ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing:
branches/development/src/parallel/ForceDecomposition.cpp (file contents), Revision 1544 by gezelter, Fri Mar 18 19:31:52 2011 UTC vs.
trunk/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 2057 by gezelter, Tue Mar 3 15:22:26 2015 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42 < #include "parallel/ForceDecomposition.hpp"
42 > #include "parallel/ForceMatrixDecomposition.hpp"
43   #include "math/SquareMatrix3.hpp"
44   #include "nonbonded/NonBondedInteraction.hpp"
45   #include "brains/SnapshotManager.hpp"
46 + #include "brains/PairList.hpp"
47  
48   using namespace std;
49   namespace OpenMD {
50  
51 +  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52 +
53 +    // Row and colum scans must visit all surrounding cells
54 +    cellOffsets_.clear();
55 +    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
56 +    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
57 +    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                          
58 +    cellOffsets_.push_back( Vector3i(-1, 0,-1) );
59 +    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
60 +    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
61 +    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
62 +    cellOffsets_.push_back( Vector3i( 0, 1,-1) );      
63 +    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
64 +    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
65 +    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
66 +    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
67 +    cellOffsets_.push_back( Vector3i(-1, 0, 0) );      
68 +    cellOffsets_.push_back( Vector3i( 0, 0, 0) );
69 +    cellOffsets_.push_back( Vector3i( 1, 0, 0) );
70 +    cellOffsets_.push_back( Vector3i(-1, 1, 0) );
71 +    cellOffsets_.push_back( Vector3i( 0, 1, 0) );
72 +    cellOffsets_.push_back( Vector3i( 1, 1, 0) );
73 +    cellOffsets_.push_back( Vector3i(-1,-1, 1) );
74 +    cellOffsets_.push_back( Vector3i( 0,-1, 1) );
75 +    cellOffsets_.push_back( Vector3i( 1,-1, 1) );
76 +    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
77 +    cellOffsets_.push_back( Vector3i( 0, 0, 1) );
78 +    cellOffsets_.push_back( Vector3i( 1, 0, 1) );
79 +    cellOffsets_.push_back( Vector3i(-1, 1, 1) );
80 +    cellOffsets_.push_back( Vector3i( 0, 1, 1) );
81 +    cellOffsets_.push_back( Vector3i( 1, 1, 1) );
82 +  }
83 +
84 +
85    /**
86     * distributeInitialData is essentially a copy of the older fortran
87     * SimulationSetup
88     */
89 <  
90 <  void ForceDecomposition::distributeInitialData() {
91 < #ifdef IS_MPI    
92 <    Snapshot* snap = sman_->getCurrentSnapshot();
93 <    int nLocal = snap->getNumberOfAtoms();
94 <    int nGroups = snap->getNumberOfCutoffGroups();
89 >  void ForceMatrixDecomposition::distributeInitialData() {
90 >    snap_ = sman_->getCurrentSnapshot();
91 >    storageLayout_ = sman_->getStorageLayout();
92 >    ff_ = info_->getForceField();
93 >    nLocal_ = snap_->getNumberOfAtoms();
94 >  
95 >    nGroups_ = info_->getNLocalCutoffGroups();
96 >    // gather the information for atomtype IDs (atids):
97 >    idents = info_->getIdentArray();
98 >    regions = info_->getRegions();
99 >    AtomLocalToGlobal = info_->getGlobalAtomIndices();
100 >    cgLocalToGlobal = info_->getGlobalGroupIndices();
101 >    vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
102  
103 <    AtomCommIntI = new Communicator<Row,int>(nLocal);
61 <    AtomCommRealI = new Communicator<Row,RealType>(nLocal);
62 <    AtomCommVectorI = new Communicator<Row,Vector3d>(nLocal);
63 <    AtomCommMatrixI = new Communicator<Row,Mat3x3d>(nLocal);
103 >    massFactors = info_->getMassFactors();
104  
105 <    AtomCommIntJ = new Communicator<Column,int>(nLocal);
106 <    AtomCommRealJ = new Communicator<Column,RealType>(nLocal);
107 <    AtomCommVectorJ = new Communicator<Column,Vector3d>(nLocal);
108 <    AtomCommMatrixJ = new Communicator<Column,Mat3x3d>(nLocal);
105 >    PairList* excludes = info_->getExcludedInteractions();
106 >    PairList* oneTwo = info_->getOneTwoInteractions();
107 >    PairList* oneThree = info_->getOneThreeInteractions();
108 >    PairList* oneFour = info_->getOneFourInteractions();
109 >    
110 >    if (needVelocities_)
111 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition |
112 >                                     DataStorage::dslVelocity);
113 >    else
114 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition);
115 >    
116 > #ifdef IS_MPI
117 >
118 >    MPI_Comm row = rowComm.getComm();
119 >    MPI_Comm col = colComm.getComm();
120  
121 <    cgCommIntI = new Communicator<Row,int>(nGroups);
122 <    cgCommVectorI = new Communicator<Row,Vector3d>(nGroups);
123 <    cgCommIntJ = new Communicator<Column,int>(nGroups);
124 <    cgCommVectorJ = new Communicator<Column,Vector3d>(nGroups);
121 >    AtomPlanIntRow = new Plan<int>(row, nLocal_);
122 >    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
123 >    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
124 >    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
125 >    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
126  
127 <    int nAtomsInRow = AtomCommIntI->getSize();
128 <    int nAtomsInCol = AtomCommIntJ->getSize();
129 <    int nGroupsInRow = cgCommIntI->getSize();
130 <    int nGroupsInCol = cgCommIntJ->getSize();
127 >    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
128 >    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
129 >    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
130 >    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
131 >    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
132  
133 <    vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES,
134 <                                      vector<RealType> (nAtomsInRow, 0.0));
135 <    vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES,
136 <                                      vector<RealType> (nAtomsInCol, 0.0));
133 >    cgPlanIntRow = new Plan<int>(row, nGroups_);
134 >    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
135 >    cgPlanIntColumn = new Plan<int>(col, nGroups_);
136 >    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
137 >
138 >    nAtomsInRow_ = AtomPlanIntRow->getSize();
139 >    nAtomsInCol_ = AtomPlanIntColumn->getSize();
140 >    nGroupsInRow_ = cgPlanIntRow->getSize();
141 >    nGroupsInCol_ = cgPlanIntColumn->getSize();
142 >
143 >    // Modify the data storage objects with the correct layouts and sizes:
144 >    atomRowData.resize(nAtomsInRow_);
145 >    atomRowData.setStorageLayout(storageLayout_);
146 >    atomColData.resize(nAtomsInCol_);
147 >    atomColData.setStorageLayout(storageLayout_);
148 >    cgRowData.resize(nGroupsInRow_);
149 >    cgRowData.setStorageLayout(DataStorage::dslPosition);
150 >    cgColData.resize(nGroupsInCol_);
151 >    if (needVelocities_)
152 >      // we only need column velocities if we need them.
153 >      cgColData.setStorageLayout(DataStorage::dslPosition |
154 >                                 DataStorage::dslVelocity);
155 >    else    
156 >      cgColData.setStorageLayout(DataStorage::dslPosition);
157 >      
158 >    identsRow.resize(nAtomsInRow_);
159 >    identsCol.resize(nAtomsInCol_);
160      
161 <    vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0);
161 >    AtomPlanIntRow->gather(idents, identsRow);
162 >    AtomPlanIntColumn->gather(idents, identsCol);
163  
164 <    // gather the information for atomtype IDs (atids):
165 <    AtomCommIntI->gather(info_->getIdentArray(), identsRow);
166 <    AtomCommIntJ->gather(info_->getIdentArray(), identsCol);
164 >    regionsRow.resize(nAtomsInRow_);
165 >    regionsCol.resize(nAtomsInCol_);
166 >    
167 >    AtomPlanIntRow->gather(regions, regionsRow);
168 >    AtomPlanIntColumn->gather(regions, regionsCol);
169 >    
170 >    // allocate memory for the parallel objects
171 >    atypesRow.resize(nAtomsInRow_);
172 >    atypesCol.resize(nAtomsInCol_);
173  
174 <    AtomLocalToGlobal = info_->getLocalToGlobalAtomIndex();
175 <    AtomCommIntI->gather(AtomLocalToGlobal, AtomRowToGlobal);
176 <    AtomCommIntJ->gather(AtomLocalToGlobal, AtomColToGlobal);
174 >    for (int i = 0; i < nAtomsInRow_; i++)
175 >      atypesRow[i] = ff_->getAtomType(identsRow[i]);
176 >    for (int i = 0; i < nAtomsInCol_; i++)
177 >      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
178  
179 <    cgLocalToGlobal = info_->getLocalToGlobalCutoffGroupIndex();
180 <    cgCommIntI->gather(cgLocalToGlobal, cgRowToGlobal);
97 <    cgCommIntJ->gather(cgLocalToGlobal, cgColToGlobal);
179 >    pot_row.resize(nAtomsInRow_);
180 >    pot_col.resize(nAtomsInCol_);
181  
182 <      
183 <      
182 >    expot_row.resize(nAtomsInRow_);
183 >    expot_col.resize(nAtomsInCol_);
184  
185 +    AtomRowToGlobal.resize(nAtomsInRow_);
186 +    AtomColToGlobal.resize(nAtomsInCol_);
187 +    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
188 +    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
189  
190 +    cgRowToGlobal.resize(nGroupsInRow_);
191 +    cgColToGlobal.resize(nGroupsInCol_);
192 +    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
193 +    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
194  
195 <    // still need:
196 <    // topoDist
197 <    // exclude
195 >    massFactorsRow.resize(nAtomsInRow_);
196 >    massFactorsCol.resize(nAtomsInCol_);
197 >    AtomPlanRealRow->gather(massFactors, massFactorsRow);
198 >    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
199 >
200 >    groupListRow_.clear();
201 >    groupListRow_.resize(nGroupsInRow_);
202 >    for (int i = 0; i < nGroupsInRow_; i++) {
203 >      int gid = cgRowToGlobal[i];
204 >      for (int j = 0; j < nAtomsInRow_; j++) {
205 >        int aid = AtomRowToGlobal[j];
206 >        if (globalGroupMembership[aid] == gid)
207 >          groupListRow_[i].push_back(j);
208 >      }      
209 >    }
210 >
211 >    groupListCol_.clear();
212 >    groupListCol_.resize(nGroupsInCol_);
213 >    for (int i = 0; i < nGroupsInCol_; i++) {
214 >      int gid = cgColToGlobal[i];
215 >      for (int j = 0; j < nAtomsInCol_; j++) {
216 >        int aid = AtomColToGlobal[j];
217 >        if (globalGroupMembership[aid] == gid)
218 >          groupListCol_[i].push_back(j);
219 >      }      
220 >    }
221 >
222 >    excludesForAtom.clear();
223 >    excludesForAtom.resize(nAtomsInRow_);
224 >    toposForAtom.clear();
225 >    toposForAtom.resize(nAtomsInRow_);
226 >    topoDist.clear();
227 >    topoDist.resize(nAtomsInRow_);
228 >    for (int i = 0; i < nAtomsInRow_; i++) {
229 >      int iglob = AtomRowToGlobal[i];
230 >
231 >      for (int j = 0; j < nAtomsInCol_; j++) {
232 >        int jglob = AtomColToGlobal[j];
233 >
234 >        if (excludes->hasPair(iglob, jglob))
235 >          excludesForAtom[i].push_back(j);      
236 >        
237 >        if (oneTwo->hasPair(iglob, jglob)) {
238 >          toposForAtom[i].push_back(j);
239 >          topoDist[i].push_back(1);
240 >        } else {
241 >          if (oneThree->hasPair(iglob, jglob)) {
242 >            toposForAtom[i].push_back(j);
243 >            topoDist[i].push_back(2);
244 >          } else {
245 >            if (oneFour->hasPair(iglob, jglob)) {
246 >              toposForAtom[i].push_back(j);
247 >              topoDist[i].push_back(3);
248 >            }
249 >          }
250 >        }
251 >      }      
252 >    }
253 >
254 > #else
255 >    excludesForAtom.clear();
256 >    excludesForAtom.resize(nLocal_);
257 >    toposForAtom.clear();
258 >    toposForAtom.resize(nLocal_);
259 >    topoDist.clear();
260 >    topoDist.resize(nLocal_);
261 >
262 >    for (int i = 0; i < nLocal_; i++) {
263 >      int iglob = AtomLocalToGlobal[i];
264 >
265 >      for (int j = 0; j < nLocal_; j++) {
266 >        int jglob = AtomLocalToGlobal[j];
267 >
268 >        if (excludes->hasPair(iglob, jglob))
269 >          excludesForAtom[i].push_back(j);              
270 >        
271 >        if (oneTwo->hasPair(iglob, jglob)) {
272 >          toposForAtom[i].push_back(j);
273 >          topoDist[i].push_back(1);
274 >        } else {
275 >          if (oneThree->hasPair(iglob, jglob)) {
276 >            toposForAtom[i].push_back(j);
277 >            topoDist[i].push_back(2);
278 >          } else {
279 >            if (oneFour->hasPair(iglob, jglob)) {
280 >              toposForAtom[i].push_back(j);
281 >              topoDist[i].push_back(3);
282 >            }
283 >          }
284 >        }
285 >      }      
286 >    }
287   #endif
288 +
289 +    // allocate memory for the parallel objects
290 +    atypesLocal.resize(nLocal_);
291 +
292 +    for (int i = 0; i < nLocal_; i++)
293 +      atypesLocal[i] = ff_->getAtomType(idents[i]);
294 +
295 +    groupList_.clear();
296 +    groupList_.resize(nGroups_);
297 +    for (int i = 0; i < nGroups_; i++) {
298 +      int gid = cgLocalToGlobal[i];
299 +      for (int j = 0; j < nLocal_; j++) {
300 +        int aid = AtomLocalToGlobal[j];
301 +        if (globalGroupMembership[aid] == gid) {
302 +          groupList_[i].push_back(j);
303 +        }
304 +      }      
305 +    }    
306    }
307      
308 +  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
309 +    for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) {
310 +      if (toposForAtom[atom1][j] == atom2)
311 +        return topoDist[atom1][j];
312 +    }                                          
313 +    return 0;
314 +  }
315  
316 +  void ForceMatrixDecomposition::zeroWorkArrays() {
317 +    pairwisePot = 0.0;
318 +    embeddingPot = 0.0;
319 +    excludedPot = 0.0;
320 +    excludedSelfPot = 0.0;
321  
112  void ForceDecomposition::distributeData()  {
322   #ifdef IS_MPI
323 <    Snapshot* snap = sman_->getCurrentSnapshot();
323 >    if (storageLayout_ & DataStorage::dslForce) {
324 >      fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
325 >      fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
326 >    }
327 >
328 >    if (storageLayout_ & DataStorage::dslTorque) {
329 >      fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
330 >      fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
331 >    }
332 >    
333 >    fill(pot_row.begin(), pot_row.end(),
334 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
335 >
336 >    fill(pot_col.begin(), pot_col.end(),
337 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
338 >
339 >    fill(expot_row.begin(), expot_row.end(),
340 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
341 >
342 >    fill(expot_col.begin(), expot_col.end(),
343 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
344 >
345 >    if (storageLayout_ & DataStorage::dslParticlePot) {    
346 >      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
347 >           0.0);
348 >      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
349 >           0.0);
350 >    }
351 >
352 >    if (storageLayout_ & DataStorage::dslDensity) {      
353 >      fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
354 >      fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
355 >    }
356 >
357 >    if (storageLayout_ & DataStorage::dslFunctional) {  
358 >      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
359 >           0.0);
360 >      fill(atomColData.functional.begin(), atomColData.functional.end(),
361 >           0.0);
362 >    }
363 >
364 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
365 >      fill(atomRowData.functionalDerivative.begin(),
366 >           atomRowData.functionalDerivative.end(), 0.0);
367 >      fill(atomColData.functionalDerivative.begin(),
368 >           atomColData.functionalDerivative.end(), 0.0);
369 >    }
370 >
371 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
372 >      fill(atomRowData.skippedCharge.begin(),
373 >           atomRowData.skippedCharge.end(), 0.0);
374 >      fill(atomColData.skippedCharge.begin(),
375 >           atomColData.skippedCharge.end(), 0.0);
376 >    }
377 >
378 >    if (storageLayout_ & DataStorage::dslFlucQForce) {      
379 >      fill(atomRowData.flucQFrc.begin(),
380 >           atomRowData.flucQFrc.end(), 0.0);
381 >      fill(atomColData.flucQFrc.begin(),
382 >           atomColData.flucQFrc.end(), 0.0);
383 >    }
384 >
385 >    if (storageLayout_ & DataStorage::dslElectricField) {    
386 >      fill(atomRowData.electricField.begin(),
387 >           atomRowData.electricField.end(), V3Zero);
388 >      fill(atomColData.electricField.begin(),
389 >           atomColData.electricField.end(), V3Zero);
390 >    }
391 >
392 >    if (storageLayout_ & DataStorage::dslSitePotential) {    
393 >      fill(atomRowData.sitePotential.begin(),
394 >           atomRowData.sitePotential.end(), 0.0);
395 >      fill(atomColData.sitePotential.begin(),
396 >           atomColData.sitePotential.end(), 0.0);
397 >    }
398 >
399 > #endif
400 >    // even in parallel, we need to zero out the local arrays:
401 >
402 >    if (storageLayout_ & DataStorage::dslParticlePot) {      
403 >      fill(snap_->atomData.particlePot.begin(),
404 >           snap_->atomData.particlePot.end(), 0.0);
405 >    }
406 >    
407 >    if (storageLayout_ & DataStorage::dslDensity) {      
408 >      fill(snap_->atomData.density.begin(),
409 >           snap_->atomData.density.end(), 0.0);
410 >    }
411 >
412 >    if (storageLayout_ & DataStorage::dslFunctional) {
413 >      fill(snap_->atomData.functional.begin(),
414 >           snap_->atomData.functional.end(), 0.0);
415 >    }
416 >
417 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
418 >      fill(snap_->atomData.functionalDerivative.begin(),
419 >           snap_->atomData.functionalDerivative.end(), 0.0);
420 >    }
421 >
422 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
423 >      fill(snap_->atomData.skippedCharge.begin(),
424 >           snap_->atomData.skippedCharge.end(), 0.0);
425 >    }
426 >
427 >    if (storageLayout_ & DataStorage::dslElectricField) {      
428 >      fill(snap_->atomData.electricField.begin(),
429 >           snap_->atomData.electricField.end(), V3Zero);
430 >    }
431 >    if (storageLayout_ & DataStorage::dslSitePotential) {      
432 >      fill(snap_->atomData.sitePotential.begin(),
433 >           snap_->atomData.sitePotential.end(), 0.0);
434 >    }
435 >  }
436 >
437 >
438 >  void ForceMatrixDecomposition::distributeData()  {
439 >    snap_ = sman_->getCurrentSnapshot();
440 >    storageLayout_ = sman_->getStorageLayout();
441 >
442 >    bool needsCG = true;
443 >    if(info_->getNCutoffGroups() != info_->getNAtoms())
444 >      needsCG = false;
445 >  
446 > #ifdef IS_MPI
447      
448      // gather up the atomic positions
449 <    AtomCommVectorI->gather(snap->atomData.position,
450 <                            snap->atomIData.position);
451 <    AtomCommVectorJ->gather(snap->atomData.position,
452 <                            snap->atomJData.position);
449 >    AtomPlanVectorRow->gather(snap_->atomData.position,
450 >                              atomRowData.position);
451 >    AtomPlanVectorColumn->gather(snap_->atomData.position,
452 >                                 atomColData.position);
453      
454      // gather up the cutoff group positions
455 <    cgCommVectorI->gather(snap->cgData.position,
456 <                          snap->cgIData.position);
457 <    cgCommVectorJ->gather(snap->cgData.position,
458 <                          snap->cgJData.position);
455 >
456 >    if (needsCG) {
457 >      cgPlanVectorRow->gather(snap_->cgData.position,
458 >                              cgRowData.position);
459 >      
460 >      cgPlanVectorColumn->gather(snap_->cgData.position,
461 >                                 cgColData.position);
462 >    }
463 >
464 >
465 >    if (needVelocities_) {
466 >      // gather up the atomic velocities
467 >      AtomPlanVectorColumn->gather(snap_->atomData.velocity,
468 >                                   atomColData.velocity);
469 >
470 >      if (needsCG) {        
471 >        cgPlanVectorColumn->gather(snap_->cgData.velocity,
472 >                                   cgColData.velocity);
473 >      }
474 >    }
475 >
476      
477      // if needed, gather the atomic rotation matrices
478 <    if (snap->atomData.getStorageLayout() & DataStorage::dslAmat) {
479 <      AtomCommMatrixI->gather(snap->atomData.aMat,
480 <                              snap->atomIData.aMat);
481 <      AtomCommMatrixJ->gather(snap->atomData.aMat,
482 <                              snap->atomJData.aMat);
478 >    if (storageLayout_ & DataStorage::dslAmat) {
479 >      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
480 >                                atomRowData.aMat);
481 >      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
482 >                                   atomColData.aMat);
483      }
484 <    
485 <    // if needed, gather the atomic eletrostatic frames
486 <    if (snap->atomData.getStorageLayout() & DataStorage::dslElectroFrame) {
487 <      AtomCommMatrixI->gather(snap->atomData.electroFrame,
488 <                              snap->atomIData.electroFrame);
489 <      AtomCommMatrixJ->gather(snap->atomData.electroFrame,
490 <                              snap->atomJData.electroFrame);
484 >
485 >    // if needed, gather the atomic eletrostatic information
486 >    if (storageLayout_ & DataStorage::dslDipole) {
487 >      AtomPlanVectorRow->gather(snap_->atomData.dipole,
488 >                                atomRowData.dipole);
489 >      AtomPlanVectorColumn->gather(snap_->atomData.dipole,
490 >                                   atomColData.dipole);
491      }
492 +
493 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
494 +      AtomPlanMatrixRow->gather(snap_->atomData.quadrupole,
495 +                                atomRowData.quadrupole);
496 +      AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole,
497 +                                   atomColData.quadrupole);
498 +    }
499 +        
500 +    // if needed, gather the atomic fluctuating charge values
501 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {
502 +      AtomPlanRealRow->gather(snap_->atomData.flucQPos,
503 +                              atomRowData.flucQPos);
504 +      AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
505 +                                 atomColData.flucQPos);
506 +    }
507 +
508   #endif      
509    }
510    
511 <  void ForceDecomposition::collectIntermediateData() {
511 >  /* collects information obtained during the pre-pair loop onto local
512 >   * data structures.
513 >   */
514 >  void ForceMatrixDecomposition::collectIntermediateData() {
515 >    snap_ = sman_->getCurrentSnapshot();
516 >    storageLayout_ = sman_->getStorageLayout();
517   #ifdef IS_MPI
148    Snapshot* snap = sman_->getCurrentSnapshot();
518      
519 <    if (snap->atomData.getStorageLayout() & DataStorage::dslDensity) {
519 >    if (storageLayout_ & DataStorage::dslDensity) {
520 >      
521 >      AtomPlanRealRow->scatter(atomRowData.density,
522 >                               snap_->atomData.density);
523 >      
524 >      int n = snap_->atomData.density.size();
525 >      vector<RealType> rho_tmp(n, 0.0);
526 >      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
527 >      for (int i = 0; i < n; i++)
528 >        snap_->atomData.density[i] += rho_tmp[i];
529 >    }
530  
531 <      AtomCommRealI->scatter(snap->atomIData.density,
532 <                             snap->atomData.density);
533 <
534 <      int n = snap->atomData.density.size();
535 <      std::vector<RealType> rho_tmp(n, 0.0);
536 <      AtomCommRealJ->scatter(snap->atomJData.density, rho_tmp);
531 >    // this isn't necessary if we don't have polarizable atoms, but
532 >    // we'll leave it here for now.
533 >    if (storageLayout_ & DataStorage::dslElectricField) {
534 >      
535 >      AtomPlanVectorRow->scatter(atomRowData.electricField,
536 >                                 snap_->atomData.electricField);
537 >      
538 >      int n = snap_->atomData.electricField.size();
539 >      vector<Vector3d> field_tmp(n, V3Zero);
540 >      AtomPlanVectorColumn->scatter(atomColData.electricField,
541 >                                    field_tmp);
542        for (int i = 0; i < n; i++)
543 <        snap->atomData.density[i] += rho_tmp[i];
543 >        snap_->atomData.electricField[i] += field_tmp[i];
544      }
545   #endif
546    }
547 <  
548 <  void ForceDecomposition::distributeIntermediateData() {
547 >
548 >  /*
549 >   * redistributes information obtained during the pre-pair loop out to
550 >   * row and column-indexed data structures
551 >   */
552 >  void ForceMatrixDecomposition::distributeIntermediateData() {
553 >    snap_ = sman_->getCurrentSnapshot();
554 >    storageLayout_ = sman_->getStorageLayout();
555   #ifdef IS_MPI
556 <    Snapshot* snap = sman_->getCurrentSnapshot();
557 <    if (snap->atomData.getStorageLayout() & DataStorage::dslFunctional) {
558 <      AtomCommRealI->gather(snap->atomData.functional,
559 <                            snap->atomIData.functional);
560 <      AtomCommRealJ->gather(snap->atomData.functional,
171 <                            snap->atomJData.functional);
556 >    if (storageLayout_ & DataStorage::dslFunctional) {
557 >      AtomPlanRealRow->gather(snap_->atomData.functional,
558 >                              atomRowData.functional);
559 >      AtomPlanRealColumn->gather(snap_->atomData.functional,
560 >                                 atomColData.functional);
561      }
562      
563 <    if (snap->atomData.getStorageLayout() & DataStorage::dslFunctionalDerivative) {
564 <      AtomCommRealI->gather(snap->atomData.functionalDerivative,
565 <                            snap->atomIData.functionalDerivative);
566 <      AtomCommRealJ->gather(snap->atomData.functionalDerivative,
567 <                            snap->atomJData.functionalDerivative);
563 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
564 >      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
565 >                              atomRowData.functionalDerivative);
566 >      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
567 >                                 atomColData.functionalDerivative);
568      }
569   #endif
570    }
571    
572    
573 <  void ForceDecomposition::collectData() {
574 < #ifdef IS_MPI
575 <    Snapshot* snap = sman_->getCurrentSnapshot();
576 <    
577 <    int n = snap->atomData.force.size();
573 >  void ForceMatrixDecomposition::collectData() {
574 >    snap_ = sman_->getCurrentSnapshot();
575 >    storageLayout_ = sman_->getStorageLayout();
576 > #ifdef IS_MPI    
577 >    int n = snap_->atomData.force.size();
578      vector<Vector3d> frc_tmp(n, V3Zero);
579      
580 <    AtomCommVectorI->scatter(snap->atomIData.force, frc_tmp);
580 >    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
581      for (int i = 0; i < n; i++) {
582 <      snap->atomData.force[i] += frc_tmp[i];
582 >      snap_->atomData.force[i] += frc_tmp[i];
583        frc_tmp[i] = 0.0;
584      }
585      
586 <    AtomCommVectorJ->scatter(snap->atomJData.force, frc_tmp);
587 <    for (int i = 0; i < n; i++)
588 <      snap->atomData.force[i] += frc_tmp[i];
589 <    
590 <    
591 <    if (snap->atomData.getStorageLayout() & DataStorage::dslTorque) {
586 >    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
587 >    for (int i = 0; i < n; i++) {
588 >      snap_->atomData.force[i] += frc_tmp[i];
589 >    }
590 >        
591 >    if (storageLayout_ & DataStorage::dslTorque) {
592  
593 <      int nt = snap->atomData.force.size();
593 >      int nt = snap_->atomData.torque.size();
594        vector<Vector3d> trq_tmp(nt, V3Zero);
595  
596 <      AtomCommVectorI->scatter(snap->atomIData.torque, trq_tmp);
597 <      for (int i = 0; i < n; i++) {
598 <        snap->atomData.torque[i] += trq_tmp[i];
596 >      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
597 >      for (int i = 0; i < nt; i++) {
598 >        snap_->atomData.torque[i] += trq_tmp[i];
599          trq_tmp[i] = 0.0;
600        }
601        
602 <      AtomCommVectorJ->scatter(snap->atomJData.torque, trq_tmp);
603 <      for (int i = 0; i < n; i++)
604 <        snap->atomData.torque[i] += trq_tmp[i];
602 >      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
603 >      for (int i = 0; i < nt; i++)
604 >        snap_->atomData.torque[i] += trq_tmp[i];
605      }
606 +
607 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
608 +
609 +      int ns = snap_->atomData.skippedCharge.size();
610 +      vector<RealType> skch_tmp(ns, 0.0);
611 +
612 +      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
613 +      for (int i = 0; i < ns; i++) {
614 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
615 +        skch_tmp[i] = 0.0;
616 +      }
617 +      
618 +      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
619 +      for (int i = 0; i < ns; i++)
620 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
621 +            
622 +    }
623      
624 <    int nLocal = snap->getNumberOfAtoms();
624 >    if (storageLayout_ & DataStorage::dslFlucQForce) {
625  
626 <    vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES,
627 <                                       vector<RealType> (nLocal, 0.0));
626 >      int nq = snap_->atomData.flucQFrc.size();
627 >      vector<RealType> fqfrc_tmp(nq, 0.0);
628 >
629 >      AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
630 >      for (int i = 0; i < nq; i++) {
631 >        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
632 >        fqfrc_tmp[i] = 0.0;
633 >      }
634 >      
635 >      AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
636 >      for (int i = 0; i < nq; i++)
637 >        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
638 >            
639 >    }
640 >
641 >    if (storageLayout_ & DataStorage::dslElectricField) {
642 >
643 >      int nef = snap_->atomData.electricField.size();
644 >      vector<Vector3d> efield_tmp(nef, V3Zero);
645 >
646 >      AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp);
647 >      for (int i = 0; i < nef; i++) {
648 >        snap_->atomData.electricField[i] += efield_tmp[i];
649 >        efield_tmp[i] = 0.0;
650 >      }
651 >      
652 >      AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp);
653 >      for (int i = 0; i < nef; i++)
654 >        snap_->atomData.electricField[i] += efield_tmp[i];
655 >    }
656 >
657 >    if (storageLayout_ & DataStorage::dslSitePotential) {
658 >
659 >      int nsp = snap_->atomData.sitePotential.size();
660 >      vector<RealType> sp_tmp(nsp, 0.0);
661 >
662 >      AtomPlanRealRow->scatter(atomRowData.sitePotential, sp_tmp);
663 >      for (int i = 0; i < nsp; i++) {
664 >        snap_->atomData.sitePotential[i] += sp_tmp[i];
665 >        sp_tmp[i] = 0.0;
666 >      }
667 >      
668 >      AtomPlanRealColumn->scatter(atomColData.sitePotential, sp_tmp);
669 >      for (int i = 0; i < nsp; i++)
670 >        snap_->atomData.sitePotential[i] += sp_tmp[i];
671 >    }
672 >
673 >    nLocal_ = snap_->getNumberOfAtoms();
674 >
675 >    vector<potVec> pot_temp(nLocal_,
676 >                            Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
677 >    vector<potVec> expot_temp(nLocal_,
678 >                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
679 >
680 >    // scatter/gather pot_row into the members of my column
681 >          
682 >    AtomPlanPotRow->scatter(pot_row, pot_temp);
683 >    AtomPlanPotRow->scatter(expot_row, expot_temp);
684 >
685 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
686 >      pairwisePot += pot_temp[ii];
687 >
688 >    for (int ii = 0;  ii < expot_temp.size(); ii++ )
689 >      excludedPot += expot_temp[ii];
690 >        
691 >    if (storageLayout_ & DataStorage::dslParticlePot) {
692 >      // This is the pairwise contribution to the particle pot.  The
693 >      // embedding contribution is added in each of the low level
694 >      // non-bonded routines.  In single processor, this is done in
695 >      // unpackInteractionData, not in collectData.
696 >      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
697 >        for (int i = 0; i < nLocal_; i++) {
698 >          // factor of two is because the total potential terms are divided
699 >          // by 2 in parallel due to row/ column scatter      
700 >          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
701 >        }
702 >      }
703 >    }
704 >
705 >    fill(pot_temp.begin(), pot_temp.end(),
706 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
707 >    fill(expot_temp.begin(), expot_temp.end(),
708 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
709 >      
710 >    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
711 >    AtomPlanPotColumn->scatter(expot_col, expot_temp);    
712      
713 <    for (int i = 0; i < N_INTERACTION_FAMILIES; i++) {
714 <      AtomCommRealI->scatter(pot_row[i], pot_temp[i]);
715 <      for (int ii = 0;  ii < pot_temp[i].size(); ii++ ) {
716 <        pot_local[i] += pot_temp[i][ii];
713 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
714 >      pairwisePot += pot_temp[ii];    
715 >
716 >    for (int ii = 0;  ii < expot_temp.size(); ii++ )
717 >      excludedPot += expot_temp[ii];    
718 >
719 >    if (storageLayout_ & DataStorage::dslParticlePot) {
720 >      // This is the pairwise contribution to the particle pot.  The
721 >      // embedding contribution is added in each of the low level
722 >      // non-bonded routines.  In single processor, this is done in
723 >      // unpackInteractionData, not in collectData.
724 >      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
725 >        for (int i = 0; i < nLocal_; i++) {
726 >          // factor of two is because the total potential terms are divided
727 >          // by 2 in parallel due to row/ column scatter      
728 >          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
729 >        }
730 >      }
731 >    }
732 >    
733 >    if (storageLayout_ & DataStorage::dslParticlePot) {
734 >      int npp = snap_->atomData.particlePot.size();
735 >      vector<RealType> ppot_temp(npp, 0.0);
736 >
737 >      // This is the direct or embedding contribution to the particle
738 >      // pot.
739 >      
740 >      AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
741 >      for (int i = 0; i < npp; i++) {
742 >        snap_->atomData.particlePot[i] += ppot_temp[i];
743 >      }
744 >
745 >      fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
746 >      
747 >      AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
748 >      for (int i = 0; i < npp; i++) {
749 >        snap_->atomData.particlePot[i] += ppot_temp[i];
750 >      }
751 >    }
752 >
753 >    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
754 >      RealType ploc1 = pairwisePot[ii];
755 >      RealType ploc2 = 0.0;
756 >      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
757 >      pairwisePot[ii] = ploc2;
758 >    }
759 >
760 >    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
761 >      RealType ploc1 = excludedPot[ii];
762 >      RealType ploc2 = 0.0;
763 >      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
764 >      excludedPot[ii] = ploc2;
765 >    }
766 >
767 >    // Here be dragons.
768 >    MPI_Comm col = colComm.getComm();
769 >
770 >    MPI_Allreduce(MPI_IN_PLACE,
771 >                  &snap_->frameData.conductiveHeatFlux[0], 3,
772 >                  MPI_REALTYPE, MPI_SUM, col);
773 >
774 >
775 > #endif
776 >
777 >  }
778 >
779 >  /**
780 >   * Collects information obtained during the post-pair (and embedding
781 >   * functional) loops onto local data structures.
782 >   */
783 >  void ForceMatrixDecomposition::collectSelfData() {
784 >    snap_ = sman_->getCurrentSnapshot();
785 >    storageLayout_ = sman_->getStorageLayout();
786 >
787 > #ifdef IS_MPI
788 >    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
789 >      RealType ploc1 = embeddingPot[ii];
790 >      RealType ploc2 = 0.0;
791 >      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
792 >      embeddingPot[ii] = ploc2;
793 >    }    
794 >    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
795 >      RealType ploc1 = excludedSelfPot[ii];
796 >      RealType ploc2 = 0.0;
797 >      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
798 >      excludedSelfPot[ii] = ploc2;
799 >    }    
800 > #endif
801 >    
802 >  }
803 >
804 >
805 >
806 >  int& ForceMatrixDecomposition::getNAtomsInRow() {  
807 > #ifdef IS_MPI
808 >    return nAtomsInRow_;
809 > #else
810 >    return nLocal_;
811 > #endif
812 >  }
813 >
814 >  /**
815 >   * returns the list of atoms belonging to this group.  
816 >   */
817 >  vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
818 > #ifdef IS_MPI
819 >    return groupListRow_[cg1];
820 > #else
821 >    return groupList_[cg1];
822 > #endif
823 >  }
824 >
825 >  vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
826 > #ifdef IS_MPI
827 >    return groupListCol_[cg2];
828 > #else
829 >    return groupList_[cg2];
830 > #endif
831 >  }
832 >  
833 >  Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
834 >    Vector3d d;
835 >    
836 > #ifdef IS_MPI
837 >    d = cgColData.position[cg2] - cgRowData.position[cg1];
838 > #else
839 >    d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
840 > #endif
841 >    
842 >    if (usePeriodicBoundaryConditions_) {
843 >      snap_->wrapVector(d);
844 >    }
845 >    return d;    
846 >  }
847 >
848 >  Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
849 > #ifdef IS_MPI
850 >    return cgColData.velocity[cg2];
851 > #else
852 >    return snap_->cgData.velocity[cg2];
853 > #endif
854 >  }
855 >
856 >  Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
857 > #ifdef IS_MPI
858 >    return atomColData.velocity[atom2];
859 > #else
860 >    return snap_->atomData.velocity[atom2];
861 > #endif
862 >  }
863 >
864 >
865 >  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
866 >
867 >    Vector3d d;
868 >    
869 > #ifdef IS_MPI
870 >    d = cgRowData.position[cg1] - atomRowData.position[atom1];
871 > #else
872 >    d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
873 > #endif
874 >    if (usePeriodicBoundaryConditions_) {
875 >      snap_->wrapVector(d);
876 >    }
877 >    return d;    
878 >  }
879 >  
880 >  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
881 >    Vector3d d;
882 >    
883 > #ifdef IS_MPI
884 >    d = cgColData.position[cg2] - atomColData.position[atom2];
885 > #else
886 >    d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
887 > #endif
888 >    if (usePeriodicBoundaryConditions_) {
889 >      snap_->wrapVector(d);
890 >    }
891 >    return d;    
892 >  }
893 >
894 >  RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) {
895 > #ifdef IS_MPI
896 >    return massFactorsRow[atom1];
897 > #else
898 >    return massFactors[atom1];
899 > #endif
900 >  }
901 >
902 >  RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
903 > #ifdef IS_MPI
904 >    return massFactorsCol[atom2];
905 > #else
906 >    return massFactors[atom2];
907 > #endif
908 >
909 >  }
910 >    
911 >  Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
912 >    Vector3d d;
913 >    
914 > #ifdef IS_MPI
915 >    d = atomColData.position[atom2] - atomRowData.position[atom1];
916 > #else
917 >    d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
918 > #endif
919 >    if (usePeriodicBoundaryConditions_) {
920 >      snap_->wrapVector(d);
921 >    }
922 >    return d;    
923 >  }
924 >
925 >  vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
926 >    return excludesForAtom[atom1];
927 >  }
928 >
929 >  /**
930 >   * We need to exclude some overcounted interactions that result from
931 >   * the parallel decomposition.
932 >   */
933 >  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) {
934 >    int unique_id_1, unique_id_2;
935 >        
936 > #ifdef IS_MPI
937 >    // in MPI, we have to look up the unique IDs for each atom
938 >    unique_id_1 = AtomRowToGlobal[atom1];
939 >    unique_id_2 = AtomColToGlobal[atom2];
940 >    // group1 = cgRowToGlobal[cg1];
941 >    // group2 = cgColToGlobal[cg2];
942 > #else
943 >    unique_id_1 = AtomLocalToGlobal[atom1];
944 >    unique_id_2 = AtomLocalToGlobal[atom2];
945 >    int group1 = cgLocalToGlobal[cg1];
946 >    int group2 = cgLocalToGlobal[cg2];
947 > #endif  
948 >
949 >    if (unique_id_1 == unique_id_2) return true;
950 >
951 > #ifdef IS_MPI
952 >    // this prevents us from doing the pair on multiple processors
953 >    if (unique_id_1 < unique_id_2) {
954 >      if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
955 >    } else {
956 >      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
957 >    }
958 > #endif    
959 >
960 > #ifndef IS_MPI
961 >    if (group1 == group2) {
962 >      if (unique_id_1 < unique_id_2) return true;
963 >    }
964 > #endif
965 >    
966 >    return false;
967 >  }
968 >
969 >  /**
970 >   * We need to handle the interactions for atoms who are involved in
971 >   * the same rigid body as well as some short range interactions
972 >   * (bonds, bends, torsions) differently from other interactions.
973 >   * We'll still visit the pairwise routines, but with a flag that
974 >   * tells those routines to exclude the pair from direct long range
975 >   * interactions.  Some indirect interactions (notably reaction
976 >   * field) must still be handled for these pairs.
977 >   */
978 >  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
979 >
980 >    // excludesForAtom was constructed to use row/column indices in the MPI
981 >    // version, and to use local IDs in the non-MPI version:
982 >    
983 >    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
984 >         i != excludesForAtom[atom1].end(); ++i) {
985 >      if ( (*i) == atom2 ) return true;
986 >    }
987 >
988 >    return false;
989 >  }
990 >
991 >
992 >  void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
993 > #ifdef IS_MPI
994 >    atomRowData.force[atom1] += fg;
995 > #else
996 >    snap_->atomData.force[atom1] += fg;
997 > #endif
998 >  }
999 >
1000 >  void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
1001 > #ifdef IS_MPI
1002 >    atomColData.force[atom2] += fg;
1003 > #else
1004 >    snap_->atomData.force[atom2] += fg;
1005 > #endif
1006 >  }
1007 >
1008 >    // filling interaction blocks with pointers
1009 >  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1010 >                                                     int atom1, int atom2,
1011 >                                                     bool newAtom1) {
1012 >
1013 >    idat.excluded = excludeAtomPair(atom1, atom2);
1014 >
1015 >    if (newAtom1) {
1016 >      
1017 > #ifdef IS_MPI
1018 >      idat.atid1 = identsRow[atom1];
1019 >      idat.atid2 = identsCol[atom2];
1020 >      
1021 >      if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) {
1022 >        idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]);
1023 >      } else {
1024 >        idat.sameRegion = false;
1025        }
1026 +      
1027 +      if (storageLayout_ & DataStorage::dslAmat) {
1028 +        idat.A1 = &(atomRowData.aMat[atom1]);
1029 +        idat.A2 = &(atomColData.aMat[atom2]);
1030 +      }
1031 +      
1032 +      if (storageLayout_ & DataStorage::dslTorque) {
1033 +        idat.t1 = &(atomRowData.torque[atom1]);
1034 +        idat.t2 = &(atomColData.torque[atom2]);
1035 +      }
1036 +      
1037 +      if (storageLayout_ & DataStorage::dslDipole) {
1038 +        idat.dipole1 = &(atomRowData.dipole[atom1]);
1039 +        idat.dipole2 = &(atomColData.dipole[atom2]);
1040 +      }
1041 +      
1042 +      if (storageLayout_ & DataStorage::dslQuadrupole) {
1043 +        idat.quadrupole1 = &(atomRowData.quadrupole[atom1]);
1044 +        idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1045 +      }
1046 +      
1047 +      if (storageLayout_ & DataStorage::dslDensity) {
1048 +        idat.rho1 = &(atomRowData.density[atom1]);
1049 +        idat.rho2 = &(atomColData.density[atom2]);
1050 +      }
1051 +      
1052 +      if (storageLayout_ & DataStorage::dslFunctional) {
1053 +        idat.frho1 = &(atomRowData.functional[atom1]);
1054 +        idat.frho2 = &(atomColData.functional[atom2]);
1055 +      }
1056 +      
1057 +      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1058 +        idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1059 +        idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1060 +      }
1061 +      
1062 +      if (storageLayout_ & DataStorage::dslParticlePot) {
1063 +        idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1064 +        idat.particlePot2 = &(atomColData.particlePot[atom2]);
1065 +      }
1066 +      
1067 +      if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1068 +        idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1069 +        idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1070 +      }
1071 +      
1072 +      if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1073 +        idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1074 +        idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1075 +      }
1076 +      
1077 + #else
1078 +      
1079 +      idat.atid1 = idents[atom1];
1080 +      idat.atid2 = idents[atom2];
1081 +      
1082 +      if (regions[atom1] >= 0 && regions[atom2] >= 0) {
1083 +        idat.sameRegion = (regions[atom1] == regions[atom2]);
1084 +      } else {
1085 +        idat.sameRegion = false;
1086 +      }
1087 +      
1088 +      if (storageLayout_ & DataStorage::dslAmat) {
1089 +        idat.A1 = &(snap_->atomData.aMat[atom1]);
1090 +        idat.A2 = &(snap_->atomData.aMat[atom2]);
1091 +      }
1092 +      
1093 +      if (storageLayout_ & DataStorage::dslTorque) {
1094 +        idat.t1 = &(snap_->atomData.torque[atom1]);
1095 +        idat.t2 = &(snap_->atomData.torque[atom2]);
1096 +      }
1097 +      
1098 +      if (storageLayout_ & DataStorage::dslDipole) {
1099 +        idat.dipole1 = &(snap_->atomData.dipole[atom1]);
1100 +        idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1101 +      }
1102 +      
1103 +      if (storageLayout_ & DataStorage::dslQuadrupole) {
1104 +        idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]);
1105 +        idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1106 +      }
1107 +      
1108 +      if (storageLayout_ & DataStorage::dslDensity) {    
1109 +        idat.rho1 = &(snap_->atomData.density[atom1]);
1110 +        idat.rho2 = &(snap_->atomData.density[atom2]);
1111 +      }
1112 +      
1113 +      if (storageLayout_ & DataStorage::dslFunctional) {
1114 +        idat.frho1 = &(snap_->atomData.functional[atom1]);
1115 +        idat.frho2 = &(snap_->atomData.functional[atom2]);
1116 +      }
1117 +      
1118 +      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1119 +        idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1120 +        idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1121 +      }
1122 +      
1123 +      if (storageLayout_ & DataStorage::dslParticlePot) {
1124 +        idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1125 +        idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1126 +      }
1127 +      
1128 +      if (storageLayout_ & DataStorage::dslSkippedCharge) {
1129 +        idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1130 +        idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1131 +      }
1132 +      
1133 +      if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1134 +        idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1135 +        idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1136 +      }
1137 + #endif
1138 +      
1139 +    } else {
1140 +      // atom1 is not new, so don't bother updating properties of that atom:
1141 + #ifdef IS_MPI
1142 +    idat.atid2 = identsCol[atom2];
1143 +
1144 +    if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) {
1145 +      idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]);
1146 +    } else {
1147 +      idat.sameRegion = false;
1148      }
1149 +
1150 +    if (storageLayout_ & DataStorage::dslAmat) {
1151 +      idat.A2 = &(atomColData.aMat[atom2]);
1152 +    }
1153 +    
1154 +    if (storageLayout_ & DataStorage::dslTorque) {
1155 +      idat.t2 = &(atomColData.torque[atom2]);
1156 +    }
1157 +
1158 +    if (storageLayout_ & DataStorage::dslDipole) {
1159 +      idat.dipole2 = &(atomColData.dipole[atom2]);
1160 +    }
1161 +
1162 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1163 +      idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1164 +    }
1165 +
1166 +    if (storageLayout_ & DataStorage::dslDensity) {
1167 +      idat.rho2 = &(atomColData.density[atom2]);
1168 +    }
1169 +
1170 +    if (storageLayout_ & DataStorage::dslFunctional) {
1171 +      idat.frho2 = &(atomColData.functional[atom2]);
1172 +    }
1173 +
1174 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1175 +      idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1176 +    }
1177 +
1178 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1179 +      idat.particlePot2 = &(atomColData.particlePot[atom2]);
1180 +    }
1181 +
1182 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1183 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1184 +    }
1185 +
1186 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {
1187 +      idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1188 +    }
1189 +
1190 + #else  
1191 +    idat.atid2 = idents[atom2];
1192 +
1193 +    if (regions[atom1] >= 0 && regions[atom2] >= 0) {
1194 +      idat.sameRegion = (regions[atom1] == regions[atom2]);
1195 +    } else {
1196 +      idat.sameRegion = false;
1197 +    }
1198 +
1199 +    if (storageLayout_ & DataStorage::dslAmat) {
1200 +      idat.A2 = &(snap_->atomData.aMat[atom2]);
1201 +    }
1202 +
1203 +    if (storageLayout_ & DataStorage::dslTorque) {
1204 +      idat.t2 = &(snap_->atomData.torque[atom2]);
1205 +    }
1206 +
1207 +    if (storageLayout_ & DataStorage::dslDipole) {
1208 +      idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1209 +    }
1210 +
1211 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1212 +      idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1213 +    }
1214 +
1215 +    if (storageLayout_ & DataStorage::dslDensity) {    
1216 +      idat.rho2 = &(snap_->atomData.density[atom2]);
1217 +    }
1218 +
1219 +    if (storageLayout_ & DataStorage::dslFunctional) {
1220 +      idat.frho2 = &(snap_->atomData.functional[atom2]);
1221 +    }
1222 +
1223 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1224 +      idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1225 +    }
1226 +
1227 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1228 +      idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1229 +    }
1230 +
1231 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
1232 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1233 +    }
1234 +
1235 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1236 +      idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1237 +    }
1238 +
1239   #endif
1240 +    }
1241    }
1242    
1243 +  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat,
1244 +                                                       int atom1, int atom2) {  
1245 + #ifdef IS_MPI
1246 +    pot_row[atom1] += RealType(0.5) *  *(idat.pot);
1247 +    pot_col[atom2] += RealType(0.5) *  *(idat.pot);
1248 +    expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot);
1249 +    expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot);
1250 +
1251 +    atomRowData.force[atom1] += *(idat.f1);
1252 +    atomColData.force[atom2] -= *(idat.f1);
1253 +
1254 +    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1255 +      atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1256 +      atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1257 +    }
1258 +
1259 +    if (storageLayout_ & DataStorage::dslElectricField) {              
1260 +      atomRowData.electricField[atom1] += *(idat.eField1);
1261 +      atomColData.electricField[atom2] += *(idat.eField2);
1262 +    }
1263 +
1264 +    if (storageLayout_ & DataStorage::dslSitePotential) {              
1265 +      atomRowData.sitePotential[atom1] += *(idat.sPot1);
1266 +      atomColData.sitePotential[atom2] += *(idat.sPot2);
1267 +    }
1268 +
1269 + #else
1270 +    pairwisePot += *(idat.pot);
1271 +    excludedPot += *(idat.excludedPot);
1272 +
1273 +    snap_->atomData.force[atom1] += *(idat.f1);
1274 +    snap_->atomData.force[atom2] -= *(idat.f1);
1275 +
1276 +    if (idat.doParticlePot) {
1277 +      // This is the pairwise contribution to the particle pot.  The
1278 +      // embedding contribution is added in each of the low level
1279 +      // non-bonded routines.  In parallel, this calculation is done
1280 +      // in collectData, not in unpackInteractionData.
1281 +      snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1282 +      snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1283 +    }
1284 +    
1285 +    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1286 +      snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1287 +      snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1288 +    }
1289 +
1290 +    if (storageLayout_ & DataStorage::dslElectricField) {              
1291 +      snap_->atomData.electricField[atom1] += *(idat.eField1);
1292 +      snap_->atomData.electricField[atom2] += *(idat.eField2);
1293 +    }
1294 +
1295 +    if (storageLayout_ & DataStorage::dslSitePotential) {              
1296 +      snap_->atomData.sitePotential[atom1] += *(idat.sPot1);
1297 +      snap_->atomData.sitePotential[atom2] += *(idat.sPot2);
1298 +    }
1299 +
1300 + #endif
1301 +    
1302 +  }
1303 +
1304 +  /*
1305 +   * buildNeighborList
1306 +   *
1307 +   * Constructs the Verlet neighbor list for a force-matrix
1308 +   * decomposition.  In this case, each processor is responsible for
1309 +   * row-site interactions with column-sites.
1310 +   *
1311 +   * neighborList is returned as a packed array of neighboring
1312 +   * column-ordered CutoffGroups.  The starting position in
1313 +   * neighborList for each row-ordered CutoffGroup is given by the
1314 +   * returned vector point.
1315 +   */
1316 +  void ForceMatrixDecomposition::buildNeighborList(vector<int>& neighborList,
1317 +                                                   vector<int>& point) {
1318 +    neighborList.clear();
1319 +    point.clear();
1320 +    int len = 0;
1321 +    
1322 +    bool doAllPairs = false;
1323 +
1324 +    Snapshot* snap_ = sman_->getCurrentSnapshot();
1325 +    Mat3x3d box;
1326 +    Mat3x3d invBox;
1327 +
1328 +    Vector3d rs, scaled, dr;
1329 +    Vector3i whichCell;
1330 +    int cellIndex;
1331 +
1332 + #ifdef IS_MPI
1333 +    cellListRow_.clear();
1334 +    cellListCol_.clear();
1335 +    point.resize(nGroupsInRow_+1);
1336 + #else
1337 +    cellList_.clear();
1338 +    point.resize(nGroups_+1);
1339 + #endif
1340 +    
1341 +    if (!usePeriodicBoundaryConditions_) {
1342 +      box = snap_->getBoundingBox();
1343 +      invBox = snap_->getInvBoundingBox();
1344 +    } else {
1345 +      box = snap_->getHmat();
1346 +      invBox = snap_->getInvHmat();
1347 +    }
1348 +    
1349 +    Vector3d A = box.getColumn(0);
1350 +    Vector3d B = box.getColumn(1);
1351 +    Vector3d C = box.getColumn(2);
1352 +
1353 +    // Required for triclinic cells
1354 +    Vector3d AxB = cross(A, B);
1355 +    Vector3d BxC = cross(B, C);
1356 +    Vector3d CxA = cross(C, A);
1357 +
1358 +    // unit vectors perpendicular to the faces of the triclinic cell:
1359 +    AxB.normalize();
1360 +    BxC.normalize();
1361 +    CxA.normalize();
1362 +
1363 +    // A set of perpendicular lengths in triclinic cells:
1364 +    RealType Wa = abs(dot(A, BxC));
1365 +    RealType Wb = abs(dot(B, CxA));
1366 +    RealType Wc = abs(dot(C, AxB));
1367 +    
1368 +    nCells_.x() = int( Wa / rList_ );
1369 +    nCells_.y() = int( Wb / rList_ );
1370 +    nCells_.z() = int( Wc / rList_ );
1371 +    
1372 +    // handle small boxes where the cell offsets can end up repeating cells
1373 +    if (nCells_.x() < 3) doAllPairs = true;
1374 +    if (nCells_.y() < 3) doAllPairs = true;
1375 +    if (nCells_.z() < 3) doAllPairs = true;
1376 +    
1377 +    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1378 +    
1379 + #ifdef IS_MPI
1380 +    cellListRow_.resize(nCtot);
1381 +    cellListCol_.resize(nCtot);
1382 + #else
1383 +    cellList_.resize(nCtot);
1384 + #endif
1385 +    
1386 +    if (!doAllPairs) {
1387 +      
1388 + #ifdef IS_MPI
1389 +      
1390 +      for (int i = 0; i < nGroupsInRow_; i++) {
1391 +        rs = cgRowData.position[i];
1392 +        
1393 +        // scaled positions relative to the box vectors
1394 +        scaled = invBox * rs;
1395 +        
1396 +        // wrap the vector back into the unit box by subtracting integer box
1397 +        // numbers
1398 +        for (int j = 0; j < 3; j++) {
1399 +          scaled[j] -= roundMe(scaled[j]);
1400 +          scaled[j] += 0.5;
1401 +          // Handle the special case when an object is exactly on the
1402 +          // boundary (a scaled coordinate of 1.0 is the same as
1403 +          // scaled coordinate of 0.0)
1404 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1405 +        }
1406 +        
1407 +        // find xyz-indices of cell that cutoffGroup is in.
1408 +        whichCell.x() = nCells_.x() * scaled.x();
1409 +        whichCell.y() = nCells_.y() * scaled.y();
1410 +        whichCell.z() = nCells_.z() * scaled.z();
1411 +        
1412 +        // find single index of this cell:
1413 +        cellIndex = Vlinear(whichCell, nCells_);
1414 +        
1415 +        // add this cutoff group to the list of groups in this cell;
1416 +        cellListRow_[cellIndex].push_back(i);
1417 +      }
1418 +      for (int i = 0; i < nGroupsInCol_; i++) {
1419 +        rs = cgColData.position[i];
1420 +        
1421 +        // scaled positions relative to the box vectors
1422 +        scaled = invBox * rs;
1423 +        
1424 +        // wrap the vector back into the unit box by subtracting integer box
1425 +        // numbers
1426 +        for (int j = 0; j < 3; j++) {
1427 +          scaled[j] -= roundMe(scaled[j]);
1428 +          scaled[j] += 0.5;
1429 +          // Handle the special case when an object is exactly on the
1430 +          // boundary (a scaled coordinate of 1.0 is the same as
1431 +          // scaled coordinate of 0.0)
1432 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1433 +        }
1434 +        
1435 +        // find xyz-indices of cell that cutoffGroup is in.
1436 +        whichCell.x() = nCells_.x() * scaled.x();
1437 +        whichCell.y() = nCells_.y() * scaled.y();
1438 +        whichCell.z() = nCells_.z() * scaled.z();
1439 +        
1440 +        // find single index of this cell:
1441 +        cellIndex = Vlinear(whichCell, nCells_);
1442 +        
1443 +        // add this cutoff group to the list of groups in this cell;
1444 +        cellListCol_[cellIndex].push_back(i);
1445 +      }
1446 +            
1447 + #else
1448 +      for (int i = 0; i < nGroups_; i++) {
1449 +        rs = snap_->cgData.position[i];
1450 +        
1451 +        // scaled positions relative to the box vectors
1452 +        scaled = invBox * rs;
1453 +        
1454 +        // wrap the vector back into the unit box by subtracting integer box
1455 +        // numbers
1456 +        for (int j = 0; j < 3; j++) {
1457 +          scaled[j] -= roundMe(scaled[j]);
1458 +          scaled[j] += 0.5;
1459 +          // Handle the special case when an object is exactly on the
1460 +          // boundary (a scaled coordinate of 1.0 is the same as
1461 +          // scaled coordinate of 0.0)
1462 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1463 +        }
1464 +        
1465 +        // find xyz-indices of cell that cutoffGroup is in.
1466 +        whichCell.x() = int(nCells_.x() * scaled.x());
1467 +        whichCell.y() = int(nCells_.y() * scaled.y());
1468 +        whichCell.z() = int(nCells_.z() * scaled.z());
1469 +        
1470 +        // find single index of this cell:
1471 +        cellIndex = Vlinear(whichCell, nCells_);
1472 +        
1473 +        // add this cutoff group to the list of groups in this cell;
1474 +        cellList_[cellIndex].push_back(i);
1475 +      }
1476 +
1477 + #endif
1478 +
1479 + #ifdef IS_MPI
1480 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1481 +        rs = cgRowData.position[j1];
1482 + #else
1483 +
1484 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1485 +        rs = snap_->cgData.position[j1];
1486 + #endif
1487 +        point[j1] = len;
1488 +        
1489 +        // scaled positions relative to the box vectors
1490 +        scaled = invBox * rs;
1491 +        
1492 +        // wrap the vector back into the unit box by subtracting integer box
1493 +        // numbers
1494 +        for (int j = 0; j < 3; j++) {
1495 +          scaled[j] -= roundMe(scaled[j]);
1496 +          scaled[j] += 0.5;
1497 +          // Handle the special case when an object is exactly on the
1498 +          // boundary (a scaled coordinate of 1.0 is the same as
1499 +          // scaled coordinate of 0.0)
1500 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1501 +        }
1502 +        
1503 +        // find xyz-indices of cell that cutoffGroup is in.
1504 +        whichCell.x() = nCells_.x() * scaled.x();
1505 +        whichCell.y() = nCells_.y() * scaled.y();
1506 +        whichCell.z() = nCells_.z() * scaled.z();
1507 +        
1508 +        // find single index of this cell:
1509 +        int m1 = Vlinear(whichCell, nCells_);
1510 +
1511 +        for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1512 +             os != cellOffsets_.end(); ++os) {
1513 +              
1514 +          Vector3i m2v = whichCell + (*os);
1515 +
1516 +          if (m2v.x() >= nCells_.x()) {
1517 +            m2v.x() = 0;          
1518 +          } else if (m2v.x() < 0) {
1519 +            m2v.x() = nCells_.x() - 1;
1520 +          }
1521 +          
1522 +          if (m2v.y() >= nCells_.y()) {
1523 +            m2v.y() = 0;          
1524 +          } else if (m2v.y() < 0) {
1525 +            m2v.y() = nCells_.y() - 1;
1526 +          }
1527 +          
1528 +          if (m2v.z() >= nCells_.z()) {
1529 +            m2v.z() = 0;          
1530 +          } else if (m2v.z() < 0) {
1531 +            m2v.z() = nCells_.z() - 1;
1532 +          }
1533 +          int m2 = Vlinear (m2v, nCells_);                                      
1534 + #ifdef IS_MPI
1535 +          for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1536 +               j2 != cellListCol_[m2].end(); ++j2) {
1537 +            
1538 +            // In parallel, we need to visit *all* pairs of row
1539 +            // & column indicies and will divide labor in the
1540 +            // force evaluation later.
1541 +            dr = cgColData.position[(*j2)] - rs;
1542 +            if (usePeriodicBoundaryConditions_) {
1543 +              snap_->wrapVector(dr);
1544 +            }
1545 +            if (dr.lengthSquare() < rListSq_) {
1546 +              neighborList.push_back( (*j2) );
1547 +              ++len;
1548 +            }                
1549 +          }        
1550 + #else
1551 +          for (vector<int>::iterator j2 = cellList_[m2].begin();
1552 +               j2 != cellList_[m2].end(); ++j2) {
1553 +          
1554 +            // Always do this if we're in different cells or if
1555 +            // we're in the same cell and the global index of
1556 +            // the j2 cutoff group is greater than or equal to
1557 +            // the j1 cutoff group.  Note that Rappaport's code
1558 +            // has a "less than" conditional here, but that
1559 +            // deals with atom-by-atom computation.  OpenMD
1560 +            // allows atoms within a single cutoff group to
1561 +            // interact with each other.
1562 +            
1563 +            if ( (*j2) >= j1 ) {
1564 +              
1565 +              dr = snap_->cgData.position[(*j2)] - rs;
1566 +              if (usePeriodicBoundaryConditions_) {
1567 +                snap_->wrapVector(dr);
1568 +              }
1569 +              if ( dr.lengthSquare() < rListSq_) {
1570 +                neighborList.push_back( (*j2) );
1571 +                ++len;
1572 +              }
1573 +            }
1574 +          }                
1575 + #endif
1576 +        }
1577 +      }      
1578 +    } else {
1579 +      // branch to do all cutoff group pairs
1580 + #ifdef IS_MPI
1581 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1582 +        point[j1] = len;
1583 +        rs = cgRowData.position[j1];
1584 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {    
1585 +          dr = cgColData.position[j2] - rs;
1586 +          if (usePeriodicBoundaryConditions_) {
1587 +            snap_->wrapVector(dr);
1588 +          }
1589 +          if (dr.lengthSquare() < rListSq_) {
1590 +            neighborList.push_back( j2 );
1591 +            ++len;
1592 +          }
1593 +        }
1594 +      }      
1595 + #else
1596 +      // include all groups here.
1597 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1598 +        point[j1] = len;
1599 +        rs = snap_->cgData.position[j1];
1600 +        // include self group interactions j2 == j1
1601 +        for (int j2 = j1; j2 < nGroups_; j2++) {
1602 +          dr = snap_->cgData.position[j2] - rs;
1603 +          if (usePeriodicBoundaryConditions_) {
1604 +            snap_->wrapVector(dr);
1605 +          }
1606 +          if (dr.lengthSquare() < rListSq_) {
1607 +            neighborList.push_back( j2 );
1608 +            ++len;
1609 +          }
1610 +        }    
1611 +      }
1612 + #endif
1613 +    }
1614 +
1615 + #ifdef IS_MPI
1616 +    point[nGroupsInRow_] = len;
1617 + #else
1618 +    point[nGroups_] = len;
1619 + #endif
1620 +  
1621 +    // save the local cutoff group positions for the check that is
1622 +    // done on each loop:
1623 +    saved_CG_positions_.clear();
1624 +    saved_CG_positions_.reserve(nGroups_);
1625 +    for (int i = 0; i < nGroups_; i++)
1626 +      saved_CG_positions_.push_back(snap_->cgData.position[i]);
1627 +  }
1628   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines