 >    cgPlanVectorColumn->gather(snap_->cgData.position,
614                                 cgColData.position);
615 +
616 +
617 +
618 +    if (needVelocities_) {
619 +      // gather up the atomic velocities
620 +      AtomPlanVectorColumn->gather(snap_->atomData.velocity,
621 +                                   atomColData.velocity);
622 +      
623 +      cgPlanVectorColumn->gather(snap_->cgData.velocity,
624 +                                 cgColData.velocity);
625 +    }
626 +
627      
628      // if needed, gather the atomic rotation matrices
629      if (storageLayout_ & DataStorage::dslAmat) {
630 <      AtomCommMatrixRow->gather(snap_->atomData.aMat,
630 >      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
631                                  atomRowData.aMat);
632 <      AtomCommMatrixColumn->gather(snap_->atomData.aMat,
632 >      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
633                                     atomColData.aMat);
634      }
635 <    
636 <    // if needed, gather the atomic eletrostatic frames
637 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
638 <      AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
639 <                                atomRowData.electroFrame);
640 <      AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
641 <                                   atomColData.electroFrame);
635 >
636 >    // if needed, gather the atomic eletrostatic information
637 >    if (storageLayout_ & DataStorage::dslDipole) {
638 >      AtomPlanVectorRow->gather(snap_->atomData.dipole,
639 >                                atomRowData.dipole);
640 >      AtomPlanVectorColumn->gather(snap_->atomData.dipole,
641 >                                   atomColData.dipole);
642      }
643 +
644 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
645 +      AtomPlanMatrixRow->gather(snap_->atomData.quadrupole,
646 +                                atomRowData.quadrupole);
647 +      AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole,
648 +                                   atomColData.quadrupole);
649 +    }
650 +        
651 +    // if needed, gather the atomic fluctuating charge values
652 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {
653 +      AtomPlanRealRow->gather(snap_->atomData.flucQPos,
654 +                              atomRowData.flucQPos);
655 +      AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
656 +                                 atomColData.flucQPos);
657 +    }
658 +
659   #endif      
660    }
661    
662 +  /* collects information obtained during the pre-pair loop onto local
663 +   * data structures.
664 +   */
665    void ForceMatrixDecomposition::collectIntermediateData() {
666      snap_ = sman_->getCurrentSnapshot();
667      storageLayout_ = sman_->getStorageLayout();
# Line 163 | Line 669 | namespace OpenMD {
669      
670      if (storageLayout_ & DataStorage::dslDensity) {
671        
672 <      AtomCommRealRow->scatter(atomRowData.density,
672 >      AtomPlanRealRow->scatter(atomRowData.density,
673                                 snap_->atomData.density);
674        
675        int n = snap_->atomData.density.size();
676 <      std::vector<RealType> rho_tmp(n, 0.0);
677 <      AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
676 >      vector<RealType> rho_tmp(n, 0.0);
677 >      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
678        for (int i = 0; i < n; i++)
679          snap_->atomData.density[i] += rho_tmp[i];
680      }
681 +
682 +    // this isn't necessary if we don't have polarizable atoms, but
683 +    // we'll leave it here for now.
684 +    if (storageLayout_ & DataStorage::dslElectricField) {
685 +      
686 +      AtomPlanVectorRow->scatter(atomRowData.electricField,
687 +                                 snap_->atomData.electricField);
688 +      
689 +      int n = snap_->atomData.electricField.size();
690 +      vector<Vector3d> field_tmp(n, V3Zero);
691 +      AtomPlanVectorColumn->scatter(atomColData.electricField,
692 +                                    field_tmp);
693 +      for (int i = 0; i < n; i++)
694 +        snap_->atomData.electricField[i] += field_tmp[i];
695 +    }
696   #endif
697    }
698 <  
698 >
699 >  /*
700 >   * redistributes information obtained during the pre-pair loop out to
701 >   * row and column-indexed data structures
702 >   */
703    void ForceMatrixDecomposition::distributeIntermediateData() {
704      snap_ = sman_->getCurrentSnapshot();
705      storageLayout_ = sman_->getStorageLayout();
706   #ifdef IS_MPI
707      if (storageLayout_ & DataStorage::dslFunctional) {
708 <      AtomCommRealRow->gather(snap_->atomData.functional,
708 >      AtomPlanRealRow->gather(snap_->atomData.functional,
709                                atomRowData.functional);
710 <      AtomCommRealColumn->gather(snap_->atomData.functional,
710 >      AtomPlanRealColumn->gather(snap_->atomData.functional,
711                                   atomColData.functional);
712      }
713      
714      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
715 <      AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
715 >      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
716                                atomRowData.functionalDerivative);
717 <      AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
717 >      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
718                                   atomColData.functionalDerivative);
719      }
720   #endif
# Line 203 | Line 728 | namespace OpenMD {
728      int n = snap_->atomData.force.size();
729      vector<Vector3d> frc_tmp(n, V3Zero);
730      
731 <    AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
731 >    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
732      for (int i = 0; i < n; i++) {
733        snap_->atomData.force[i] += frc_tmp[i];
734        frc_tmp[i] = 0.0;
735      }
736      
737 <    AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
738 <    for (int i = 0; i < n; i++)
737 >    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
738 >    for (int i = 0; i < n; i++) {
739        snap_->atomData.force[i] += frc_tmp[i];
740 <    
741 <    
740 >    }
741 >        
742      if (storageLayout_ & DataStorage::dslTorque) {
743  
744 <      int nt = snap_->atomData.force.size();
744 >      int nt = snap_->atomData.torque.size();
745        vector<Vector3d> trq_tmp(nt, V3Zero);
746  
747 <      AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
748 <      for (int i = 0; i < n; i++) {
747 >      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
748 >      for (int i = 0; i < nt; i++) {
749          snap_->atomData.torque[i] += trq_tmp[i];
750          trq_tmp[i] = 0.0;
751        }
752        
753 <      AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
754 <      for (int i = 0; i < n; i++)
753 >      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
754 >      for (int i = 0; i < nt; i++)
755          snap_->atomData.torque[i] += trq_tmp[i];
756      }
757 +
758 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
759 +
760 +      int ns = snap_->atomData.skippedCharge.size();
761 +      vector<RealType> skch_tmp(ns, 0.0);
762 +
763 +      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
764 +      for (int i = 0; i < ns; i++) {
765 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
766 +        skch_tmp[i] = 0.0;
767 +      }
768 +      
769 +      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
770 +      for (int i = 0; i < ns; i++)
771 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
772 +            
773 +    }
774      
775 +    if (storageLayout_ & DataStorage::dslFlucQForce) {
776 +
777 +      int nq = snap_->atomData.flucQFrc.size();
778 +      vector<RealType> fqfrc_tmp(nq, 0.0);
779 +
780 +      AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
781 +      for (int i = 0; i < nq; i++) {
782 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
783 +        fqfrc_tmp[i] = 0.0;
784 +      }
785 +      
786 +      AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
787 +      for (int i = 0; i < nq; i++)
788 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
789 +            
790 +    }
791 +
792 +    if (storageLayout_ & DataStorage::dslElectricField) {
793 +
794 +      int nef = snap_->atomData.electricField.size();
795 +      vector<Vector3d> efield_tmp(nef, V3Zero);
796 +
797 +      AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp);
798 +      for (int i = 0; i < nef; i++) {
799 +        snap_->atomData.electricField[i] += efield_tmp[i];
800 +        efield_tmp[i] = 0.0;
801 +      }
802 +      
803 +      AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp);
804 +      for (int i = 0; i < nef; i++)
805 +        snap_->atomData.electricField[i] += efield_tmp[i];
806 +    }
807 +
808 +
809      nLocal_ = snap_->getNumberOfAtoms();
810  
811 <    vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES,
812 <                                       vector<RealType> (nLocal_, 0.0));
811 >    vector<potVec> pot_temp(nLocal_,
812 >                            Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
813 >    vector<potVec> expot_temp(nLocal_,
814 >                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
815 >
816 >    // scatter/gather pot_row into the members of my column
817 >          
818 >    AtomPlanPotRow->scatter(pot_row, pot_temp);
819 >    AtomPlanPotRow->scatter(expot_row, expot_temp);
820 >
821 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
822 >      pairwisePot += pot_temp[ii];
823 >
824 >    for (int ii = 0;  ii < expot_temp.size(); ii++ )
825 >      excludedPot += expot_temp[ii];
826 >        
827 >    if (storageLayout_ & DataStorage::dslParticlePot) {
828 >      // This is the pairwise contribution to the particle pot.  The
829 >      // embedding contribution is added in each of the low level
830 >      // non-bonded routines.  In single processor, this is done in
831 >      // unpackInteractionData, not in collectData.
832 >      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
833 >        for (int i = 0; i < nLocal_; i++) {
834 >          // factor of two is because the total potential terms are divided
835 >          // by 2 in parallel due to row/ column scatter      
836 >          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
837 >        }
838 >      }
839 >    }
840 >
841 >    fill(pot_temp.begin(), pot_temp.end(),
842 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
843 >    fill(expot_temp.begin(), expot_temp.end(),
844 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
845 >      
846 >    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
847 >    AtomPlanPotColumn->scatter(expot_col, expot_temp);    
848      
849 <    for (int i = 0; i < N_INTERACTION_FAMILIES; i++) {
850 <      AtomCommRealRow->scatter(pot_row[i], pot_temp[i]);
851 <      for (int ii = 0;  ii < pot_temp[i].size(); ii++ ) {
852 <        pot_local[i] += pot_temp[i][ii];
849 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
850 >      pairwisePot += pot_temp[ii];    
851 >
852 >    for (int ii = 0;  ii < expot_temp.size(); ii++ )
853 >      excludedPot += expot_temp[ii];    
854 >
855 >    if (storageLayout_ & DataStorage::dslParticlePot) {
856 >      // This is the pairwise contribution to the particle pot.  The
857 >      // embedding contribution is added in each of the low level
858 >      // non-bonded routines.  In single processor, this is done in
859 >      // unpackInteractionData, not in collectData.
860 >      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
861 >        for (int i = 0; i < nLocal_; i++) {
862 >          // factor of two is because the total potential terms are divided
863 >          // by 2 in parallel due to row/ column scatter      
864 >          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
865 >        }
866 >      }
867 >    }
868 >    
869 >    if (storageLayout_ & DataStorage::dslParticlePot) {
870 >      int npp = snap_->atomData.particlePot.size();
871 >      vector<RealType> ppot_temp(npp, 0.0);
872 >
873 >      // This is the direct or embedding contribution to the particle
874 >      // pot.
875 >      
876 >      AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
877 >      for (int i = 0; i < npp; i++) {
878 >        snap_->atomData.particlePot[i] += ppot_temp[i];
879        }
880 +
881 +      fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
882 +      
883 +      AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
884 +      for (int i = 0; i < npp; i++) {
885 +        snap_->atomData.particlePot[i] += ppot_temp[i];
886 +      }
887      }
888 +
889 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
890 +      RealType ploc1 = pairwisePot[ii];
891 +      RealType ploc2 = 0.0;
892 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
893 +      pairwisePot[ii] = ploc2;
894 +    }
895 +
896 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
897 +      RealType ploc1 = excludedPot[ii];
898 +      RealType ploc2 = 0.0;
899 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
900 +      excludedPot[ii] = ploc2;
901 +    }
902 +
903 +    // Here be dragons.
904 +    MPI::Intracomm col = colComm.getComm();
905 +
906 +    col.Allreduce(MPI::IN_PLACE,
907 +                  &snap_->frameData.conductiveHeatFlux[0], 3,
908 +                  MPI::REALTYPE, MPI::SUM);
909 +
910 +
911   #endif
912 +
913    }
914  
915 +  /**
916 +   * Collects information obtained during the post-pair (and embedding
917 +   * functional) loops onto local data structures.
918 +   */
919 +  void ForceMatrixDecomposition::collectSelfData() {
920 +    snap_ = sman_->getCurrentSnapshot();
921 +    storageLayout_ = sman_->getStorageLayout();
922 +
923 + #ifdef IS_MPI
924 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
925 +      RealType ploc1 = embeddingPot[ii];
926 +      RealType ploc2 = 0.0;
927 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
928 +      embeddingPot[ii] = ploc2;
929 +    }    
930 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
931 +      RealType ploc1 = excludedSelfPot[ii];
932 +      RealType ploc2 = 0.0;
933 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
934 +      excludedSelfPot[ii] = ploc2;
935 +    }    
936 + #endif
937 +    
938 +  }
939 +
940 +
941 +
942 +  int& ForceMatrixDecomposition::getNAtomsInRow() {  
943 + #ifdef IS_MPI
944 +    return nAtomsInRow_;
945 + #else
946 +    return nLocal_;
947 + #endif
948 +  }
949 +
950 +  /**
951 +   * returns the list of atoms belonging to this group.  
952 +   */
953 +  vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
954 + #ifdef IS_MPI
955 +    return groupListRow_[cg1];
956 + #else
957 +    return groupList_[cg1];
958 + #endif
959 +  }
960 +
961 +  vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
962 + #ifdef IS_MPI
963 +    return groupListCol_[cg2];
964 + #else
965 +    return groupList_[cg2];
966 + #endif
967 +  }
968    
969    Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
970      Vector3d d;
# Line 254 | Line 975 | namespace OpenMD {
975      d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
976   #endif
977      
978 <    snap_->wrapVector(d);
978 >    if (usePeriodicBoundaryConditions_) {
979 >      snap_->wrapVector(d);
980 >    }
981      return d;    
982    }
983  
984 +  Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
985 + #ifdef IS_MPI
986 +    return cgColData.velocity[cg2];
987 + #else
988 +    return snap_->cgData.velocity[cg2];
989 + #endif
990 +  }
991  
992 +  Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
993 + #ifdef IS_MPI
994 +    return atomColData.velocity[atom2];
995 + #else
996 +    return snap_->atomData.velocity[atom2];
997 + #endif
998 +  }
999 +
1000 +
1001    Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
1002  
1003      Vector3d d;
# Line 268 | Line 1007 | namespace OpenMD {
1007   #else
1008      d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
1009   #endif
1010 <
1011 <    snap_->wrapVector(d);
1010 >    if (usePeriodicBoundaryConditions_) {
1011 >      snap_->wrapVector(d);
1012 >    }
1013      return d;    
1014    }
1015    
# Line 281 | Line 1021 | namespace OpenMD {
1021   #else
1022      d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
1023   #endif
1024 <    
1025 <    snap_->wrapVector(d);
1024 >    if (usePeriodicBoundaryConditions_) {
1025 >      snap_->wrapVector(d);
1026 >    }
1027      return d;    
1028    }
1029 +
1030 +  RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) {
1031 + #ifdef IS_MPI
1032 +    return massFactorsRow[atom1];
1033 + #else
1034 +    return massFactors[atom1];
1035 + #endif
1036 +  }
1037 +
1038 +  RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
1039 + #ifdef IS_MPI
1040 +    return massFactorsCol[atom2];
1041 + #else
1042 +    return massFactors[atom2];
1043 + #endif
1044 +
1045 +  }
1046      
1047    Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
1048      Vector3d d;
# Line 294 | Line 1052 | namespace OpenMD {
1052   #else
1053      d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
1054   #endif
1055 <
1056 <    snap_->wrapVector(d);
1055 >    if (usePeriodicBoundaryConditions_) {
1056 >      snap_->wrapVector(d);
1057 >    }
1058      return d;    
1059 +  }
1060 +
1061 +  vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
1062 +    return excludesForAtom[atom1];
1063 +  }
1064 +
1065 +  /**
1066 +   * We need to exclude some overcounted interactions that result from
1067 +   * the parallel decomposition.
1068 +   */
1069 +  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) {
1070 +    int unique_id_1, unique_id_2;
1071 +        
1072 + #ifdef IS_MPI
1073 +    // in MPI, we have to look up the unique IDs for each atom
1074 +    unique_id_1 = AtomRowToGlobal[atom1];
1075 +    unique_id_2 = AtomColToGlobal[atom2];
1076 +    // group1 = cgRowToGlobal[cg1];
1077 +    // group2 = cgColToGlobal[cg2];
1078 + #else
1079 +    unique_id_1 = AtomLocalToGlobal[atom1];
1080 +    unique_id_2 = AtomLocalToGlobal[atom2];
1081 +    int group1 = cgLocalToGlobal[cg1];
1082 +    int group2 = cgLocalToGlobal[cg2];
1083 + #endif  
1084 +
1085 +    if (unique_id_1 == unique_id_2) return true;
1086 +
1087 + #ifdef IS_MPI
1088 +    // this prevents us from doing the pair on multiple processors
1089 +    if (unique_id_1 < unique_id_2) {
1090 +      if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
1091 +    } else {
1092 +      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1093 +    }
1094 + #endif    
1095 +
1096 + #ifndef IS_MPI
1097 +    if (group1 == group2) {
1098 +      if (unique_id_1 < unique_id_2) return true;
1099 +    }
1100 + #endif
1101 +    
1102 +    return false;
1103 +  }
1104 +
1105 +  /**
1106 +   * We need to handle the interactions for atoms who are involved in
1107 +   * the same rigid body as well as some short range interactions
1108 +   * (bonds, bends, torsions) differently from other interactions.
1109 +   * We'll still visit the pairwise routines, but with a flag that
1110 +   * tells those routines to exclude the pair from direct long range
1111 +   * interactions.  Some indirect interactions (notably reaction
1112 +   * field) must still be handled for these pairs.
1113 +   */
1114 +  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
1115 +
1116 +    // excludesForAtom was constructed to use row/column indices in the MPI
1117 +    // version, and to use local IDs in the non-MPI version:
1118 +    
1119 +    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
1120 +         i != excludesForAtom[atom1].end(); ++i) {
1121 +      if ( (*i) == atom2 ) return true;
1122 +    }
1123 +
1124 +    return false;
1125    }
1126  
1127 +
1128    void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
1129   #ifdef IS_MPI
1130      atomRowData.force[atom1] += fg;
# Line 316 | Line 1142 | namespace OpenMD {
1142    }
1143  
1144      // filling interaction blocks with pointers
1145 <  InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) {    
1146 <    InteractionData idat;
1145 >  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1146 >                                                     int atom1, int atom2) {
1147  
1148 +    idat.excluded = excludeAtomPair(atom1, atom2);
1149 +  
1150   #ifdef IS_MPI
1151 +    idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
1152 +    idat.atid1 = identsRow[atom1];
1153 +    idat.atid2 = identsCol[atom2];
1154 +    //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
1155 +    //                         ff_->getAtomType(identsCol[atom2]) );
1156 +    
1157      if (storageLayout_ & DataStorage::dslAmat) {
1158        idat.A1 = &(atomRowData.aMat[atom1]);
1159        idat.A2 = &(atomColData.aMat[atom2]);
1160      }
1161      
328    if (storageLayout_ & DataStorage::dslElectroFrame) {
329      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
330      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
331    }
332
1162      if (storageLayout_ & DataStorage::dslTorque) {
1163        idat.t1 = &(atomRowData.torque[atom1]);
1164        idat.t2 = &(atomColData.torque[atom2]);
1165      }
1166  
1167 +    if (storageLayout_ & DataStorage::dslDipole) {
1168 +      idat.dipole1 = &(atomRowData.dipole[atom1]);
1169 +      idat.dipole2 = &(atomColData.dipole[atom2]);
1170 +    }
1171 +
1172 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1173 +      idat.quadrupole1 = &(atomRowData.quadrupole[atom1]);
1174 +      idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1175 +    }
1176 +
1177      if (storageLayout_ & DataStorage::dslDensity) {
1178        idat.rho1 = &(atomRowData.density[atom1]);
1179        idat.rho2 = &(atomColData.density[atom2]);
1180      }
1181  
1182 +    if (storageLayout_ & DataStorage::dslFunctional) {
1183 +      idat.frho1 = &(atomRowData.functional[atom1]);
1184 +      idat.frho2 = &(atomColData.functional[atom2]);
1185 +    }
1186 +
1187      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1188        idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1189        idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1190      }
1191 +
1192 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1193 +      idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1194 +      idat.particlePot2 = &(atomColData.particlePot[atom2]);
1195 +    }
1196 +
1197 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1198 +      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1199 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1200 +    }
1201 +
1202 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1203 +      idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1204 +      idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1205 +    }
1206 +
1207   #else
1208 +    
1209 +    idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
1210 +    idat.atid1 = idents[atom1];
1211 +    idat.atid2 = idents[atom2];
1212 +
1213      if (storageLayout_ & DataStorage::dslAmat) {
1214        idat.A1 = &(snap_->atomData.aMat[atom1]);
1215        idat.A2 = &(snap_->atomData.aMat[atom2]);
1216      }
1217  
353    if (storageLayout_ & DataStorage::dslElectroFrame) {
354      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
355      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
356    }
357
1218      if (storageLayout_ & DataStorage::dslTorque) {
1219        idat.t1 = &(snap_->atomData.torque[atom1]);
1220        idat.t2 = &(snap_->atomData.torque[atom2]);
1221      }
1222  
1223 <    if (storageLayout_ & DataStorage::dslDensity) {
1223 >    if (storageLayout_ & DataStorage::dslDipole) {
1224 >      idat.dipole1 = &(snap_->atomData.dipole[atom1]);
1225 >      idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1226 >    }
1227 >
1228 >    if (storageLayout_ & DataStorage::dslQuadrupole) {
1229 >      idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]);
1230 >      idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1231 >    }
1232 >
1233 >    if (storageLayout_ & DataStorage::dslDensity) {    
1234        idat.rho1 = &(snap_->atomData.density[atom1]);
1235        idat.rho2 = &(snap_->atomData.density[atom2]);
1236      }
1237  
1238 +    if (storageLayout_ & DataStorage::dslFunctional) {
1239 +      idat.frho1 = &(snap_->atomData.functional[atom1]);
1240 +      idat.frho2 = &(snap_->atomData.functional[atom2]);
1241 +    }
1242 +
1243      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1244        idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1245        idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1246      }
1247 +
1248 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1249 +      idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1250 +      idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1251 +    }
1252 +
1253 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
1254 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1255 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1256 +    }
1257 +
1258 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1259 +      idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1260 +      idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1261 +    }
1262 +
1263   #endif
373    return idat;
1264    }
1265  
1266 <  InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){
1267 <
378 <    InteractionData idat;
1266 >  
1267 >  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
1268   #ifdef IS_MPI
1269 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
1270 <      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
1271 <      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
1269 >    pot_row[atom1] += RealType(0.5) *  *(idat.pot);
1270 >    pot_col[atom2] += RealType(0.5) *  *(idat.pot);
1271 >    expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot);
1272 >    expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot);
1273 >
1274 >    atomRowData.force[atom1] += *(idat.f1);
1275 >    atomColData.force[atom2] -= *(idat.f1);
1276 >
1277 >    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1278 >      atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1279 >      atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1280      }
1281 <    if (storageLayout_ & DataStorage::dslTorque) {
1282 <      idat.t1 = &(atomRowData.torque[atom1]);
1283 <      idat.t2 = &(atomColData.torque[atom2]);
1281 >
1282 >    if (storageLayout_ & DataStorage::dslElectricField) {              
1283 >      atomRowData.electricField[atom1] += *(idat.eField1);
1284 >      atomColData.electricField[atom2] += *(idat.eField2);
1285      }
1286 <    if (storageLayout_ & DataStorage::dslForce) {
389 <      idat.t1 = &(atomRowData.force[atom1]);
390 <      idat.t2 = &(atomColData.force[atom2]);
391 <    }
1286 >
1287   #else
1288 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
1289 <      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
1290 <      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
1288 >    pairwisePot += *(idat.pot);
1289 >    excludedPot += *(idat.excludedPot);
1290 >
1291 >    snap_->atomData.force[atom1] += *(idat.f1);
1292 >    snap_->atomData.force[atom2] -= *(idat.f1);
1293 >
1294 >    if (idat.doParticlePot) {
1295 >      // This is the pairwise contribution to the particle pot.  The
1296 >      // embedding contribution is added in each of the low level
1297 >      // non-bonded routines.  In parallel, this calculation is done
1298 >      // in collectData, not in unpackInteractionData.
1299 >      snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1300 >      snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1301      }
1302 <    if (storageLayout_ & DataStorage::dslTorque) {
1303 <      idat.t1 = &(snap_->atomData.torque[atom1]);
1304 <      idat.t2 = &(snap_->atomData.torque[atom2]);
1302 >    
1303 >    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1304 >      snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1305 >      snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1306      }
1307 <    if (storageLayout_ & DataStorage::dslForce) {
1308 <      idat.t1 = &(snap_->atomData.force[atom1]);
1309 <      idat.t2 = &(snap_->atomData.force[atom2]);
1307 >
1308 >    if (storageLayout_ & DataStorage::dslElectricField) {              
1309 >      snap_->atomData.electricField[atom1] += *(idat.eField1);
1310 >      snap_->atomData.electricField[atom2] += *(idat.eField2);
1311      }
1312 +
1313   #endif
1314      
1315    }
1316  
409
410
411
1317    /*
1318     * buildNeighborList
1319     *
1320     * first element of pair is row-indexed CutoffGroup
1321     * second element of pair is column-indexed CutoffGroup
1322     */
1323 <  vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1324 <      
1325 <    vector<pair<int, int> > neighborList;
1326 < #ifdef IS_MPI
1327 <    cellListRow_.clear();
423 <    cellListCol_.clear();
424 < #else
425 <    cellList_.clear();
426 < #endif
1323 >  void ForceMatrixDecomposition::buildNeighborList(vector<pair<int,int> >& neighborList) {
1324 >    
1325 >    neighborList.clear();
1326 >    groupCutoffs cuts;
1327 >    bool doAllPairs = false;
1328  
1329 <    // dangerous to not do error checking.
429 <    RealType rCut_;
430 <
431 <    RealType rList_ = (rCut_ + skinThickness_);
432 <    RealType rl2 = rList_ * rList_;
1329 >    RealType rList_ = (largestRcut_ + skinThickness_);
1330      Snapshot* snap_ = sman_->getCurrentSnapshot();
1331 <    Mat3x3d Hmat = snap_->getHmat();
1332 <    Vector3d Hx = Hmat.getColumn(0);
436 <    Vector3d Hy = Hmat.getColumn(1);
437 <    Vector3d Hz = Hmat.getColumn(2);
1331 >    Mat3x3d box;
1332 >    Mat3x3d invBox;
1333  
439    nCells_.x() = (int) ( Hx.length() )/ rList_;
440    nCells_.y() = (int) ( Hy.length() )/ rList_;
441    nCells_.z() = (int) ( Hz.length() )/ rList_;
442
443    Mat3x3d invHmat = snap_->getInvHmat();
1334      Vector3d rs, scaled, dr;
1335      Vector3i whichCell;
1336      int cellIndex;
1337  
1338   #ifdef IS_MPI
1339 <    for (int i = 0; i < nGroupsInRow_; i++) {
1340 <      rs = cgRowData.position[i];
1341 <      // scaled positions relative to the box vectors
1342 <      scaled = invHmat * rs;
1343 <      // wrap the vector back into the unit box by subtracting integer box
1344 <      // numbers
1345 <      for (int j = 0; j < 3; j++)
1346 <        scaled[j] -= roundMe(scaled[j]);
1347 <    
1348 <      // find xyz-indices of cell that cutoffGroup is in.
1349 <      whichCell.x() = nCells_.x() * scaled.x();
1350 <      whichCell.y() = nCells_.y() * scaled.y();
461 <      whichCell.z() = nCells_.z() * scaled.z();
462 <
463 <      // find single index of this cell:
464 <      cellIndex = Vlinear(whichCell, nCells_);
465 <      // add this cutoff group to the list of groups in this cell;
466 <      cellListRow_[cellIndex].push_back(i);
1339 >    cellListRow_.clear();
1340 >    cellListCol_.clear();
1341 > #else
1342 >    cellList_.clear();
1343 > #endif
1344 >    
1345 >    if (!usePeriodicBoundaryConditions_) {
1346 >      box = snap_->getBoundingBox();
1347 >      invBox = snap_->getInvBoundingBox();
1348 >    } else {
1349 >      box = snap_->getHmat();
1350 >      invBox = snap_->getInvHmat();
1351      }
1352 <
1353 <    for (int i = 0; i < nGroupsInCol_; i++) {
1354 <      rs = cgColData.position[i];
1355 <      // scaled positions relative to the box vectors
1356 <      scaled = invHmat * rs;
1357 <      // wrap the vector back into the unit box by subtracting integer box
1358 <      // numbers
1359 <      for (int j = 0; j < 3; j++)
1360 <        scaled[j] -= roundMe(scaled[j]);
1361 <
1362 <      // find xyz-indices of cell that cutoffGroup is in.
1363 <      whichCell.x() = nCells_.x() * scaled.x();
1364 <      whichCell.y() = nCells_.y() * scaled.y();
1365 <      whichCell.z() = nCells_.z() * scaled.z();
1366 <
1367 <      // find single index of this cell:
1368 <      cellIndex = Vlinear(whichCell, nCells_);
1369 <      // add this cutoff group to the list of groups in this cell;
1370 <      cellListCol_[cellIndex].push_back(i);
1371 <    }
1352 >    
1353 >    Vector3d boxX = box.getColumn(0);
1354 >    Vector3d boxY = box.getColumn(1);
1355 >    Vector3d boxZ = box.getColumn(2);
1356 >    
1357 >    nCells_.x() = (int) ( boxX.length() )/ rList_;
1358 >    nCells_.y() = (int) ( boxY.length() )/ rList_;
1359 >    nCells_.z() = (int) ( boxZ.length() )/ rList_;
1360 >    
1361 >    // handle small boxes where the cell offsets can end up repeating cells
1362 >    
1363 >    if (nCells_.x() < 3) doAllPairs = true;
1364 >    if (nCells_.y() < 3) doAllPairs = true;
1365 >    if (nCells_.z() < 3) doAllPairs = true;
1366 >    
1367 >    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1368 >    
1369 > #ifdef IS_MPI
1370 >    cellListRow_.resize(nCtot);
1371 >    cellListCol_.resize(nCtot);
1372   #else
1373 <    for (int i = 0; i < nGroups_; i++) {
1374 <      rs = snap_->cgData.position[i];
1375 <      // scaled positions relative to the box vectors
1376 <      scaled = invHmat * rs;
1377 <      // wrap the vector back into the unit box by subtracting integer box
1378 <      // numbers
1379 <      for (int j = 0; j < 3; j++)
1380 <        scaled[j] -= roundMe(scaled[j]);
1373 >    cellList_.resize(nCtot);
1374 > #endif
1375 >    
1376 >    if (!doAllPairs) {
1377 > #ifdef IS_MPI
1378 >      
1379 >      for (int i = 0; i < nGroupsInRow_; i++) {
1380 >        rs = cgRowData.position[i];
1381 >        
1382 >        // scaled positions relative to the box vectors
1383 >        scaled = invBox * rs;
1384 >        
1385 >        // wrap the vector back into the unit box by subtracting integer box
1386 >        // numbers
1387 >        for (int j = 0; j < 3; j++) {
1388 >          scaled[j] -= roundMe(scaled[j]);
1389 >          scaled[j] += 0.5;
1390 >          // Handle the special case when an object is exactly on the
1391 >          // boundary (a scaled coordinate of 1.0 is the same as
1392 >          // scaled coordinate of 0.0)
1393 >          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1394 >        }
1395 >        
1396 >        // find xyz-indices of cell that cutoffGroup is in.
1397 >        whichCell.x() = nCells_.x() * scaled.x();
1398 >        whichCell.y() = nCells_.y() * scaled.y();
1399 >        whichCell.z() = nCells_.z() * scaled.z();
1400 >        
1401 >        // find single index of this cell:
1402 >        cellIndex = Vlinear(whichCell, nCells_);
1403 >        
1404 >        // add this cutoff group to the list of groups in this cell;
1405 >        cellListRow_[cellIndex].push_back(i);
1406 >      }
1407 >      for (int i = 0; i < nGroupsInCol_; i++) {
1408 >        rs = cgColData.position[i];
1409 >        
1410 >        // scaled positions relative to the box vectors
1411 >        scaled = invBox * rs;
1412 >        
1413 >        // wrap the vector back into the unit box by subtracting integer box
1414 >        // numbers
1415 >        for (int j = 0; j < 3; j++) {
1416 >          scaled[j] -= roundMe(scaled[j]);
1417 >          scaled[j] += 0.5;
1418 >          // Handle the special case when an object is exactly on the
1419 >          // boundary (a scaled coordinate of 1.0 is the same as
1420 >          // scaled coordinate of 0.0)
1421 >          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1422 >        }
1423 >        
1424 >        // find xyz-indices of cell that cutoffGroup is in.
1425 >        whichCell.x() = nCells_.x() * scaled.x();
1426 >        whichCell.y() = nCells_.y() * scaled.y();
1427 >        whichCell.z() = nCells_.z() * scaled.z();
1428 >        
1429 >        // find single index of this cell:
1430 >        cellIndex = Vlinear(whichCell, nCells_);
1431 >        
1432 >        // add this cutoff group to the list of groups in this cell;
1433 >        cellListCol_[cellIndex].push_back(i);
1434 >      }
1435 >      
1436 > #else
1437 >      for (int i = 0; i < nGroups_; i++) {
1438 >        rs = snap_->cgData.position[i];
1439 >        
1440 >        // scaled positions relative to the box vectors
1441 >        scaled = invBox * rs;
1442 >        
1443 >        // wrap the vector back into the unit box by subtracting integer box
1444 >        // numbers
1445 >        for (int j = 0; j < 3; j++) {
1446 >          scaled[j] -= roundMe(scaled[j]);
1447 >          scaled[j] += 0.5;
1448 >          // Handle the special case when an object is exactly on the
1449 >          // boundary (a scaled coordinate of 1.0 is the same as
1450 >          // scaled coordinate of 0.0)
1451 >          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1452 >        }
1453 >        
1454 >        // find xyz-indices of cell that cutoffGroup is in.
1455 >        whichCell.x() = nCells_.x() * scaled.x();
1456 >        whichCell.y() = nCells_.y() * scaled.y();
1457 >        whichCell.z() = nCells_.z() * scaled.z();
1458 >        
1459 >        // find single index of this cell:
1460 >        cellIndex = Vlinear(whichCell, nCells_);
1461 >        
1462 >        // add this cutoff group to the list of groups in this cell;
1463 >        cellList_[cellIndex].push_back(i);
1464 >      }
1465  
498      // find xyz-indices of cell that cutoffGroup is in.
499      whichCell.x() = nCells_.x() * scaled.x();
500      whichCell.y() = nCells_.y() * scaled.y();
501      whichCell.z() = nCells_.z() * scaled.z();
502
503      // find single index of this cell:
504      cellIndex = Vlinear(whichCell, nCells_);
505      // add this cutoff group to the list of groups in this cell;
506      cellList_[cellIndex].push_back(i);
507    }
1466   #endif
1467  
1468 <
1469 <
1470 <    for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1471 <      for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1472 <        for (int m1x = 0; m1x < nCells_.x(); m1x++) {
515 <          Vector3i m1v(m1x, m1y, m1z);
516 <          int m1 = Vlinear(m1v, nCells_);
517 <
518 <          for (vector<Vector3i>::iterator os = cellOffsets_.begin();
519 <               os != cellOffsets_.end(); ++os) {
1468 >      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1469 >        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1470 >          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1471 >            Vector3i m1v(m1x, m1y, m1z);
1472 >            int m1 = Vlinear(m1v, nCells_);
1473              
1474 <            Vector3i m2v = m1v + (*os);
1475 <            
1476 <            if (m2v.x() >= nCells_.x()) {
1477 <              m2v.x() = 0;          
1478 <            } else if (m2v.x() < 0) {
526 <              m2v.x() = nCells_.x() - 1;
527 <            }
528 <            
529 <            if (m2v.y() >= nCells_.y()) {
530 <              m2v.y() = 0;          
531 <            } else if (m2v.y() < 0) {
532 <              m2v.y() = nCells_.y() - 1;
533 <            }
534 <            
535 <            if (m2v.z() >= nCells_.z()) {
536 <              m2v.z() = 0;          
537 <            } else if (m2v.z() < 0) {
538 <              m2v.z() = nCells_.z() - 1;
539 <            }
540 <            
541 <            int m2 = Vlinear (m2v, nCells_);
1474 >            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1475 >                 os != cellOffsets_.end(); ++os) {
1476 >              
1477 >              Vector3i m2v = m1v + (*os);
1478 >            
1479  
1480 < #ifdef IS_MPI
1481 <            for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1482 <                 j1 != cellListRow_[m1].end(); ++j1) {
1483 <              for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1484 <                   j2 != cellListCol_[m2].end(); ++j2) {
1485 <                              
1486 <                // Always do this if we're in different cells or if
1487 <                // we're in the same cell and the global index of the
1488 <                // j2 cutoff group is less than the j1 cutoff group
1480 >              if (m2v.x() >= nCells_.x()) {
1481 >                m2v.x() = 0;          
1482 >              } else if (m2v.x() < 0) {
1483 >                m2v.x() = nCells_.x() - 1;
1484 >              }
1485 >              
1486 >              if (m2v.y() >= nCells_.y()) {
1487 >                m2v.y() = 0;          
1488 >              } else if (m2v.y() < 0) {
1489 >                m2v.y() = nCells_.y() - 1;
1490 >              }
1491 >              
1492 >              if (m2v.z() >= nCells_.z()) {
1493 >                m2v.z() = 0;          
1494 >              } else if (m2v.z() < 0) {
1495 >                m2v.z() = nCells_.z() - 1;
1496 >              }
1497  
1498 <                if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1498 >              int m2 = Vlinear (m2v, nCells_);
1499 >              
1500 > #ifdef IS_MPI
1501 >              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1502 >                   j1 != cellListRow_[m1].end(); ++j1) {
1503 >                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1504 >                     j2 != cellListCol_[m2].end(); ++j2) {
1505 >                  
1506 >                  // In parallel, we need to visit *all* pairs of row
1507 >                  // & column indicies and will divide labor in the
1508 >                  // force evaluation later.
1509                    dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1510 <                  snap_->wrapVector(dr);
1511 <                  if (dr.lengthSquare() < rl2) {
557 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1510 >                  if (usePeriodicBoundaryConditions_) {
1511 >                    snap_->wrapVector(dr);
1512                    }
1513 +                  cuts = getGroupCutoffs( (*j1), (*j2) );
1514 +                  if (dr.lengthSquare() < cuts.third) {
1515 +                    neighborList.push_back(make_pair((*j1), (*j2)));
1516 +                  }                  
1517                  }
1518                }
561            }
1519   #else
1520 <            for (vector<int>::iterator j1 = cellList_[m1].begin();
1521 <                 j1 != cellList_[m1].end(); ++j1) {
1522 <              for (vector<int>::iterator j2 = cellList_[m2].begin();
1523 <                   j2 != cellList_[m2].end(); ++j2) {
1524 <                              
1525 <                // Always do this if we're in different cells or if
1526 <                // we're in the same cell and the global index of the
1527 <                // j2 cutoff group is less than the j1 cutoff group
1520 >              for (vector<int>::iterator j1 = cellList_[m1].begin();
1521 >                   j1 != cellList_[m1].end(); ++j1) {
1522 >                for (vector<int>::iterator j2 = cellList_[m2].begin();
1523 >                     j2 != cellList_[m2].end(); ++j2) {
1524 >    
1525 >                  // Always do this if we're in different cells or if
1526 >                  // we're in the same cell and the global index of
1527 >                  // the j2 cutoff group is greater than or equal to
1528 >                  // the j1 cutoff group.  Note that Rappaport's code
1529 >                  // has a "less than" conditional here, but that
1530 >                  // deals with atom-by-atom computation.  OpenMD
1531 >                  // allows atoms within a single cutoff group to
1532 >                  // interact with each other.
1533  
1534 <                if (m2 != m1 || (*j2) < (*j1)) {
1535 <                  dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1536 <                  snap_->wrapVector(dr);
1537 <                  if (dr.lengthSquare() < rl2) {
1538 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1534 >                  if (m2 != m1 || (*j2) >= (*j1) ) {
1535 >
1536 >                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1537 >                    if (usePeriodicBoundaryConditions_) {
1538 >                      snap_->wrapVector(dr);
1539 >                    }
1540 >                    cuts = getGroupCutoffs( (*j1), (*j2) );
1541 >                    if (dr.lengthSquare() < cuts.third) {
1542 >                      neighborList.push_back(make_pair((*j1), (*j2)));
1543 >                    }
1544                    }
1545                  }
1546                }
580            }
1547   #endif
1548 +            }
1549            }
1550          }
1551        }
1552 +    } else {
1553 +      // branch to do all cutoff group pairs
1554 + #ifdef IS_MPI
1555 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1556 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {    
1557 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1558 +          if (usePeriodicBoundaryConditions_) {
1559 +            snap_->wrapVector(dr);
1560 +          }
1561 +          cuts = getGroupCutoffs( j1, j2 );
1562 +          if (dr.lengthSquare() < cuts.third) {
1563 +            neighborList.push_back(make_pair(j1, j2));
1564 +          }
1565 +        }
1566 +      }      
1567 + #else
1568 +      // include all groups here.
1569 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1570 +        // include self group interactions j2 == j1
1571 +        for (int j2 = j1; j2 < nGroups_; j2++) {
1572 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1573 +          if (usePeriodicBoundaryConditions_) {
1574 +            snap_->wrapVector(dr);
1575 +          }
1576 +          cuts = getGroupCutoffs( j1, j2 );
1577 +          if (dr.lengthSquare() < cuts.third) {
1578 +            neighborList.push_back(make_pair(j1, j2));
1579 +          }
1580 +        }    
1581 +      }
1582 + #endif
1583      }
1584 <
1584 >      
1585      // save the local cutoff group positions for the check that is
1586      // done on each loop:
1587      saved_CG_positions_.clear();
1588      for (int i = 0; i < nGroups_; i++)
1589        saved_CG_positions_.push_back(snap_->cgData.position[i]);
592
593    return neighborList;
1590    }
1591   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines