ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing:
branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 1581 by gezelter, Mon Jun 13 22:13:12 2011 UTC vs.
trunk/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 1993 by gezelter, Tue Apr 29 17:32:31 2014 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42   #include "parallel/ForceMatrixDecomposition.hpp"
43   #include "math/SquareMatrix3.hpp"
# Line 47 | Line 48 | namespace OpenMD {
48   using namespace std;
49   namespace OpenMD {
50  
51 +  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52 +
53 +    // In a parallel computation, row and colum scans must visit all
54 +    // surrounding cells (not just the 14 upper triangular blocks that
55 +    // are used when the processor can see all pairs)
56 + #ifdef IS_MPI
57 +    cellOffsets_.clear();
58 +    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59 +    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60 +    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                          
61 +    cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62 +    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63 +    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64 +    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65 +    cellOffsets_.push_back( Vector3i( 0, 1,-1) );      
66 +    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 +    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68 +    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69 +    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 +    cellOffsets_.push_back( Vector3i(-1, 0, 0) );      
71 +    cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72 +    cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73 +    cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74 +    cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75 +    cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76 +    cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77 +    cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78 +    cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 +    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 +    cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81 +    cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82 +    cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83 +    cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84 +    cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 + #endif    
86 +  }
87 +
88 +
89    /**
90     * distributeInitialData is essentially a copy of the older fortran
91     * SimulationSetup
92     */
54  
93    void ForceMatrixDecomposition::distributeInitialData() {
94      snap_ = sman_->getCurrentSnapshot();
95      storageLayout_ = sman_->getStorageLayout();
96      ff_ = info_->getForceField();
97      nLocal_ = snap_->getNumberOfAtoms();
98 <
98 >  
99      nGroups_ = info_->getNLocalCutoffGroups();
62    cerr << "in dId, nGroups = " << nGroups_ << "\n";
100      // gather the information for atomtype IDs (atids):
101 <    identsLocal = info_->getIdentArray();
101 >    idents = info_->getIdentArray();
102 >    regions = info_->getRegions();
103      AtomLocalToGlobal = info_->getGlobalAtomIndices();
104      cgLocalToGlobal = info_->getGlobalGroupIndices();
105      vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
106 +
107      massFactors = info_->getMassFactors();
69    PairList excludes = info_->getExcludedInteractions();
70    PairList oneTwo = info_->getOneTwoInteractions();
71    PairList oneThree = info_->getOneThreeInteractions();
72    PairList oneFour = info_->getOneFourInteractions();
108  
109 +    PairList* excludes = info_->getExcludedInteractions();
110 +    PairList* oneTwo = info_->getOneTwoInteractions();
111 +    PairList* oneThree = info_->getOneThreeInteractions();
112 +    PairList* oneFour = info_->getOneFourInteractions();
113 +    
114 +    if (needVelocities_)
115 +      snap_->cgData.setStorageLayout(DataStorage::dslPosition |
116 +                                     DataStorage::dslVelocity);
117 +    else
118 +      snap_->cgData.setStorageLayout(DataStorage::dslPosition);
119 +    
120   #ifdef IS_MPI
121  
122 <    AtomCommIntRow = new Communicator<Row,int>(nLocal_);
123 <    AtomCommRealRow = new Communicator<Row,RealType>(nLocal_);
78 <    AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_);
79 <    AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_);
80 <    AtomCommPotRow = new Communicator<Row,potVec>(nLocal_);
122 >    MPI_Comm row = rowComm.getComm();
123 >    MPI_Comm col = colComm.getComm();
124  
125 <    AtomCommIntColumn = new Communicator<Column,int>(nLocal_);
126 <    AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_);
127 <    AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_);
128 <    AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_);
129 <    AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_);
125 >    AtomPlanIntRow = new Plan<int>(row, nLocal_);
126 >    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
127 >    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
128 >    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
129 >    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
130  
131 <    cgCommIntRow = new Communicator<Row,int>(nGroups_);
132 <    cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_);
133 <    cgCommIntColumn = new Communicator<Column,int>(nGroups_);
134 <    cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_);
131 >    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
132 >    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
133 >    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
134 >    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
135 >    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
136  
137 <    nAtomsInRow_ = AtomCommIntRow->getSize();
138 <    nAtomsInCol_ = AtomCommIntColumn->getSize();
139 <    nGroupsInRow_ = cgCommIntRow->getSize();
140 <    nGroupsInCol_ = cgCommIntColumn->getSize();
137 >    cgPlanIntRow = new Plan<int>(row, nGroups_);
138 >    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
139 >    cgPlanIntColumn = new Plan<int>(col, nGroups_);
140 >    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
141  
142 +    nAtomsInRow_ = AtomPlanIntRow->getSize();
143 +    nAtomsInCol_ = AtomPlanIntColumn->getSize();
144 +    nGroupsInRow_ = cgPlanIntRow->getSize();
145 +    nGroupsInCol_ = cgPlanIntColumn->getSize();
146 +
147      // Modify the data storage objects with the correct layouts and sizes:
148      atomRowData.resize(nAtomsInRow_);
149      atomRowData.setStorageLayout(storageLayout_);
# Line 103 | Line 152 | namespace OpenMD {
152      cgRowData.resize(nGroupsInRow_);
153      cgRowData.setStorageLayout(DataStorage::dslPosition);
154      cgColData.resize(nGroupsInCol_);
155 <    cgColData.setStorageLayout(DataStorage::dslPosition);
156 <        
155 >    if (needVelocities_)
156 >      // we only need column velocities if we need them.
157 >      cgColData.setStorageLayout(DataStorage::dslPosition |
158 >                                 DataStorage::dslVelocity);
159 >    else    
160 >      cgColData.setStorageLayout(DataStorage::dslPosition);
161 >      
162      identsRow.resize(nAtomsInRow_);
163      identsCol.resize(nAtomsInCol_);
164      
165 <    AtomCommIntRow->gather(identsLocal, identsRow);
166 <    AtomCommIntColumn->gather(identsLocal, identsCol);
165 >    AtomPlanIntRow->gather(idents, identsRow);
166 >    AtomPlanIntColumn->gather(idents, identsCol);
167 >
168 >    regionsRow.resize(nAtomsInRow_);
169 >    regionsCol.resize(nAtomsInCol_);
170      
171 <    AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
172 <    AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
171 >    AtomPlanIntRow->gather(regions, regionsRow);
172 >    AtomPlanIntColumn->gather(regions, regionsCol);
173      
174 <    cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
175 <    cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
174 >    // allocate memory for the parallel objects
175 >    atypesRow.resize(nAtomsInRow_);
176 >    atypesCol.resize(nAtomsInCol_);
177  
178 <    AtomCommRealRow->gather(massFactors, massFactorsRow);
179 <    AtomCommRealColumn->gather(massFactors, massFactorsCol);
178 >    for (int i = 0; i < nAtomsInRow_; i++)
179 >      atypesRow[i] = ff_->getAtomType(identsRow[i]);
180 >    for (int i = 0; i < nAtomsInCol_; i++)
181 >      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
182  
183 +    pot_row.resize(nAtomsInRow_);
184 +    pot_col.resize(nAtomsInCol_);
185 +
186 +    expot_row.resize(nAtomsInRow_);
187 +    expot_col.resize(nAtomsInCol_);
188 +
189 +    AtomRowToGlobal.resize(nAtomsInRow_);
190 +    AtomColToGlobal.resize(nAtomsInCol_);
191 +    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
192 +    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
193 +
194 +    cgRowToGlobal.resize(nGroupsInRow_);
195 +    cgColToGlobal.resize(nGroupsInCol_);
196 +    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
197 +    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
198 +
199 +    massFactorsRow.resize(nAtomsInRow_);
200 +    massFactorsCol.resize(nAtomsInCol_);
201 +    AtomPlanRealRow->gather(massFactors, massFactorsRow);
202 +    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
203 +
204      groupListRow_.clear();
205      groupListRow_.resize(nGroupsInRow_);
206      for (int i = 0; i < nGroupsInRow_; i++) {
# Line 142 | Line 223 | namespace OpenMD {
223        }      
224      }
225  
226 <    skipsForAtom.clear();
227 <    skipsForAtom.resize(nAtomsInRow_);
226 >    excludesForAtom.clear();
227 >    excludesForAtom.resize(nAtomsInRow_);
228      toposForAtom.clear();
229      toposForAtom.resize(nAtomsInRow_);
230      topoDist.clear();
# Line 154 | Line 235 | namespace OpenMD {
235        for (int j = 0; j < nAtomsInCol_; j++) {
236          int jglob = AtomColToGlobal[j];
237  
238 <        if (excludes.hasPair(iglob, jglob))
239 <          skipsForAtom[i].push_back(j);      
238 >        if (excludes->hasPair(iglob, jglob))
239 >          excludesForAtom[i].push_back(j);      
240          
241 <        if (oneTwo.hasPair(iglob, jglob)) {
241 >        if (oneTwo->hasPair(iglob, jglob)) {
242            toposForAtom[i].push_back(j);
243            topoDist[i].push_back(1);
244          } else {
245 <          if (oneThree.hasPair(iglob, jglob)) {
245 >          if (oneThree->hasPair(iglob, jglob)) {
246              toposForAtom[i].push_back(j);
247              topoDist[i].push_back(2);
248            } else {
249 <            if (oneFour.hasPair(iglob, jglob)) {
249 >            if (oneFour->hasPair(iglob, jglob)) {
250                toposForAtom[i].push_back(j);
251                topoDist[i].push_back(3);
252              }
# Line 174 | Line 255 | namespace OpenMD {
255        }      
256      }
257  
258 < #endif
259 <
260 <    groupList_.clear();
180 <    groupList_.resize(nGroups_);
181 <    for (int i = 0; i < nGroups_; i++) {
182 <      int gid = cgLocalToGlobal[i];
183 <      for (int j = 0; j < nLocal_; j++) {
184 <        int aid = AtomLocalToGlobal[j];
185 <        if (globalGroupMembership[aid] == gid) {
186 <          groupList_[i].push_back(j);
187 <        }
188 <      }      
189 <    }
190 <
191 <    skipsForAtom.clear();
192 <    skipsForAtom.resize(nLocal_);
258 > #else
259 >    excludesForAtom.clear();
260 >    excludesForAtom.resize(nLocal_);
261      toposForAtom.clear();
262      toposForAtom.resize(nLocal_);
263      topoDist.clear();
# Line 201 | Line 269 | namespace OpenMD {
269        for (int j = 0; j < nLocal_; j++) {
270          int jglob = AtomLocalToGlobal[j];
271  
272 <        if (excludes.hasPair(iglob, jglob))
273 <          skipsForAtom[i].push_back(j);              
272 >        if (excludes->hasPair(iglob, jglob))
273 >          excludesForAtom[i].push_back(j);              
274          
275 <        if (oneTwo.hasPair(iglob, jglob)) {
275 >        if (oneTwo->hasPair(iglob, jglob)) {
276            toposForAtom[i].push_back(j);
277            topoDist[i].push_back(1);
278          } else {
279 <          if (oneThree.hasPair(iglob, jglob)) {
279 >          if (oneThree->hasPair(iglob, jglob)) {
280              toposForAtom[i].push_back(j);
281              topoDist[i].push_back(2);
282            } else {
283 <            if (oneFour.hasPair(iglob, jglob)) {
283 >            if (oneFour->hasPair(iglob, jglob)) {
284                toposForAtom[i].push_back(j);
285                topoDist[i].push_back(3);
286              }
# Line 220 | Line 288 | namespace OpenMD {
288          }
289        }      
290      }
291 <    
291 > #endif
292 >
293 >    // allocate memory for the parallel objects
294 >    atypesLocal.resize(nLocal_);
295 >
296 >    for (int i = 0; i < nLocal_; i++)
297 >      atypesLocal[i] = ff_->getAtomType(idents[i]);
298 >
299 >    groupList_.clear();
300 >    groupList_.resize(nGroups_);
301 >    for (int i = 0; i < nGroups_; i++) {
302 >      int gid = cgLocalToGlobal[i];
303 >      for (int j = 0; j < nLocal_; j++) {
304 >        int aid = AtomLocalToGlobal[j];
305 >        if (globalGroupMembership[aid] == gid) {
306 >          groupList_[i].push_back(j);
307 >        }
308 >      }      
309 >    }
310 >
311 >
312      createGtypeCutoffMap();
313 +
314    }
315    
316    void ForceMatrixDecomposition::createGtypeCutoffMap() {
317 +    
318 +    GrCut.clear();
319 +    GrCutSq.clear();
320 +    GrlistSq.clear();
321  
322      RealType tol = 1e-6;
323 <    RealType rc;
323 >    largestRcut_ = 0.0;
324      int atid;
325      set<AtomType*> atypes = info_->getSimulatedAtomTypes();
326 <    vector<RealType> atypeCutoff;
327 <    atypeCutoff.resize( atypes.size() );
328 <
326 >    
327 >    map<int, RealType> atypeCutoff;
328 >      
329      for (set<AtomType*>::iterator at = atypes.begin();
330           at != atypes.end(); ++at){
238      rc = interactionMan_->getSuggestedCutoffRadius(*at);
331        atid = (*at)->getIdent();
332 <      atypeCutoff[atid] = rc;
332 >      if (userChoseCutoff_)
333 >        atypeCutoff[atid] = userCutoff_;
334 >      else
335 >        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
336      }
337 <
337 >    
338      vector<RealType> gTypeCutoffs;
244
339      // first we do a single loop over the cutoff groups to find the
340      // largest cutoff for any atypes present in this group.
341   #ifdef IS_MPI
# Line 299 | Line 393 | namespace OpenMD {
393  
394      vector<RealType> groupCutoff(nGroups_, 0.0);
395      groupToGtype.resize(nGroups_);
302
303    cerr << "nGroups = " << nGroups_ << "\n";
396      for (int cg1 = 0; cg1 < nGroups_; cg1++) {
305
397        groupCutoff[cg1] = 0.0;
398        vector<int> atomList = getAtomsInGroupRow(cg1);
308
399        for (vector<int>::iterator ia = atomList.begin();
400             ia != atomList.end(); ++ia) {            
401          int atom1 = (*ia);
402 <        atid = identsLocal[atom1];
403 <        if (atypeCutoff[atid] > groupCutoff[cg1]) {
402 >        atid = idents[atom1];
403 >        if (atypeCutoff[atid] > groupCutoff[cg1])
404            groupCutoff[cg1] = atypeCutoff[atid];
315        }
405        }
406 <
406 >      
407        bool gTypeFound = false;
408 <      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
408 >      for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) {
409          if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
410            groupToGtype[cg1] = gt;
411            gTypeFound = true;
412          }
413        }
414 <      if (!gTypeFound) {
414 >      if (!gTypeFound) {      
415          gTypeCutoffs.push_back( groupCutoff[cg1] );
416          groupToGtype[cg1] = gTypeCutoffs.size() - 1;
417        }      
418      }
419   #endif
420  
332    cerr << "gTypeCutoffs.size() = " << gTypeCutoffs.size() << "\n";
421      // Now we find the maximum group cutoff value present in the simulation
422  
423 <    RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end());
423 >    RealType groupMax = *max_element(gTypeCutoffs.begin(),
424 >                                     gTypeCutoffs.end());
425  
426   #ifdef IS_MPI
427 <    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX);
427 >    MPI_Allreduce(MPI_IN_PLACE, &groupMax, 1, MPI_REALTYPE,
428 >                  MPI_MAX, MPI_COMM_WORLD);
429   #endif
430      
431      RealType tradRcut = groupMax;
432  
433 <    for (int i = 0; i < gTypeCutoffs.size();  i++) {
434 <      for (int j = 0; j < gTypeCutoffs.size();  j++) {      
433 >    GrCut.resize( gTypeCutoffs.size() );
434 >    GrCutSq.resize( gTypeCutoffs.size() );
435 >    GrlistSq.resize( gTypeCutoffs.size() );
436 >
437 >
438 >    for (unsigned int i = 0; i < gTypeCutoffs.size();  i++) {
439 >      GrCut[i].resize( gTypeCutoffs.size() , 0.0);
440 >      GrCutSq[i].resize( gTypeCutoffs.size(), 0.0 );
441 >      GrlistSq[i].resize( gTypeCutoffs.size(), 0.0 );
442 >
443 >      for (unsigned int j = 0; j < gTypeCutoffs.size();  j++) {      
444          RealType thisRcut;
445          switch(cutoffPolicy_) {
446          case TRADITIONAL:
# Line 363 | Line 462 | namespace OpenMD {
462            break;
463          }
464  
465 <        pair<int,int> key = make_pair(i,j);
367 <        gTypeCutoffMap[key].first = thisRcut;
368 <
465 >        GrCut[i][j] = thisRcut;
466          if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
467 +        GrCutSq[i][j] = thisRcut * thisRcut;
468 +        GrlistSq[i][j] = pow(thisRcut + skinThickness_, 2);
469  
470 <        gTypeCutoffMap[key].second = thisRcut*thisRcut;
471 <        
472 <        gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
374 <
470 >        // pair<int,int> key = make_pair(i,j);
471 >        // gTypeCutoffMap[key].first = thisRcut;
472 >        // gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
473          // sanity check
474          
475          if (userChoseCutoff_) {
476 <          if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
476 >          if (abs(GrCut[i][j] - userCutoff_) > 0.0001) {
477              sprintf(painCave.errMsg,
478                      "ForceMatrixDecomposition::createGtypeCutoffMap "
479 <                    "user-specified rCut does not match computed group Cutoff\n");
479 >                    "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
480              painCave.severity = OPENMD_ERROR;
481              painCave.isFatal = 1;
482              simError();            
# Line 388 | Line 486 | namespace OpenMD {
486      }
487    }
488  
489 <
392 <  groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
489 >  void ForceMatrixDecomposition::getGroupCutoffs(int &cg1, int &cg2, RealType &rcut, RealType &rcutsq, RealType &rlistsq) {
490      int i, j;  
491   #ifdef IS_MPI
492      i = groupRowToGtype[cg1];
# Line 398 | Line 495 | namespace OpenMD {
495      i = groupToGtype[cg1];
496      j = groupToGtype[cg2];
497   #endif    
498 <    return gTypeCutoffMap[make_pair(i,j)];
498 >    rcut = GrCut[i][j];
499 >    rcutsq = GrCutSq[i][j];
500 >    rlistsq = GrlistSq[i][j];
501 >    return;
502 >    //return gTypeCutoffMap[make_pair(i,j)];
503    }
504  
505    int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
506 <    for (int j = 0; j < toposForAtom[atom1].size(); j++) {
506 >    for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) {
507        if (toposForAtom[atom1][j] == atom2)
508          return topoDist[atom1][j];
509 <    }
509 >    }                                          
510      return 0;
511    }
512  
513    void ForceMatrixDecomposition::zeroWorkArrays() {
514 +    pairwisePot = 0.0;
515 +    embeddingPot = 0.0;
516 +    excludedPot = 0.0;
517 +    excludedSelfPot = 0.0;
518  
414    for (int j = 0; j < N_INTERACTION_FAMILIES; j++) {
415      longRangePot_[j] = 0.0;
416    }
417
519   #ifdef IS_MPI
520      if (storageLayout_ & DataStorage::dslForce) {
521        fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
# Line 430 | Line 531 | namespace OpenMD {
531           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
532  
533      fill(pot_col.begin(), pot_col.end(),
534 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
535 +
536 +    fill(expot_row.begin(), expot_row.end(),
537           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
434    
435    pot_local = Vector<RealType, N_INTERACTION_FAMILIES>(0.0);
538  
539 +    fill(expot_col.begin(), expot_col.end(),
540 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
541 +
542      if (storageLayout_ & DataStorage::dslParticlePot) {    
543 <      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0);
544 <      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0);
543 >      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
544 >           0.0);
545 >      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
546 >           0.0);
547      }
548  
549      if (storageLayout_ & DataStorage::dslDensity) {      
# Line 445 | Line 552 | namespace OpenMD {
552      }
553  
554      if (storageLayout_ & DataStorage::dslFunctional) {  
555 <      fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0);
556 <      fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0);
555 >      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
556 >           0.0);
557 >      fill(atomColData.functional.begin(), atomColData.functional.end(),
558 >           0.0);
559      }
560  
561      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
# Line 456 | Line 565 | namespace OpenMD {
565             atomColData.functionalDerivative.end(), 0.0);
566      }
567  
568 < #else
569 <    
568 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
569 >      fill(atomRowData.skippedCharge.begin(),
570 >           atomRowData.skippedCharge.end(), 0.0);
571 >      fill(atomColData.skippedCharge.begin(),
572 >           atomColData.skippedCharge.end(), 0.0);
573 >    }
574 >
575 >    if (storageLayout_ & DataStorage::dslFlucQForce) {      
576 >      fill(atomRowData.flucQFrc.begin(),
577 >           atomRowData.flucQFrc.end(), 0.0);
578 >      fill(atomColData.flucQFrc.begin(),
579 >           atomColData.flucQFrc.end(), 0.0);
580 >    }
581 >
582 >    if (storageLayout_ & DataStorage::dslElectricField) {    
583 >      fill(atomRowData.electricField.begin(),
584 >           atomRowData.electricField.end(), V3Zero);
585 >      fill(atomColData.electricField.begin(),
586 >           atomColData.electricField.end(), V3Zero);
587 >    }
588 >
589 >    if (storageLayout_ & DataStorage::dslSitePotential) {    
590 >      fill(atomRowData.sitePotential.begin(),
591 >           atomRowData.sitePotential.end(), 0.0);
592 >      fill(atomColData.sitePotential.begin(),
593 >           atomColData.sitePotential.end(), 0.0);
594 >    }
595 >
596 > #endif
597 >    // even in parallel, we need to zero out the local arrays:
598 >
599      if (storageLayout_ & DataStorage::dslParticlePot) {      
600        fill(snap_->atomData.particlePot.begin(),
601             snap_->atomData.particlePot.end(), 0.0);
# Line 467 | Line 605 | namespace OpenMD {
605        fill(snap_->atomData.density.begin(),
606             snap_->atomData.density.end(), 0.0);
607      }
608 +
609      if (storageLayout_ & DataStorage::dslFunctional) {
610        fill(snap_->atomData.functional.begin(),
611             snap_->atomData.functional.end(), 0.0);
612      }
613 +
614      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
615        fill(snap_->atomData.functionalDerivative.begin(),
616             snap_->atomData.functionalDerivative.end(), 0.0);
617      }
618 < #endif
619 <    
618 >
619 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
620 >      fill(snap_->atomData.skippedCharge.begin(),
621 >           snap_->atomData.skippedCharge.end(), 0.0);
622 >    }
623 >
624 >    if (storageLayout_ & DataStorage::dslElectricField) {      
625 >      fill(snap_->atomData.electricField.begin(),
626 >           snap_->atomData.electricField.end(), V3Zero);
627 >    }
628 >    if (storageLayout_ & DataStorage::dslSitePotential) {      
629 >      fill(snap_->atomData.sitePotential.begin(),
630 >           snap_->atomData.sitePotential.end(), 0.0);
631 >    }
632    }
633  
634  
# Line 486 | Line 638 | namespace OpenMD {
638   #ifdef IS_MPI
639      
640      // gather up the atomic positions
641 <    AtomCommVectorRow->gather(snap_->atomData.position,
641 >    AtomPlanVectorRow->gather(snap_->atomData.position,
642                                atomRowData.position);
643 <    AtomCommVectorColumn->gather(snap_->atomData.position,
643 >    AtomPlanVectorColumn->gather(snap_->atomData.position,
644                                   atomColData.position);
645      
646      // gather up the cutoff group positions
647 <    cgCommVectorRow->gather(snap_->cgData.position,
647 >
648 >    cgPlanVectorRow->gather(snap_->cgData.position,
649                              cgRowData.position);
650 <    cgCommVectorColumn->gather(snap_->cgData.position,
650 >
651 >    cgPlanVectorColumn->gather(snap_->cgData.position,
652                                 cgColData.position);
653 +
654 +
655 +
656 +    if (needVelocities_) {
657 +      // gather up the atomic velocities
658 +      AtomPlanVectorColumn->gather(snap_->atomData.velocity,
659 +                                   atomColData.velocity);
660 +      
661 +      cgPlanVectorColumn->gather(snap_->cgData.velocity,
662 +                                 cgColData.velocity);
663 +    }
664 +
665      
666      // if needed, gather the atomic rotation matrices
667      if (storageLayout_ & DataStorage::dslAmat) {
668 <      AtomCommMatrixRow->gather(snap_->atomData.aMat,
668 >      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
669                                  atomRowData.aMat);
670 <      AtomCommMatrixColumn->gather(snap_->atomData.aMat,
670 >      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
671                                     atomColData.aMat);
672      }
673 <    
674 <    // if needed, gather the atomic eletrostatic frames
675 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
676 <      AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
677 <                                atomRowData.electroFrame);
678 <      AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
679 <                                   atomColData.electroFrame);
673 >
674 >    // if needed, gather the atomic eletrostatic information
675 >    if (storageLayout_ & DataStorage::dslDipole) {
676 >      AtomPlanVectorRow->gather(snap_->atomData.dipole,
677 >                                atomRowData.dipole);
678 >      AtomPlanVectorColumn->gather(snap_->atomData.dipole,
679 >                                   atomColData.dipole);
680      }
681 +
682 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
683 +      AtomPlanMatrixRow->gather(snap_->atomData.quadrupole,
684 +                                atomRowData.quadrupole);
685 +      AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole,
686 +                                   atomColData.quadrupole);
687 +    }
688 +        
689 +    // if needed, gather the atomic fluctuating charge values
690 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {
691 +      AtomPlanRealRow->gather(snap_->atomData.flucQPos,
692 +                              atomRowData.flucQPos);
693 +      AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
694 +                                 atomColData.flucQPos);
695 +    }
696 +
697   #endif      
698    }
699    
# Line 525 | Line 707 | namespace OpenMD {
707      
708      if (storageLayout_ & DataStorage::dslDensity) {
709        
710 <      AtomCommRealRow->scatter(atomRowData.density,
710 >      AtomPlanRealRow->scatter(atomRowData.density,
711                                 snap_->atomData.density);
712        
713        int n = snap_->atomData.density.size();
714        vector<RealType> rho_tmp(n, 0.0);
715 <      AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
715 >      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
716        for (int i = 0; i < n; i++)
717          snap_->atomData.density[i] += rho_tmp[i];
718      }
719 +
720 +    // this isn't necessary if we don't have polarizable atoms, but
721 +    // we'll leave it here for now.
722 +    if (storageLayout_ & DataStorage::dslElectricField) {
723 +      
724 +      AtomPlanVectorRow->scatter(atomRowData.electricField,
725 +                                 snap_->atomData.electricField);
726 +      
727 +      int n = snap_->atomData.electricField.size();
728 +      vector<Vector3d> field_tmp(n, V3Zero);
729 +      AtomPlanVectorColumn->scatter(atomColData.electricField,
730 +                                    field_tmp);
731 +      for (int i = 0; i < n; i++)
732 +        snap_->atomData.electricField[i] += field_tmp[i];
733 +    }
734   #endif
735    }
736  
# Line 546 | Line 743 | namespace OpenMD {
743      storageLayout_ = sman_->getStorageLayout();
744   #ifdef IS_MPI
745      if (storageLayout_ & DataStorage::dslFunctional) {
746 <      AtomCommRealRow->gather(snap_->atomData.functional,
746 >      AtomPlanRealRow->gather(snap_->atomData.functional,
747                                atomRowData.functional);
748 <      AtomCommRealColumn->gather(snap_->atomData.functional,
748 >      AtomPlanRealColumn->gather(snap_->atomData.functional,
749                                   atomColData.functional);
750      }
751      
752      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
753 <      AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
753 >      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
754                                atomRowData.functionalDerivative);
755 <      AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
755 >      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
756                                   atomColData.functionalDerivative);
757      }
758   #endif
# Line 569 | Line 766 | namespace OpenMD {
766      int n = snap_->atomData.force.size();
767      vector<Vector3d> frc_tmp(n, V3Zero);
768      
769 <    AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
769 >    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
770      for (int i = 0; i < n; i++) {
771        snap_->atomData.force[i] += frc_tmp[i];
772        frc_tmp[i] = 0.0;
773      }
774      
775 <    AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
776 <    for (int i = 0; i < n; i++)
775 >    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
776 >    for (int i = 0; i < n; i++) {
777        snap_->atomData.force[i] += frc_tmp[i];
778 <    
779 <    
778 >    }
779 >        
780      if (storageLayout_ & DataStorage::dslTorque) {
781  
782 <      int nt = snap_->atomData.force.size();
782 >      int nt = snap_->atomData.torque.size();
783        vector<Vector3d> trq_tmp(nt, V3Zero);
784  
785 <      AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
786 <      for (int i = 0; i < n; i++) {
785 >      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
786 >      for (int i = 0; i < nt; i++) {
787          snap_->atomData.torque[i] += trq_tmp[i];
788          trq_tmp[i] = 0.0;
789        }
790        
791 <      AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
792 <      for (int i = 0; i < n; i++)
791 >      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
792 >      for (int i = 0; i < nt; i++)
793          snap_->atomData.torque[i] += trq_tmp[i];
794      }
795 +
796 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
797 +
798 +      int ns = snap_->atomData.skippedCharge.size();
799 +      vector<RealType> skch_tmp(ns, 0.0);
800 +
801 +      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
802 +      for (int i = 0; i < ns; i++) {
803 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
804 +        skch_tmp[i] = 0.0;
805 +      }
806 +      
807 +      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
808 +      for (int i = 0; i < ns; i++)
809 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
810 +            
811 +    }
812      
813 +    if (storageLayout_ & DataStorage::dslFlucQForce) {
814 +
815 +      int nq = snap_->atomData.flucQFrc.size();
816 +      vector<RealType> fqfrc_tmp(nq, 0.0);
817 +
818 +      AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
819 +      for (int i = 0; i < nq; i++) {
820 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
821 +        fqfrc_tmp[i] = 0.0;
822 +      }
823 +      
824 +      AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
825 +      for (int i = 0; i < nq; i++)
826 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
827 +            
828 +    }
829 +
830 +    if (storageLayout_ & DataStorage::dslElectricField) {
831 +
832 +      int nef = snap_->atomData.electricField.size();
833 +      vector<Vector3d> efield_tmp(nef, V3Zero);
834 +
835 +      AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp);
836 +      for (int i = 0; i < nef; i++) {
837 +        snap_->atomData.electricField[i] += efield_tmp[i];
838 +        efield_tmp[i] = 0.0;
839 +      }
840 +      
841 +      AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp);
842 +      for (int i = 0; i < nef; i++)
843 +        snap_->atomData.electricField[i] += efield_tmp[i];
844 +    }
845 +
846 +    if (storageLayout_ & DataStorage::dslSitePotential) {
847 +
848 +      int nsp = snap_->atomData.sitePotential.size();
849 +      vector<RealType> sp_tmp(nsp, 0.0);
850 +
851 +      AtomPlanRealRow->scatter(atomRowData.sitePotential, sp_tmp);
852 +      for (int i = 0; i < nsp; i++) {
853 +        snap_->atomData.sitePotential[i] += sp_tmp[i];
854 +        sp_tmp[i] = 0.0;
855 +      }
856 +      
857 +      AtomPlanRealColumn->scatter(atomColData.sitePotential, sp_tmp);
858 +      for (int i = 0; i < nsp; i++)
859 +        snap_->atomData.sitePotential[i] += sp_tmp[i];
860 +    }
861 +
862      nLocal_ = snap_->getNumberOfAtoms();
863  
864      vector<potVec> pot_temp(nLocal_,
865                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
866 +    vector<potVec> expot_temp(nLocal_,
867 +                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
868  
869      // scatter/gather pot_row into the members of my column
870            
871 <    AtomCommPotRow->scatter(pot_row, pot_temp);
871 >    AtomPlanPotRow->scatter(pot_row, pot_temp);
872 >    AtomPlanPotRow->scatter(expot_row, expot_temp);
873  
874 <    for (int ii = 0;  ii < pot_temp.size(); ii++ )
875 <      pot_local += pot_temp[ii];
876 <    
874 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
875 >      pairwisePot += pot_temp[ii];
876 >
877 >    for (int ii = 0;  ii < expot_temp.size(); ii++ )
878 >      excludedPot += expot_temp[ii];
879 >        
880 >    if (storageLayout_ & DataStorage::dslParticlePot) {
881 >      // This is the pairwise contribution to the particle pot.  The
882 >      // embedding contribution is added in each of the low level
883 >      // non-bonded routines.  In single processor, this is done in
884 >      // unpackInteractionData, not in collectData.
885 >      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
886 >        for (int i = 0; i < nLocal_; i++) {
887 >          // factor of two is because the total potential terms are divided
888 >          // by 2 in parallel due to row/ column scatter      
889 >          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
890 >        }
891 >      }
892 >    }
893 >
894      fill(pot_temp.begin(), pot_temp.end(),
895           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
896 +    fill(expot_temp.begin(), expot_temp.end(),
897 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
898        
899 <    AtomCommPotColumn->scatter(pot_col, pot_temp);    
899 >    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
900 >    AtomPlanPotColumn->scatter(expot_col, expot_temp);    
901      
902      for (int ii = 0;  ii < pot_temp.size(); ii++ )
903 <      pot_local += pot_temp[ii];
903 >      pairwisePot += pot_temp[ii];    
904 >
905 >    for (int ii = 0;  ii < expot_temp.size(); ii++ )
906 >      excludedPot += expot_temp[ii];    
907 >
908 >    if (storageLayout_ & DataStorage::dslParticlePot) {
909 >      // This is the pairwise contribution to the particle pot.  The
910 >      // embedding contribution is added in each of the low level
911 >      // non-bonded routines.  In single processor, this is done in
912 >      // unpackInteractionData, not in collectData.
913 >      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
914 >        for (int i = 0; i < nLocal_; i++) {
915 >          // factor of two is because the total potential terms are divided
916 >          // by 2 in parallel due to row/ column scatter      
917 >          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
918 >        }
919 >      }
920 >    }
921      
922 +    if (storageLayout_ & DataStorage::dslParticlePot) {
923 +      int npp = snap_->atomData.particlePot.size();
924 +      vector<RealType> ppot_temp(npp, 0.0);
925 +
926 +      // This is the direct or embedding contribution to the particle
927 +      // pot.
928 +      
929 +      AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
930 +      for (int i = 0; i < npp; i++) {
931 +        snap_->atomData.particlePot[i] += ppot_temp[i];
932 +      }
933 +
934 +      fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
935 +      
936 +      AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
937 +      for (int i = 0; i < npp; i++) {
938 +        snap_->atomData.particlePot[i] += ppot_temp[i];
939 +      }
940 +    }
941 +
942 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
943 +      RealType ploc1 = pairwisePot[ii];
944 +      RealType ploc2 = 0.0;
945 +      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
946 +      pairwisePot[ii] = ploc2;
947 +    }
948 +
949 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
950 +      RealType ploc1 = excludedPot[ii];
951 +      RealType ploc2 = 0.0;
952 +      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
953 +      excludedPot[ii] = ploc2;
954 +    }
955 +
956 +    // Here be dragons.
957 +    MPI_Comm col = colComm.getComm();
958 +
959 +    MPI_Allreduce(MPI_IN_PLACE,
960 +                  &snap_->frameData.conductiveHeatFlux[0], 3,
961 +                  MPI_REALTYPE, MPI_SUM, col);
962 +
963 +
964   #endif
965 +
966    }
967  
968 <  int ForceMatrixDecomposition::getNAtomsInRow() {  
968 >  /**
969 >   * Collects information obtained during the post-pair (and embedding
970 >   * functional) loops onto local data structures.
971 >   */
972 >  void ForceMatrixDecomposition::collectSelfData() {
973 >    snap_ = sman_->getCurrentSnapshot();
974 >    storageLayout_ = sman_->getStorageLayout();
975 >
976   #ifdef IS_MPI
977 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
978 +      RealType ploc1 = embeddingPot[ii];
979 +      RealType ploc2 = 0.0;
980 +      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
981 +      embeddingPot[ii] = ploc2;
982 +    }    
983 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
984 +      RealType ploc1 = excludedSelfPot[ii];
985 +      RealType ploc2 = 0.0;
986 +      MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
987 +      excludedSelfPot[ii] = ploc2;
988 +    }    
989 + #endif
990 +    
991 +  }
992 +
993 +
994 +
995 +  int& ForceMatrixDecomposition::getNAtomsInRow() {  
996 + #ifdef IS_MPI
997      return nAtomsInRow_;
998   #else
999      return nLocal_;
# Line 630 | Line 1003 | namespace OpenMD {
1003    /**
1004     * returns the list of atoms belonging to this group.  
1005     */
1006 <  vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
1006 >  vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
1007   #ifdef IS_MPI
1008      return groupListRow_[cg1];
1009   #else
# Line 638 | Line 1011 | namespace OpenMD {
1011   #endif
1012    }
1013  
1014 <  vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
1014 >  vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
1015   #ifdef IS_MPI
1016      return groupListCol_[cg2];
1017   #else
# Line 655 | Line 1028 | namespace OpenMD {
1028      d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
1029   #endif
1030      
1031 <    snap_->wrapVector(d);
1031 >    if (usePeriodicBoundaryConditions_) {
1032 >      snap_->wrapVector(d);
1033 >    }
1034      return d;    
1035    }
1036  
1037 +  Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
1038 + #ifdef IS_MPI
1039 +    return cgColData.velocity[cg2];
1040 + #else
1041 +    return snap_->cgData.velocity[cg2];
1042 + #endif
1043 +  }
1044  
1045 +  Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
1046 + #ifdef IS_MPI
1047 +    return atomColData.velocity[atom2];
1048 + #else
1049 +    return snap_->atomData.velocity[atom2];
1050 + #endif
1051 +  }
1052 +
1053 +
1054    Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
1055  
1056      Vector3d d;
# Line 669 | Line 1060 | namespace OpenMD {
1060   #else
1061      d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
1062   #endif
1063 <
1064 <    snap_->wrapVector(d);
1063 >    if (usePeriodicBoundaryConditions_) {
1064 >      snap_->wrapVector(d);
1065 >    }
1066      return d;    
1067    }
1068    
# Line 682 | Line 1074 | namespace OpenMD {
1074   #else
1075      d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
1076   #endif
1077 <    
1078 <    snap_->wrapVector(d);
1077 >    if (usePeriodicBoundaryConditions_) {
1078 >      snap_->wrapVector(d);
1079 >    }
1080      return d;    
1081    }
1082  
1083 <  RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
1083 >  RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) {
1084   #ifdef IS_MPI
1085      return massFactorsRow[atom1];
1086   #else
# Line 695 | Line 1088 | namespace OpenMD {
1088   #endif
1089    }
1090  
1091 <  RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
1091 >  RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
1092   #ifdef IS_MPI
1093      return massFactorsCol[atom2];
1094   #else
# Line 712 | Line 1105 | namespace OpenMD {
1105   #else
1106      d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
1107   #endif
1108 <
1109 <    snap_->wrapVector(d);
1108 >    if (usePeriodicBoundaryConditions_) {
1109 >      snap_->wrapVector(d);
1110 >    }
1111      return d;    
1112    }
1113  
1114 <  vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) {
1115 <    return skipsForAtom[atom1];
1114 >  vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
1115 >    return excludesForAtom[atom1];
1116    }
1117  
1118    /**
1119 <   * There are a number of reasons to skip a pair or a
726 <   * particle. Mostly we do this to exclude atoms who are involved in
727 <   * short range interactions (bonds, bends, torsions), but we also
728 <   * need to exclude some overcounted interactions that result from
1119 >   * We need to exclude some overcounted interactions that result from
1120     * the parallel decomposition.
1121     */
1122 <  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
1122 >  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) {
1123      int unique_id_1, unique_id_2;
1124 <
1124 >        
1125   #ifdef IS_MPI
1126      // in MPI, we have to look up the unique IDs for each atom
1127      unique_id_1 = AtomRowToGlobal[atom1];
1128      unique_id_2 = AtomColToGlobal[atom2];
1129 +    // group1 = cgRowToGlobal[cg1];
1130 +    // group2 = cgColToGlobal[cg2];
1131 + #else
1132 +    unique_id_1 = AtomLocalToGlobal[atom1];
1133 +    unique_id_2 = AtomLocalToGlobal[atom2];
1134 +    int group1 = cgLocalToGlobal[cg1];
1135 +    int group2 = cgLocalToGlobal[cg2];
1136 + #endif  
1137  
739    // this situation should only arise in MPI simulations
1138      if (unique_id_1 == unique_id_2) return true;
1139 <    
1139 >
1140 > #ifdef IS_MPI
1141      // this prevents us from doing the pair on multiple processors
1142      if (unique_id_1 < unique_id_2) {
1143        if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
1144      } else {
1145 <      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1145 >      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1146      }
1147 < #else
1148 <    // in the normal loop, the atom numbers are unique
1149 <    unique_id_1 = atom1;
1150 <    unique_id_2 = atom2;
1147 > #endif    
1148 >
1149 > #ifndef IS_MPI
1150 >    if (group1 == group2) {
1151 >      if (unique_id_1 < unique_id_2) return true;
1152 >    }
1153   #endif
1154      
1155 <    for (vector<int>::iterator i = skipsForAtom[atom1].begin();
1156 <         i != skipsForAtom[atom1].end(); ++i) {
756 <      if ( (*i) == unique_id_2 ) return true;
757 <    }    
1155 >    return false;
1156 >  }
1157  
1158 +  /**
1159 +   * We need to handle the interactions for atoms who are involved in
1160 +   * the same rigid body as well as some short range interactions
1161 +   * (bonds, bends, torsions) differently from other interactions.
1162 +   * We'll still visit the pairwise routines, but with a flag that
1163 +   * tells those routines to exclude the pair from direct long range
1164 +   * interactions.  Some indirect interactions (notably reaction
1165 +   * field) must still be handled for these pairs.
1166 +   */
1167 +  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
1168 +
1169 +    // excludesForAtom was constructed to use row/column indices in the MPI
1170 +    // version, and to use local IDs in the non-MPI version:
1171 +    
1172 +    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
1173 +         i != excludesForAtom[atom1].end(); ++i) {
1174 +      if ( (*i) == atom2 ) return true;
1175 +    }
1176 +
1177 +    return false;
1178    }
1179  
1180  
# Line 776 | Line 1195 | namespace OpenMD {
1195    }
1196  
1197      // filling interaction blocks with pointers
1198 <  void ForceMatrixDecomposition::fillInteractionData(InteractionData idat,
1199 <                                                     int atom1, int atom2) {    
1198 >  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1199 >                                                     int atom1, int atom2) {
1200 >
1201 >    idat.excluded = excludeAtomPair(atom1, atom2);
1202 >  
1203   #ifdef IS_MPI
1204 <    
1205 <    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
1206 <                             ff_->getAtomType(identsCol[atom2]) );
1207 <    
1204 >    //idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
1205 >    idat.atid1 = identsRow[atom1];
1206 >    idat.atid2 = identsCol[atom2];
1207 >
1208 >    if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) {
1209 >      idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]);
1210 >    } else {
1211 >      idat.sameRegion = false;
1212 >    }
1213 >
1214      if (storageLayout_ & DataStorage::dslAmat) {
1215        idat.A1 = &(atomRowData.aMat[atom1]);
1216        idat.A2 = &(atomColData.aMat[atom2]);
1217      }
1218      
791    if (storageLayout_ & DataStorage::dslElectroFrame) {
792      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
793      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
794    }
795
1219      if (storageLayout_ & DataStorage::dslTorque) {
1220        idat.t1 = &(atomRowData.torque[atom1]);
1221        idat.t2 = &(atomColData.torque[atom2]);
1222      }
1223  
1224 +    if (storageLayout_ & DataStorage::dslDipole) {
1225 +      idat.dipole1 = &(atomRowData.dipole[atom1]);
1226 +      idat.dipole2 = &(atomColData.dipole[atom2]);
1227 +    }
1228 +
1229 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1230 +      idat.quadrupole1 = &(atomRowData.quadrupole[atom1]);
1231 +      idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1232 +    }
1233 +
1234      if (storageLayout_ & DataStorage::dslDensity) {
1235        idat.rho1 = &(atomRowData.density[atom1]);
1236        idat.rho2 = &(atomColData.density[atom2]);
# Line 818 | Line 1251 | namespace OpenMD {
1251        idat.particlePot2 = &(atomColData.particlePot[atom2]);
1252      }
1253  
1254 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1255 +      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1256 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1257 +    }
1258 +
1259 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1260 +      idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1261 +      idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1262 +    }
1263 +
1264   #else
1265 +    
1266 +    //idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
1267 +    idat.atid1 = idents[atom1];
1268 +    idat.atid2 = idents[atom2];
1269  
1270 <    idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]),
1271 <                             ff_->getAtomType(identsLocal[atom2]) );
1270 >    if (regions[atom1] >= 0 && regions[atom2] >= 0) {
1271 >      idat.sameRegion = (regions[atom1] == regions[atom2]);
1272 >    } else {
1273 >      idat.sameRegion = false;
1274 >    }
1275  
1276      if (storageLayout_ & DataStorage::dslAmat) {
1277        idat.A1 = &(snap_->atomData.aMat[atom1]);
1278        idat.A2 = &(snap_->atomData.aMat[atom2]);
1279      }
1280  
831    if (storageLayout_ & DataStorage::dslElectroFrame) {
832      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
833      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
834    }
835
1281      if (storageLayout_ & DataStorage::dslTorque) {
1282        idat.t1 = &(snap_->atomData.torque[atom1]);
1283        idat.t2 = &(snap_->atomData.torque[atom2]);
1284      }
1285  
1286 <    if (storageLayout_ & DataStorage::dslDensity) {
1286 >    if (storageLayout_ & DataStorage::dslDipole) {
1287 >      idat.dipole1 = &(snap_->atomData.dipole[atom1]);
1288 >      idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1289 >    }
1290 >
1291 >    if (storageLayout_ & DataStorage::dslQuadrupole) {
1292 >      idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]);
1293 >      idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1294 >    }
1295 >
1296 >    if (storageLayout_ & DataStorage::dslDensity) {    
1297        idat.rho1 = &(snap_->atomData.density[atom1]);
1298        idat.rho2 = &(snap_->atomData.density[atom2]);
1299      }
# Line 858 | Line 1313 | namespace OpenMD {
1313        idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1314      }
1315  
1316 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
1317 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1318 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1319 +    }
1320 +
1321 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1322 +      idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1323 +      idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1324 +    }
1325 +
1326   #endif
1327    }
1328  
1329    
1330 <  void ForceMatrixDecomposition::unpackInteractionData(InteractionData idat, int atom1, int atom2) {    
1330 >  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
1331   #ifdef IS_MPI
1332 <    pot_row[atom1] += 0.5 *  *(idat.pot);
1333 <    pot_col[atom2] += 0.5 *  *(idat.pot);
1332 >    pot_row[atom1] += RealType(0.5) *  *(idat.pot);
1333 >    pot_col[atom2] += RealType(0.5) *  *(idat.pot);
1334 >    expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot);
1335 >    expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot);
1336  
1337      atomRowData.force[atom1] += *(idat.f1);
1338      atomColData.force[atom2] -= *(idat.f1);
872 #else
873    longRangePot_ += *(idat.pot);
874    
875    snap_->atomData.force[atom1] += *(idat.f1);
876    snap_->atomData.force[atom2] -= *(idat.f1);
877 #endif
1339  
1340 <  }
1340 >    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1341 >      atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1342 >      atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1343 >    }
1344  
1345 +    if (storageLayout_ & DataStorage::dslElectricField) {              
1346 +      atomRowData.electricField[atom1] += *(idat.eField1);
1347 +      atomColData.electricField[atom2] += *(idat.eField2);
1348 +    }
1349  
1350 <  void ForceMatrixDecomposition::fillSkipData(InteractionData idat,
1351 <                                              int atom1, int atom2) {
1352 < #ifdef IS_MPI
1353 <    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
886 <                             ff_->getAtomType(identsCol[atom2]) );
1350 >    if (storageLayout_ & DataStorage::dslSitePotential) {              
1351 >      atomRowData.sitePotential[atom1] += *(idat.sPot1);
1352 >      atomColData.sitePotential[atom2] += *(idat.sPot2);
1353 >    }
1354  
1355 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
1356 <      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
1357 <      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
1355 > #else
1356 >    pairwisePot += *(idat.pot);
1357 >    excludedPot += *(idat.excludedPot);
1358 >
1359 >    snap_->atomData.force[atom1] += *(idat.f1);
1360 >    snap_->atomData.force[atom2] -= *(idat.f1);
1361 >
1362 >    if (idat.doParticlePot) {
1363 >      // This is the pairwise contribution to the particle pot.  The
1364 >      // embedding contribution is added in each of the low level
1365 >      // non-bonded routines.  In parallel, this calculation is done
1366 >      // in collectData, not in unpackInteractionData.
1367 >      snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1368 >      snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1369      }
1370 <    if (storageLayout_ & DataStorage::dslTorque) {
1371 <      idat.t1 = &(atomRowData.torque[atom1]);
1372 <      idat.t2 = &(atomColData.torque[atom2]);
1370 >    
1371 >    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1372 >      snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1373 >      snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1374      }
896 #else
897    idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]),
898                             ff_->getAtomType(identsLocal[atom2]) );
1375  
1376 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
1377 <      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
1378 <      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
1376 >    if (storageLayout_ & DataStorage::dslElectricField) {              
1377 >      snap_->atomData.electricField[atom1] += *(idat.eField1);
1378 >      snap_->atomData.electricField[atom2] += *(idat.eField2);
1379      }
1380 <    if (storageLayout_ & DataStorage::dslTorque) {
1381 <      idat.t1 = &(snap_->atomData.torque[atom1]);
1382 <      idat.t2 = &(snap_->atomData.torque[atom2]);
1380 >
1381 >    if (storageLayout_ & DataStorage::dslSitePotential) {              
1382 >      snap_->atomData.sitePotential[atom1] += *(idat.sPot1);
1383 >      snap_->atomData.sitePotential[atom2] += *(idat.sPot2);
1384      }
1385 < #endif    
1385 >
1386 > #endif
1387 >    
1388    }
1389  
1390    /*
# Line 914 | Line 1393 | namespace OpenMD {
1393     * first element of pair is row-indexed CutoffGroup
1394     * second element of pair is column-indexed CutoffGroup
1395     */
1396 <  vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1397 <      
1398 <    vector<pair<int, int> > neighborList;
1396 >  void ForceMatrixDecomposition::buildNeighborList(vector<pair<int,int> >& neighborList) {
1397 >    
1398 >    neighborList.clear();
1399      groupCutoffs cuts;
1400 < #ifdef IS_MPI
922 <    cellListRow_.clear();
923 <    cellListCol_.clear();
924 < #else
925 <    cellList_.clear();
926 < #endif
1400 >    bool doAllPairs = false;
1401  
1402      RealType rList_ = (largestRcut_ + skinThickness_);
1403 <    RealType rl2 = rList_ * rList_;
1403 >    RealType rcut, rcutsq, rlistsq;
1404      Snapshot* snap_ = sman_->getCurrentSnapshot();
1405 <    Mat3x3d Hmat = snap_->getHmat();
1406 <    Vector3d Hx = Hmat.getColumn(0);
933 <    Vector3d Hy = Hmat.getColumn(1);
934 <    Vector3d Hz = Hmat.getColumn(2);
1405 >    Mat3x3d box;
1406 >    Mat3x3d invBox;
1407  
936    nCells_.x() = (int) ( Hx.length() )/ rList_;
937    nCells_.y() = (int) ( Hy.length() )/ rList_;
938    nCells_.z() = (int) ( Hz.length() )/ rList_;
939
940    Mat3x3d invHmat = snap_->getInvHmat();
1408      Vector3d rs, scaled, dr;
1409      Vector3i whichCell;
1410      int cellIndex;
944    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1411  
946    cerr << "flag1\n";
1412   #ifdef IS_MPI
1413 +    cellListRow_.clear();
1414 +    cellListCol_.clear();
1415 + #else
1416 +    cellList_.clear();
1417 + #endif
1418 +    
1419 +    if (!usePeriodicBoundaryConditions_) {
1420 +      box = snap_->getBoundingBox();
1421 +      invBox = snap_->getInvBoundingBox();
1422 +    } else {
1423 +      box = snap_->getHmat();
1424 +      invBox = snap_->getInvHmat();
1425 +    }
1426 +    
1427 +    Vector3d boxX = box.getColumn(0);
1428 +    Vector3d boxY = box.getColumn(1);
1429 +    Vector3d boxZ = box.getColumn(2);
1430 +    
1431 +    nCells_.x() = int( boxX.length() / rList_ );
1432 +    nCells_.y() = int( boxY.length() / rList_ );
1433 +    nCells_.z() = int( boxZ.length() / rList_ );
1434 +    
1435 +    // handle small boxes where the cell offsets can end up repeating cells
1436 +    
1437 +    if (nCells_.x() < 3) doAllPairs = true;
1438 +    if (nCells_.y() < 3) doAllPairs = true;
1439 +    if (nCells_.z() < 3) doAllPairs = true;
1440 +    
1441 +    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1442 +    
1443 + #ifdef IS_MPI
1444      cellListRow_.resize(nCtot);
1445      cellListCol_.resize(nCtot);
1446   #else
1447      cellList_.resize(nCtot);
1448   #endif
1449 <    cerr << "flag2\n";
1449 >    
1450 >    if (!doAllPairs) {
1451   #ifdef IS_MPI
1452 <    for (int i = 0; i < nGroupsInRow_; i++) {
1453 <      rs = cgRowData.position[i];
1454 <
1455 <      // scaled positions relative to the box vectors
1456 <      scaled = invHmat * rs;
1457 <
1458 <      // wrap the vector back into the unit box by subtracting integer box
1459 <      // numbers
1460 <      for (int j = 0; j < 3; j++) {
1461 <        scaled[j] -= roundMe(scaled[j]);
1462 <        scaled[j] += 0.5;
1452 >      
1453 >      for (int i = 0; i < nGroupsInRow_; i++) {
1454 >        rs = cgRowData.position[i];
1455 >        
1456 >        // scaled positions relative to the box vectors
1457 >        scaled = invBox * rs;
1458 >        
1459 >        // wrap the vector back into the unit box by subtracting integer box
1460 >        // numbers
1461 >        for (int j = 0; j < 3; j++) {
1462 >          scaled[j] -= roundMe(scaled[j]);
1463 >          scaled[j] += 0.5;
1464 >          // Handle the special case when an object is exactly on the
1465 >          // boundary (a scaled coordinate of 1.0 is the same as
1466 >          // scaled coordinate of 0.0)
1467 >          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1468 >        }
1469 >        
1470 >        // find xyz-indices of cell that cutoffGroup is in.
1471 >        whichCell.x() = nCells_.x() * scaled.x();
1472 >        whichCell.y() = nCells_.y() * scaled.y();
1473 >        whichCell.z() = nCells_.z() * scaled.z();
1474 >        
1475 >        // find single index of this cell:
1476 >        cellIndex = Vlinear(whichCell, nCells_);
1477 >        
1478 >        // add this cutoff group to the list of groups in this cell;
1479 >        cellListRow_[cellIndex].push_back(i);
1480        }
1481 <    
1482 <      // find xyz-indices of cell that cutoffGroup is in.
1483 <      whichCell.x() = nCells_.x() * scaled.x();
1484 <      whichCell.y() = nCells_.y() * scaled.y();
1485 <      whichCell.z() = nCells_.z() * scaled.z();
1486 <
1487 <      // find single index of this cell:
1488 <      cellIndex = Vlinear(whichCell, nCells_);
1489 <
1490 <      // add this cutoff group to the list of groups in this cell;
1491 <      cellListRow_[cellIndex].push_back(i);
1492 <    }
1493 <
1494 <    for (int i = 0; i < nGroupsInCol_; i++) {
1495 <      rs = cgColData.position[i];
1496 <
1497 <      // scaled positions relative to the box vectors
1498 <      scaled = invHmat * rs;
1499 <
1500 <      // wrap the vector back into the unit box by subtracting integer box
1501 <      // numbers
1502 <      for (int j = 0; j < 3; j++) {
1503 <        scaled[j] -= roundMe(scaled[j]);
1504 <        scaled[j] += 0.5;
1481 >      for (int i = 0; i < nGroupsInCol_; i++) {
1482 >        rs = cgColData.position[i];
1483 >        
1484 >        // scaled positions relative to the box vectors
1485 >        scaled = invBox * rs;
1486 >        
1487 >        // wrap the vector back into the unit box by subtracting integer box
1488 >        // numbers
1489 >        for (int j = 0; j < 3; j++) {
1490 >          scaled[j] -= roundMe(scaled[j]);
1491 >          scaled[j] += 0.5;
1492 >          // Handle the special case when an object is exactly on the
1493 >          // boundary (a scaled coordinate of 1.0 is the same as
1494 >          // scaled coordinate of 0.0)
1495 >          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1496 >        }
1497 >        
1498 >        // find xyz-indices of cell that cutoffGroup is in.
1499 >        whichCell.x() = nCells_.x() * scaled.x();
1500 >        whichCell.y() = nCells_.y() * scaled.y();
1501 >        whichCell.z() = nCells_.z() * scaled.z();
1502 >        
1503 >        // find single index of this cell:
1504 >        cellIndex = Vlinear(whichCell, nCells_);
1505 >        
1506 >        // add this cutoff group to the list of groups in this cell;
1507 >        cellListCol_[cellIndex].push_back(i);
1508        }
1509 <
993 <      // find xyz-indices of cell that cutoffGroup is in.
994 <      whichCell.x() = nCells_.x() * scaled.x();
995 <      whichCell.y() = nCells_.y() * scaled.y();
996 <      whichCell.z() = nCells_.z() * scaled.z();
997 <
998 <      // find single index of this cell:
999 <      cellIndex = Vlinear(whichCell, nCells_);
1000 <
1001 <      // add this cutoff group to the list of groups in this cell;
1002 <      cellListCol_[cellIndex].push_back(i);
1003 <    }
1509 >      
1510   #else
1511 <    for (int i = 0; i < nGroups_; i++) {
1512 <      rs = snap_->cgData.position[i];
1513 <
1514 <      // scaled positions relative to the box vectors
1515 <      scaled = invHmat * rs;
1516 <
1517 <      // wrap the vector back into the unit box by subtracting integer box
1518 <      // numbers
1519 <      for (int j = 0; j < 3; j++) {
1520 <        scaled[j] -= roundMe(scaled[j]);
1521 <        scaled[j] += 0.5;
1511 >      for (int i = 0; i < nGroups_; i++) {
1512 >        rs = snap_->cgData.position[i];
1513 >        
1514 >        // scaled positions relative to the box vectors
1515 >        scaled = invBox * rs;
1516 >        
1517 >        // wrap the vector back into the unit box by subtracting integer box
1518 >        // numbers
1519 >        for (int j = 0; j < 3; j++) {
1520 >          scaled[j] -= roundMe(scaled[j]);
1521 >          scaled[j] += 0.5;
1522 >          // Handle the special case when an object is exactly on the
1523 >          // boundary (a scaled coordinate of 1.0 is the same as
1524 >          // scaled coordinate of 0.0)
1525 >          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1526 >        }
1527 >        
1528 >        // find xyz-indices of cell that cutoffGroup is in.
1529 >        whichCell.x() = int(nCells_.x() * scaled.x());
1530 >        whichCell.y() = int(nCells_.y() * scaled.y());
1531 >        whichCell.z() = int(nCells_.z() * scaled.z());
1532 >        
1533 >        // find single index of this cell:
1534 >        cellIndex = Vlinear(whichCell, nCells_);
1535 >        
1536 >        // add this cutoff group to the list of groups in this cell;
1537 >        cellList_[cellIndex].push_back(i);
1538        }
1539  
1018      // find xyz-indices of cell that cutoffGroup is in.
1019      whichCell.x() = nCells_.x() * scaled.x();
1020      whichCell.y() = nCells_.y() * scaled.y();
1021      whichCell.z() = nCells_.z() * scaled.z();
1022
1023      // find single index of this cell:
1024      cellIndex = Vlinear(whichCell, nCells_);      
1025
1026      // add this cutoff group to the list of groups in this cell;
1027      cellList_[cellIndex].push_back(i);
1028    }
1540   #endif
1541  
1542 <    for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1543 <      for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1544 <        for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1545 <          Vector3i m1v(m1x, m1y, m1z);
1546 <          int m1 = Vlinear(m1v, nCells_);
1036 <
1037 <          for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1038 <               os != cellOffsets_.end(); ++os) {
1542 >      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1543 >        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1544 >          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1545 >            Vector3i m1v(m1x, m1y, m1z);
1546 >            int m1 = Vlinear(m1v, nCells_);
1547              
1548 <            Vector3i m2v = m1v + (*os);
1549 <            
1550 <            if (m2v.x() >= nCells_.x()) {
1551 <              m2v.x() = 0;          
1552 <            } else if (m2v.x() < 0) {
1045 <              m2v.x() = nCells_.x() - 1;
1046 <            }
1047 <            
1048 <            if (m2v.y() >= nCells_.y()) {
1049 <              m2v.y() = 0;          
1050 <            } else if (m2v.y() < 0) {
1051 <              m2v.y() = nCells_.y() - 1;
1052 <            }
1053 <            
1054 <            if (m2v.z() >= nCells_.z()) {
1055 <              m2v.z() = 0;          
1056 <            } else if (m2v.z() < 0) {
1057 <              m2v.z() = nCells_.z() - 1;
1058 <            }
1059 <            
1060 <            int m2 = Vlinear (m2v, nCells_);
1548 >            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1549 >                 os != cellOffsets_.end(); ++os) {
1550 >              
1551 >              Vector3i m2v = m1v + (*os);
1552 >            
1553  
1554 < #ifdef IS_MPI
1555 <            for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1556 <                 j1 != cellListRow_[m1].end(); ++j1) {
1557 <              for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1558 <                   j2 != cellListCol_[m2].end(); ++j2) {
1559 <                              
1560 <                // Always do this if we're in different cells or if
1561 <                // we're in the same cell and the global index of the
1562 <                // j2 cutoff group is less than the j1 cutoff group
1554 >              if (m2v.x() >= nCells_.x()) {
1555 >                m2v.x() = 0;          
1556 >              } else if (m2v.x() < 0) {
1557 >                m2v.x() = nCells_.x() - 1;
1558 >              }
1559 >              
1560 >              if (m2v.y() >= nCells_.y()) {
1561 >                m2v.y() = 0;          
1562 >              } else if (m2v.y() < 0) {
1563 >                m2v.y() = nCells_.y() - 1;
1564 >              }
1565 >              
1566 >              if (m2v.z() >= nCells_.z()) {
1567 >                m2v.z() = 0;          
1568 >              } else if (m2v.z() < 0) {
1569 >                m2v.z() = nCells_.z() - 1;
1570 >              }
1571  
1572 <                if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1572 >              int m2 = Vlinear (m2v, nCells_);
1573 >              
1574 > #ifdef IS_MPI
1575 >              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1576 >                   j1 != cellListRow_[m1].end(); ++j1) {
1577 >                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1578 >                     j2 != cellListCol_[m2].end(); ++j2) {
1579 >                  
1580 >                  // In parallel, we need to visit *all* pairs of row
1581 >                  // & column indicies and will divide labor in the
1582 >                  // force evaluation later.
1583                    dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1584 <                  snap_->wrapVector(dr);
1585 <                  cuts = getGroupCutoffs( (*j1), (*j2) );
1076 <                  if (dr.lengthSquare() < cuts.third) {
1077 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1584 >                  if (usePeriodicBoundaryConditions_) {
1585 >                    snap_->wrapVector(dr);
1586                    }
1587 +                  getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq );
1588 +                  if (dr.lengthSquare() < rlistsq) {
1589 +                    neighborList.push_back(make_pair((*j1), (*j2)));
1590 +                  }                  
1591                  }
1592                }
1081            }
1593   #else
1594 +              for (vector<int>::iterator j1 = cellList_[m1].begin();
1595 +                   j1 != cellList_[m1].end(); ++j1) {
1596 +                for (vector<int>::iterator j2 = cellList_[m2].begin();
1597 +                     j2 != cellList_[m2].end(); ++j2) {
1598 +    
1599 +                  // Always do this if we're in different cells or if
1600 +                  // we're in the same cell and the global index of
1601 +                  // the j2 cutoff group is greater than or equal to
1602 +                  // the j1 cutoff group.  Note that Rappaport's code
1603 +                  // has a "less than" conditional here, but that
1604 +                  // deals with atom-by-atom computation.  OpenMD
1605 +                  // allows atoms within a single cutoff group to
1606 +                  // interact with each other.
1607  
1608 <            for (vector<int>::iterator j1 = cellList_[m1].begin();
1085 <                 j1 != cellList_[m1].end(); ++j1) {
1086 <              for (vector<int>::iterator j2 = cellList_[m2].begin();
1087 <                   j2 != cellList_[m2].end(); ++j2) {
1608 >                  if (m2 != m1 || (*j2) >= (*j1) ) {
1609  
1610 <                // Always do this if we're in different cells or if
1611 <                // we're in the same cell and the global index of the
1612 <                // j2 cutoff group is less than the j1 cutoff group
1613 <
1614 <                if (m2 != m1 || (*j2) < (*j1)) {
1615 <                  dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1616 <                  snap_->wrapVector(dr);
1617 <                  cuts = getGroupCutoffs( (*j1), (*j2) );
1097 <                  if (dr.lengthSquare() < cuts.third) {
1098 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1610 >                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1611 >                    if (usePeriodicBoundaryConditions_) {
1612 >                      snap_->wrapVector(dr);
1613 >                    }
1614 >                    getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq );
1615 >                    if (dr.lengthSquare() < rlistsq) {
1616 >                      neighborList.push_back(make_pair((*j1), (*j2)));
1617 >                    }
1618                    }
1619                  }
1620                }
1102            }
1621   #endif
1622 +            }
1623            }
1624          }
1625        }
1626 +    } else {
1627 +      // branch to do all cutoff group pairs
1628 + #ifdef IS_MPI
1629 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1630 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {    
1631 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1632 +          if (usePeriodicBoundaryConditions_) {
1633 +            snap_->wrapVector(dr);
1634 +          }
1635 +          getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq);
1636 +          if (dr.lengthSquare() < rlistsq) {
1637 +            neighborList.push_back(make_pair(j1, j2));
1638 +          }
1639 +        }
1640 +      }      
1641 + #else
1642 +      // include all groups here.
1643 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1644 +        // include self group interactions j2 == j1
1645 +        for (int j2 = j1; j2 < nGroups_; j2++) {
1646 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1647 +          if (usePeriodicBoundaryConditions_) {
1648 +            snap_->wrapVector(dr);
1649 +          }
1650 +          getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq );
1651 +          if (dr.lengthSquare() < rlistsq) {
1652 +            neighborList.push_back(make_pair(j1, j2));
1653 +          }
1654 +        }    
1655 +      }
1656 + #endif
1657      }
1658 <    
1658 >      
1659      // save the local cutoff group positions for the check that is
1660      // done on each loop:
1661      saved_CG_positions_.clear();
1662      for (int i = 0; i < nGroups_; i++)
1663        saved_CG_positions_.push_back(snap_->cgData.position[i]);
1114    
1115    return neighborList;
1664    }
1665   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines