ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents):
Revision 1562 by gezelter, Thu May 12 17:00:14 2011 UTC vs.
Revision 1756 by gezelter, Mon Jun 18 18:23:20 2012 UTC

# Line 36 | Line 36
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42   #include "parallel/ForceMatrixDecomposition.hpp"
43   #include "math/SquareMatrix3.hpp"
44   #include "nonbonded/NonBondedInteraction.hpp"
45   #include "brains/SnapshotManager.hpp"
46 + #include "brains/PairList.hpp"
47  
48   using namespace std;
49   namespace OpenMD {
50  
51 +  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52 +
53 +    // In a parallel computation, row and colum scans must visit all
54 +    // surrounding cells (not just the 14 upper triangular blocks that
55 +    // are used when the processor can see all pairs)
56 + #ifdef IS_MPI
57 +    cellOffsets_.clear();
58 +    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59 +    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60 +    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                          
61 +    cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62 +    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63 +    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64 +    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65 +    cellOffsets_.push_back( Vector3i( 0, 1,-1) );      
66 +    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 +    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68 +    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69 +    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 +    cellOffsets_.push_back( Vector3i(-1, 0, 0) );      
71 +    cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72 +    cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73 +    cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74 +    cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75 +    cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76 +    cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77 +    cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78 +    cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 +    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 +    cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81 +    cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82 +    cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83 +    cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84 +    cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 + #endif    
86 +  }
87 +
88 +
89    /**
90     * distributeInitialData is essentially a copy of the older fortran
91     * SimulationSetup
92     */
53  
93    void ForceMatrixDecomposition::distributeInitialData() {
94      snap_ = sman_->getCurrentSnapshot();
95      storageLayout_ = sman_->getStorageLayout();
96 < #ifdef IS_MPI    
97 <    int nLocal = snap_->getNumberOfAtoms();
98 <    int nGroups = snap_->getNumberOfCutoffGroups();
96 >    ff_ = info_->getForceField();
97 >    nLocal_ = snap_->getNumberOfAtoms();
98 >  
99 >    nGroups_ = info_->getNLocalCutoffGroups();
100 >    // gather the information for atomtype IDs (atids):
101 >    idents = info_->getIdentArray();
102 >    AtomLocalToGlobal = info_->getGlobalAtomIndices();
103 >    cgLocalToGlobal = info_->getGlobalGroupIndices();
104 >    vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
105 >
106 >    massFactors = info_->getMassFactors();
107 >
108 >    PairList* excludes = info_->getExcludedInteractions();
109 >    PairList* oneTwo = info_->getOneTwoInteractions();
110 >    PairList* oneThree = info_->getOneThreeInteractions();
111 >    PairList* oneFour = info_->getOneFourInteractions();
112      
113 <    AtomCommIntRow = new Communicator<Row,int>(nLocal);
114 <    AtomCommRealRow = new Communicator<Row,RealType>(nLocal);
115 <    AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal);
116 <    AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal);
113 >    if (needVelocities_)
114 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition |
115 >                                     DataStorage::dslVelocity);
116 >    else
117 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition);
118 >    
119 > #ifdef IS_MPI
120 >
121 >    MPI::Intracomm row = rowComm.getComm();
122 >    MPI::Intracomm col = colComm.getComm();
123  
124 <    AtomCommIntColumn = new Communicator<Column,int>(nLocal);
125 <    AtomCommRealColumn = new Communicator<Column,RealType>(nLocal);
126 <    AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal);
127 <    AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal);
124 >    AtomPlanIntRow = new Plan<int>(row, nLocal_);
125 >    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
126 >    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
127 >    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
128 >    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
129  
130 <    cgCommIntRow = new Communicator<Row,int>(nGroups);
131 <    cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups);
132 <    cgCommIntColumn = new Communicator<Column,int>(nGroups);
133 <    cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups);
130 >    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
131 >    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
132 >    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
133 >    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
134 >    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
135  
136 <    int nAtomsInRow = AtomCommIntRow->getSize();
137 <    int nAtomsInCol = AtomCommIntColumn->getSize();
138 <    int nGroupsInRow = cgCommIntRow->getSize();
139 <    int nGroupsInCol = cgCommIntColumn->getSize();
136 >    cgPlanIntRow = new Plan<int>(row, nGroups_);
137 >    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
138 >    cgPlanIntColumn = new Plan<int>(col, nGroups_);
139 >    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
140  
141 +    nAtomsInRow_ = AtomPlanIntRow->getSize();
142 +    nAtomsInCol_ = AtomPlanIntColumn->getSize();
143 +    nGroupsInRow_ = cgPlanIntRow->getSize();
144 +    nGroupsInCol_ = cgPlanIntColumn->getSize();
145 +
146      // Modify the data storage objects with the correct layouts and sizes:
147 <    atomRowData.resize(nAtomsInRow);
147 >    atomRowData.resize(nAtomsInRow_);
148      atomRowData.setStorageLayout(storageLayout_);
149 <    atomColData.resize(nAtomsInCol);
149 >    atomColData.resize(nAtomsInCol_);
150      atomColData.setStorageLayout(storageLayout_);
151 <    cgRowData.resize(nGroupsInRow);
151 >    cgRowData.resize(nGroupsInRow_);
152      cgRowData.setStorageLayout(DataStorage::dslPosition);
153 <    cgColData.resize(nGroupsInCol);
154 <    cgColData.setStorageLayout(DataStorage::dslPosition);
153 >    cgColData.resize(nGroupsInCol_);
154 >    if (needVelocities_)
155 >      // we only need column velocities if we need them.
156 >      cgColData.setStorageLayout(DataStorage::dslPosition |
157 >                                 DataStorage::dslVelocity);
158 >    else    
159 >      cgColData.setStorageLayout(DataStorage::dslPosition);
160 >      
161 >    identsRow.resize(nAtomsInRow_);
162 >    identsCol.resize(nAtomsInCol_);
163      
164 <    vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES,
165 <                                      vector<RealType> (nAtomsInRow, 0.0));
166 <    vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES,
167 <                                      vector<RealType> (nAtomsInCol, 0.0));
164 >    AtomPlanIntRow->gather(idents, identsRow);
165 >    AtomPlanIntColumn->gather(idents, identsCol);
166 >    
167 >    // allocate memory for the parallel objects
168 >    atypesRow.resize(nAtomsInRow_);
169 >    atypesCol.resize(nAtomsInCol_);
170  
171 +    for (int i = 0; i < nAtomsInRow_; i++)
172 +      atypesRow[i] = ff_->getAtomType(identsRow[i]);
173 +    for (int i = 0; i < nAtomsInCol_; i++)
174 +      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
175  
176 <    vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0);
176 >    pot_row.resize(nAtomsInRow_);
177 >    pot_col.resize(nAtomsInCol_);
178 >
179 >    AtomRowToGlobal.resize(nAtomsInRow_);
180 >    AtomColToGlobal.resize(nAtomsInCol_);
181 >    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
182 >    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
183 >
184 >    cgRowToGlobal.resize(nGroupsInRow_);
185 >    cgColToGlobal.resize(nGroupsInCol_);
186 >    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
187 >    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
188 >
189 >    massFactorsRow.resize(nAtomsInRow_);
190 >    massFactorsCol.resize(nAtomsInCol_);
191 >    AtomPlanRealRow->gather(massFactors, massFactorsRow);
192 >    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
193 >
194 >    groupListRow_.clear();
195 >    groupListRow_.resize(nGroupsInRow_);
196 >    for (int i = 0; i < nGroupsInRow_; i++) {
197 >      int gid = cgRowToGlobal[i];
198 >      for (int j = 0; j < nAtomsInRow_; j++) {
199 >        int aid = AtomRowToGlobal[j];
200 >        if (globalGroupMembership[aid] == gid)
201 >          groupListRow_[i].push_back(j);
202 >      }      
203 >    }
204 >
205 >    groupListCol_.clear();
206 >    groupListCol_.resize(nGroupsInCol_);
207 >    for (int i = 0; i < nGroupsInCol_; i++) {
208 >      int gid = cgColToGlobal[i];
209 >      for (int j = 0; j < nAtomsInCol_; j++) {
210 >        int aid = AtomColToGlobal[j];
211 >        if (globalGroupMembership[aid] == gid)
212 >          groupListCol_[i].push_back(j);
213 >      }      
214 >    }
215 >
216 >    excludesForAtom.clear();
217 >    excludesForAtom.resize(nAtomsInRow_);
218 >    toposForAtom.clear();
219 >    toposForAtom.resize(nAtomsInRow_);
220 >    topoDist.clear();
221 >    topoDist.resize(nAtomsInRow_);
222 >    for (int i = 0; i < nAtomsInRow_; i++) {
223 >      int iglob = AtomRowToGlobal[i];
224 >
225 >      for (int j = 0; j < nAtomsInCol_; j++) {
226 >        int jglob = AtomColToGlobal[j];
227 >
228 >        if (excludes->hasPair(iglob, jglob))
229 >          excludesForAtom[i].push_back(j);      
230 >        
231 >        if (oneTwo->hasPair(iglob, jglob)) {
232 >          toposForAtom[i].push_back(j);
233 >          topoDist[i].push_back(1);
234 >        } else {
235 >          if (oneThree->hasPair(iglob, jglob)) {
236 >            toposForAtom[i].push_back(j);
237 >            topoDist[i].push_back(2);
238 >          } else {
239 >            if (oneFour->hasPair(iglob, jglob)) {
240 >              toposForAtom[i].push_back(j);
241 >              topoDist[i].push_back(3);
242 >            }
243 >          }
244 >        }
245 >      }      
246 >    }
247 >
248 > #else
249 >    excludesForAtom.clear();
250 >    excludesForAtom.resize(nLocal_);
251 >    toposForAtom.clear();
252 >    toposForAtom.resize(nLocal_);
253 >    topoDist.clear();
254 >    topoDist.resize(nLocal_);
255 >
256 >    for (int i = 0; i < nLocal_; i++) {
257 >      int iglob = AtomLocalToGlobal[i];
258 >
259 >      for (int j = 0; j < nLocal_; j++) {
260 >        int jglob = AtomLocalToGlobal[j];
261 >
262 >        if (excludes->hasPair(iglob, jglob))
263 >          excludesForAtom[i].push_back(j);              
264 >        
265 >        if (oneTwo->hasPair(iglob, jglob)) {
266 >          toposForAtom[i].push_back(j);
267 >          topoDist[i].push_back(1);
268 >        } else {
269 >          if (oneThree->hasPair(iglob, jglob)) {
270 >            toposForAtom[i].push_back(j);
271 >            topoDist[i].push_back(2);
272 >          } else {
273 >            if (oneFour->hasPair(iglob, jglob)) {
274 >              toposForAtom[i].push_back(j);
275 >              topoDist[i].push_back(3);
276 >            }
277 >          }
278 >        }
279 >      }      
280 >    }
281 > #endif
282 >
283 >    // allocate memory for the parallel objects
284 >    atypesLocal.resize(nLocal_);
285 >
286 >    for (int i = 0; i < nLocal_; i++)
287 >      atypesLocal[i] = ff_->getAtomType(idents[i]);
288 >
289 >    groupList_.clear();
290 >    groupList_.resize(nGroups_);
291 >    for (int i = 0; i < nGroups_; i++) {
292 >      int gid = cgLocalToGlobal[i];
293 >      for (int j = 0; j < nLocal_; j++) {
294 >        int aid = AtomLocalToGlobal[j];
295 >        if (globalGroupMembership[aid] == gid) {
296 >          groupList_[i].push_back(j);
297 >        }
298 >      }      
299 >    }
300 >
301 >
302 >    createGtypeCutoffMap();
303 >
304 >  }
305 >  
306 >  void ForceMatrixDecomposition::createGtypeCutoffMap() {
307      
308 <    // gather the information for atomtype IDs (atids):
309 <    vector<int> identsLocal = info_->getIdentArray();
310 <    identsRow.reserve(nAtomsInRow);
311 <    identsCol.reserve(nAtomsInCol);
308 >    RealType tol = 1e-6;
309 >    largestRcut_ = 0.0;
310 >    RealType rc;
311 >    int atid;
312 >    set<AtomType*> atypes = info_->getSimulatedAtomTypes();
313      
314 <    AtomCommIntRow->gather(identsLocal, identsRow);
315 <    AtomCommIntColumn->gather(identsLocal, identsCol);
314 >    map<int, RealType> atypeCutoff;
315 >      
316 >    for (set<AtomType*>::iterator at = atypes.begin();
317 >         at != atypes.end(); ++at){
318 >      atid = (*at)->getIdent();
319 >      if (userChoseCutoff_)
320 >        atypeCutoff[atid] = userCutoff_;
321 >      else
322 >        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
323 >    }
324      
325 <    AtomLocalToGlobal = info_->getGlobalAtomIndices();
326 <    AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
327 <    AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
328 <    
329 <    cgLocalToGlobal = info_->getGlobalGroupIndices();
330 <    cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
331 <    cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
325 >    vector<RealType> gTypeCutoffs;
326 >    // first we do a single loop over the cutoff groups to find the
327 >    // largest cutoff for any atypes present in this group.
328 > #ifdef IS_MPI
329 >    vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
330 >    groupRowToGtype.resize(nGroupsInRow_);
331 >    for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
332 >      vector<int> atomListRow = getAtomsInGroupRow(cg1);
333 >      for (vector<int>::iterator ia = atomListRow.begin();
334 >           ia != atomListRow.end(); ++ia) {            
335 >        int atom1 = (*ia);
336 >        atid = identsRow[atom1];
337 >        if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
338 >          groupCutoffRow[cg1] = atypeCutoff[atid];
339 >        }
340 >      }
341  
342 <    // still need:
343 <    // topoDist
344 <    // exclude
342 >      bool gTypeFound = false;
343 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
344 >        if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
345 >          groupRowToGtype[cg1] = gt;
346 >          gTypeFound = true;
347 >        }
348 >      }
349 >      if (!gTypeFound) {
350 >        gTypeCutoffs.push_back( groupCutoffRow[cg1] );
351 >        groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
352 >      }
353 >      
354 >    }
355 >    vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
356 >    groupColToGtype.resize(nGroupsInCol_);
357 >    for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
358 >      vector<int> atomListCol = getAtomsInGroupColumn(cg2);
359 >      for (vector<int>::iterator jb = atomListCol.begin();
360 >           jb != atomListCol.end(); ++jb) {            
361 >        int atom2 = (*jb);
362 >        atid = identsCol[atom2];
363 >        if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
364 >          groupCutoffCol[cg2] = atypeCutoff[atid];
365 >        }
366 >      }
367 >      bool gTypeFound = false;
368 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
369 >        if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
370 >          groupColToGtype[cg2] = gt;
371 >          gTypeFound = true;
372 >        }
373 >      }
374 >      if (!gTypeFound) {
375 >        gTypeCutoffs.push_back( groupCutoffCol[cg2] );
376 >        groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
377 >      }
378 >    }
379 > #else
380 >
381 >    vector<RealType> groupCutoff(nGroups_, 0.0);
382 >    groupToGtype.resize(nGroups_);
383 >    for (int cg1 = 0; cg1 < nGroups_; cg1++) {
384 >      groupCutoff[cg1] = 0.0;
385 >      vector<int> atomList = getAtomsInGroupRow(cg1);
386 >      for (vector<int>::iterator ia = atomList.begin();
387 >           ia != atomList.end(); ++ia) {            
388 >        int atom1 = (*ia);
389 >        atid = idents[atom1];
390 >        if (atypeCutoff[atid] > groupCutoff[cg1])
391 >          groupCutoff[cg1] = atypeCutoff[atid];
392 >      }
393 >      
394 >      bool gTypeFound = false;
395 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
396 >        if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
397 >          groupToGtype[cg1] = gt;
398 >          gTypeFound = true;
399 >        }
400 >      }
401 >      if (!gTypeFound) {      
402 >        gTypeCutoffs.push_back( groupCutoff[cg1] );
403 >        groupToGtype[cg1] = gTypeCutoffs.size() - 1;
404 >      }      
405 >    }
406   #endif
407 +
408 +    // Now we find the maximum group cutoff value present in the simulation
409 +
410 +    RealType groupMax = *max_element(gTypeCutoffs.begin(),
411 +                                     gTypeCutoffs.end());
412 +
413 + #ifdef IS_MPI
414 +    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
415 +                              MPI::MAX);
416 + #endif
417 +    
418 +    RealType tradRcut = groupMax;
419 +
420 +    for (int i = 0; i < gTypeCutoffs.size();  i++) {
421 +      for (int j = 0; j < gTypeCutoffs.size();  j++) {      
422 +        RealType thisRcut;
423 +        switch(cutoffPolicy_) {
424 +        case TRADITIONAL:
425 +          thisRcut = tradRcut;
426 +          break;
427 +        case MIX:
428 +          thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
429 +          break;
430 +        case MAX:
431 +          thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
432 +          break;
433 +        default:
434 +          sprintf(painCave.errMsg,
435 +                  "ForceMatrixDecomposition::createGtypeCutoffMap "
436 +                  "hit an unknown cutoff policy!\n");
437 +          painCave.severity = OPENMD_ERROR;
438 +          painCave.isFatal = 1;
439 +          simError();
440 +          break;
441 +        }
442 +
443 +        pair<int,int> key = make_pair(i,j);
444 +        gTypeCutoffMap[key].first = thisRcut;
445 +        if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
446 +        gTypeCutoffMap[key].second = thisRcut*thisRcut;
447 +        gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
448 +        // sanity check
449 +        
450 +        if (userChoseCutoff_) {
451 +          if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
452 +            sprintf(painCave.errMsg,
453 +                    "ForceMatrixDecomposition::createGtypeCutoffMap "
454 +                    "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
455 +            painCave.severity = OPENMD_ERROR;
456 +            painCave.isFatal = 1;
457 +            simError();            
458 +          }
459 +        }
460 +      }
461 +    }
462    }
463 +
464 +  groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
465 +    int i, j;  
466 + #ifdef IS_MPI
467 +    i = groupRowToGtype[cg1];
468 +    j = groupColToGtype[cg2];
469 + #else
470 +    i = groupToGtype[cg1];
471 +    j = groupToGtype[cg2];
472 + #endif    
473 +    return gTypeCutoffMap[make_pair(i,j)];
474 +  }
475 +
476 +  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
477 +    for (int j = 0; j < toposForAtom[atom1].size(); j++) {
478 +      if (toposForAtom[atom1][j] == atom2)
479 +        return topoDist[atom1][j];
480 +    }
481 +    return 0;
482 +  }
483 +
484 +  void ForceMatrixDecomposition::zeroWorkArrays() {
485 +    pairwisePot = 0.0;
486 +    embeddingPot = 0.0;
487 +
488 + #ifdef IS_MPI
489 +    if (storageLayout_ & DataStorage::dslForce) {
490 +      fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
491 +      fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
492 +    }
493 +
494 +    if (storageLayout_ & DataStorage::dslTorque) {
495 +      fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
496 +      fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
497 +    }
498      
499 +    fill(pot_row.begin(), pot_row.end(),
500 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
501  
502 +    fill(pot_col.begin(), pot_col.end(),
503 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
504  
505 +    if (storageLayout_ & DataStorage::dslParticlePot) {    
506 +      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
507 +           0.0);
508 +      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
509 +           0.0);
510 +    }
511 +
512 +    if (storageLayout_ & DataStorage::dslDensity) {      
513 +      fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
514 +      fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
515 +    }
516 +
517 +    if (storageLayout_ & DataStorage::dslFunctional) {  
518 +      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
519 +           0.0);
520 +      fill(atomColData.functional.begin(), atomColData.functional.end(),
521 +           0.0);
522 +    }
523 +
524 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
525 +      fill(atomRowData.functionalDerivative.begin(),
526 +           atomRowData.functionalDerivative.end(), 0.0);
527 +      fill(atomColData.functionalDerivative.begin(),
528 +           atomColData.functionalDerivative.end(), 0.0);
529 +    }
530 +
531 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
532 +      fill(atomRowData.skippedCharge.begin(),
533 +           atomRowData.skippedCharge.end(), 0.0);
534 +      fill(atomColData.skippedCharge.begin(),
535 +           atomColData.skippedCharge.end(), 0.0);
536 +    }
537 +
538 +    if (storageLayout_ & DataStorage::dslFlucQForce) {      
539 +      fill(atomRowData.flucQFrc.begin(),
540 +           atomRowData.flucQFrc.end(), 0.0);
541 +      fill(atomColData.flucQFrc.begin(),
542 +           atomColData.flucQFrc.end(), 0.0);
543 +    }
544 +
545 +    if (storageLayout_ & DataStorage::dslElectricField) {    
546 +      fill(atomRowData.electricField.begin(),
547 +           atomRowData.electricField.end(), V3Zero);
548 +      fill(atomColData.electricField.begin(),
549 +           atomColData.electricField.end(), V3Zero);
550 +    }
551 +
552 +    if (storageLayout_ & DataStorage::dslFlucQForce) {    
553 +      fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(),
554 +           0.0);
555 +      fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(),
556 +           0.0);
557 +    }
558 +
559 + #endif
560 +    // even in parallel, we need to zero out the local arrays:
561 +
562 +    if (storageLayout_ & DataStorage::dslParticlePot) {      
563 +      fill(snap_->atomData.particlePot.begin(),
564 +           snap_->atomData.particlePot.end(), 0.0);
565 +    }
566 +    
567 +    if (storageLayout_ & DataStorage::dslDensity) {      
568 +      fill(snap_->atomData.density.begin(),
569 +           snap_->atomData.density.end(), 0.0);
570 +    }
571 +
572 +    if (storageLayout_ & DataStorage::dslFunctional) {
573 +      fill(snap_->atomData.functional.begin(),
574 +           snap_->atomData.functional.end(), 0.0);
575 +    }
576 +
577 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
578 +      fill(snap_->atomData.functionalDerivative.begin(),
579 +           snap_->atomData.functionalDerivative.end(), 0.0);
580 +    }
581 +
582 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
583 +      fill(snap_->atomData.skippedCharge.begin(),
584 +           snap_->atomData.skippedCharge.end(), 0.0);
585 +    }
586 +
587 +    if (storageLayout_ & DataStorage::dslElectricField) {      
588 +      fill(snap_->atomData.electricField.begin(),
589 +           snap_->atomData.electricField.end(), V3Zero);
590 +    }
591 +  }
592 +
593 +
594    void ForceMatrixDecomposition::distributeData()  {
595      snap_ = sman_->getCurrentSnapshot();
596      storageLayout_ = sman_->getStorageLayout();
597   #ifdef IS_MPI
598      
599      // gather up the atomic positions
600 <    AtomCommVectorRow->gather(snap_->atomData.position,
600 >    AtomPlanVectorRow->gather(snap_->atomData.position,
601                                atomRowData.position);
602 <    AtomCommVectorColumn->gather(snap_->atomData.position,
602 >    AtomPlanVectorColumn->gather(snap_->atomData.position,
603                                   atomColData.position);
604      
605      // gather up the cutoff group positions
606 <    cgCommVectorRow->gather(snap_->cgData.position,
606 >
607 >    cgPlanVectorRow->gather(snap_->cgData.position,
608                              cgRowData.position);
609 <    cgCommVectorColumn->gather(snap_->cgData.position,
609 >
610 >    cgPlanVectorColumn->gather(snap_->cgData.position,
611                                 cgColData.position);
612 +
613 +
614 +
615 +    if (needVelocities_) {
616 +      // gather up the atomic velocities
617 +      AtomPlanVectorColumn->gather(snap_->atomData.velocity,
618 +                                   atomColData.velocity);
619 +      
620 +      cgPlanVectorColumn->gather(snap_->cgData.velocity,
621 +                                 cgColData.velocity);
622 +    }
623 +
624      
625      // if needed, gather the atomic rotation matrices
626      if (storageLayout_ & DataStorage::dslAmat) {
627 <      AtomCommMatrixRow->gather(snap_->atomData.aMat,
627 >      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
628                                  atomRowData.aMat);
629 <      AtomCommMatrixColumn->gather(snap_->atomData.aMat,
629 >      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
630                                     atomColData.aMat);
631      }
632      
633      // if needed, gather the atomic eletrostatic frames
634      if (storageLayout_ & DataStorage::dslElectroFrame) {
635 <      AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
635 >      AtomPlanMatrixRow->gather(snap_->atomData.electroFrame,
636                                  atomRowData.electroFrame);
637 <      AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
637 >      AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame,
638                                     atomColData.electroFrame);
639      }
640 +
641 +    // if needed, gather the atomic fluctuating charge values
642 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {
643 +      AtomPlanRealRow->gather(snap_->atomData.flucQPos,
644 +                              atomRowData.flucQPos);
645 +      AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
646 +                                 atomColData.flucQPos);
647 +    }
648 +
649   #endif      
650    }
651    
652 +  /* collects information obtained during the pre-pair loop onto local
653 +   * data structures.
654 +   */
655    void ForceMatrixDecomposition::collectIntermediateData() {
656      snap_ = sman_->getCurrentSnapshot();
657      storageLayout_ = sman_->getStorageLayout();
# Line 162 | Line 659 | namespace OpenMD {
659      
660      if (storageLayout_ & DataStorage::dslDensity) {
661        
662 <      AtomCommRealRow->scatter(atomRowData.density,
662 >      AtomPlanRealRow->scatter(atomRowData.density,
663                                 snap_->atomData.density);
664        
665        int n = snap_->atomData.density.size();
666 <      std::vector<RealType> rho_tmp(n, 0.0);
667 <      AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
666 >      vector<RealType> rho_tmp(n, 0.0);
667 >      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
668        for (int i = 0; i < n; i++)
669          snap_->atomData.density[i] += rho_tmp[i];
670      }
671 +
672 +    if (storageLayout_ & DataStorage::dslElectricField) {
673 +      
674 +      AtomPlanVectorRow->scatter(atomRowData.electricField,
675 +                                 snap_->atomData.electricField);
676 +      
677 +      int n = snap_->atomData.electricField.size();
678 +      vector<Vector3d> field_tmp(n, V3Zero);
679 +      AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp);
680 +      for (int i = 0; i < n; i++)
681 +        snap_->atomData.electricField[i] += field_tmp[i];
682 +    }
683   #endif
684    }
685 <  
685 >
686 >  /*
687 >   * redistributes information obtained during the pre-pair loop out to
688 >   * row and column-indexed data structures
689 >   */
690    void ForceMatrixDecomposition::distributeIntermediateData() {
691      snap_ = sman_->getCurrentSnapshot();
692      storageLayout_ = sman_->getStorageLayout();
693   #ifdef IS_MPI
694      if (storageLayout_ & DataStorage::dslFunctional) {
695 <      AtomCommRealRow->gather(snap_->atomData.functional,
695 >      AtomPlanRealRow->gather(snap_->atomData.functional,
696                                atomRowData.functional);
697 <      AtomCommRealColumn->gather(snap_->atomData.functional,
697 >      AtomPlanRealColumn->gather(snap_->atomData.functional,
698                                   atomColData.functional);
699      }
700      
701      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
702 <      AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
702 >      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
703                                atomRowData.functionalDerivative);
704 <      AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
704 >      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
705                                   atomColData.functionalDerivative);
706      }
707   #endif
# Line 202 | Line 715 | namespace OpenMD {
715      int n = snap_->atomData.force.size();
716      vector<Vector3d> frc_tmp(n, V3Zero);
717      
718 <    AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
718 >    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
719      for (int i = 0; i < n; i++) {
720        snap_->atomData.force[i] += frc_tmp[i];
721        frc_tmp[i] = 0.0;
722      }
723      
724 <    AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
725 <    for (int i = 0; i < n; i++)
724 >    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
725 >    for (int i = 0; i < n; i++) {
726        snap_->atomData.force[i] += frc_tmp[i];
727 <    
728 <    
727 >    }
728 >        
729      if (storageLayout_ & DataStorage::dslTorque) {
730  
731 <      int nt = snap_->atomData.force.size();
731 >      int nt = snap_->atomData.torque.size();
732        vector<Vector3d> trq_tmp(nt, V3Zero);
733  
734 <      AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
735 <      for (int i = 0; i < n; i++) {
734 >      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
735 >      for (int i = 0; i < nt; i++) {
736          snap_->atomData.torque[i] += trq_tmp[i];
737          trq_tmp[i] = 0.0;
738        }
739        
740 <      AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
741 <      for (int i = 0; i < n; i++)
740 >      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
741 >      for (int i = 0; i < nt; i++)
742          snap_->atomData.torque[i] += trq_tmp[i];
743      }
231    
232    int nLocal = snap_->getNumberOfAtoms();
744  
745 <    vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES,
746 <                                       vector<RealType> (nLocal, 0.0));
747 <    
748 <    for (int i = 0; i < N_INTERACTION_FAMILIES; i++) {
749 <      AtomCommRealRow->scatter(pot_row[i], pot_temp[i]);
750 <      for (int ii = 0;  ii < pot_temp[i].size(); ii++ ) {
751 <        pot_local[i] += pot_temp[i][ii];
745 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {
746 >
747 >      int ns = snap_->atomData.skippedCharge.size();
748 >      vector<RealType> skch_tmp(ns, 0.0);
749 >
750 >      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
751 >      for (int i = 0; i < ns; i++) {
752 >        snap_->atomData.skippedCharge[i] += skch_tmp[i];
753 >        skch_tmp[i] = 0.0;
754        }
755 +      
756 +      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
757 +      for (int i = 0; i < ns; i++)
758 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
759 +            
760      }
761 +    
762 +    if (storageLayout_ & DataStorage::dslFlucQForce) {
763 +
764 +      int nq = snap_->atomData.flucQFrc.size();
765 +      vector<RealType> fqfrc_tmp(nq, 0.0);
766 +
767 +      AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
768 +      for (int i = 0; i < nq; i++) {
769 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
770 +        fqfrc_tmp[i] = 0.0;
771 +      }
772 +      
773 +      AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
774 +      for (int i = 0; i < nq; i++)
775 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
776 +            
777 +    }
778 +
779 +    nLocal_ = snap_->getNumberOfAtoms();
780 +
781 +    vector<potVec> pot_temp(nLocal_,
782 +                            Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
783 +
784 +    // scatter/gather pot_row into the members of my column
785 +          
786 +    AtomPlanPotRow->scatter(pot_row, pot_temp);
787 +
788 +    for (int ii = 0;  ii < pot_temp.size(); ii++ )
789 +      pairwisePot += pot_temp[ii];
790 +        
791 +    if (storageLayout_ & DataStorage::dslParticlePot) {
792 +      // This is the pairwise contribution to the particle pot.  The
793 +      // embedding contribution is added in each of the low level
794 +      // non-bonded routines.  In single processor, this is done in
795 +      // unpackInteractionData, not in collectData.
796 +      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
797 +        for (int i = 0; i < nLocal_; i++) {
798 +          // factor of two is because the total potential terms are divided
799 +          // by 2 in parallel due to row/ column scatter      
800 +          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
801 +        }
802 +      }
803 +    }
804 +
805 +    fill(pot_temp.begin(), pot_temp.end(),
806 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
807 +      
808 +    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
809 +    
810 +    for (int ii = 0;  ii < pot_temp.size(); ii++ )
811 +      pairwisePot += pot_temp[ii];    
812 +
813 +    if (storageLayout_ & DataStorage::dslParticlePot) {
814 +      // This is the pairwise contribution to the particle pot.  The
815 +      // embedding contribution is added in each of the low level
816 +      // non-bonded routines.  In single processor, this is done in
817 +      // unpackInteractionData, not in collectData.
818 +      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
819 +        for (int i = 0; i < nLocal_; i++) {
820 +          // factor of two is because the total potential terms are divided
821 +          // by 2 in parallel due to row/ column scatter      
822 +          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
823 +        }
824 +      }
825 +    }
826 +    
827 +    if (storageLayout_ & DataStorage::dslParticlePot) {
828 +      int npp = snap_->atomData.particlePot.size();
829 +      vector<RealType> ppot_temp(npp, 0.0);
830 +
831 +      // This is the direct or embedding contribution to the particle
832 +      // pot.
833 +      
834 +      AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
835 +      for (int i = 0; i < npp; i++) {
836 +        snap_->atomData.particlePot[i] += ppot_temp[i];
837 +      }
838 +
839 +      fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
840 +      
841 +      AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
842 +      for (int i = 0; i < npp; i++) {
843 +        snap_->atomData.particlePot[i] += ppot_temp[i];
844 +      }
845 +    }
846 +
847 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
848 +      RealType ploc1 = pairwisePot[ii];
849 +      RealType ploc2 = 0.0;
850 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
851 +      pairwisePot[ii] = ploc2;
852 +    }
853 +
854 +    // Here be dragons.
855 +    MPI::Intracomm col = colComm.getComm();
856 +
857 +    col.Allreduce(MPI::IN_PLACE,
858 +                  &snap_->frameData.conductiveHeatFlux[0], 3,
859 +                  MPI::REALTYPE, MPI::SUM);
860 +
861 +
862   #endif
863 +
864    }
865  
866 +  /**
867 +   * Collects information obtained during the post-pair (and embedding
868 +   * functional) loops onto local data structures.
869 +   */
870 +  void ForceMatrixDecomposition::collectSelfData() {
871 +    snap_ = sman_->getCurrentSnapshot();
872 +    storageLayout_ = sman_->getStorageLayout();
873 +
874 + #ifdef IS_MPI
875 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
876 +      RealType ploc1 = embeddingPot[ii];
877 +      RealType ploc2 = 0.0;
878 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
879 +      embeddingPot[ii] = ploc2;
880 +    }    
881 + #endif
882 +    
883 +  }
884 +
885 +
886 +
887 +  int ForceMatrixDecomposition::getNAtomsInRow() {  
888 + #ifdef IS_MPI
889 +    return nAtomsInRow_;
890 + #else
891 +    return nLocal_;
892 + #endif
893 +  }
894 +
895 +  /**
896 +   * returns the list of atoms belonging to this group.  
897 +   */
898 +  vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
899 + #ifdef IS_MPI
900 +    return groupListRow_[cg1];
901 + #else
902 +    return groupList_[cg1];
903 + #endif
904 +  }
905 +
906 +  vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
907 + #ifdef IS_MPI
908 +    return groupListCol_[cg2];
909 + #else
910 +    return groupList_[cg2];
911 + #endif
912 +  }
913    
914    Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
915      Vector3d d;
# Line 257 | Line 924 | namespace OpenMD {
924      return d;    
925    }
926  
927 +  Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
928 + #ifdef IS_MPI
929 +    return cgColData.velocity[cg2];
930 + #else
931 +    return snap_->cgData.velocity[cg2];
932 + #endif
933 +  }
934  
935 +  Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
936 + #ifdef IS_MPI
937 +    return atomColData.velocity[atom2];
938 + #else
939 +    return snap_->atomData.velocity[atom2];
940 + #endif
941 +  }
942 +
943 +
944    Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
945  
946      Vector3d d;
# Line 284 | Line 967 | namespace OpenMD {
967      snap_->wrapVector(d);
968      return d;    
969    }
970 +
971 +  RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
972 + #ifdef IS_MPI
973 +    return massFactorsRow[atom1];
974 + #else
975 +    return massFactors[atom1];
976 + #endif
977 +  }
978 +
979 +  RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
980 + #ifdef IS_MPI
981 +    return massFactorsCol[atom2];
982 + #else
983 +    return massFactors[atom2];
984 + #endif
985 +
986 +  }
987      
988    Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
989      Vector3d d;
# Line 298 | Line 998 | namespace OpenMD {
998      return d;    
999    }
1000  
1001 +  vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
1002 +    return excludesForAtom[atom1];
1003 +  }
1004 +
1005 +  /**
1006 +   * We need to exclude some overcounted interactions that result from
1007 +   * the parallel decomposition.
1008 +   */
1009 +  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) {
1010 +    int unique_id_1, unique_id_2, group1, group2;
1011 +        
1012 + #ifdef IS_MPI
1013 +    // in MPI, we have to look up the unique IDs for each atom
1014 +    unique_id_1 = AtomRowToGlobal[atom1];
1015 +    unique_id_2 = AtomColToGlobal[atom2];
1016 +    group1 = cgRowToGlobal[cg1];
1017 +    group2 = cgColToGlobal[cg2];
1018 + #else
1019 +    unique_id_1 = AtomLocalToGlobal[atom1];
1020 +    unique_id_2 = AtomLocalToGlobal[atom2];
1021 +    group1 = cgLocalToGlobal[cg1];
1022 +    group2 = cgLocalToGlobal[cg2];
1023 + #endif  
1024 +
1025 +    if (unique_id_1 == unique_id_2) return true;
1026 +
1027 + #ifdef IS_MPI
1028 +    // this prevents us from doing the pair on multiple processors
1029 +    if (unique_id_1 < unique_id_2) {
1030 +      if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
1031 +    } else {
1032 +      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1033 +    }
1034 + #endif    
1035 +
1036 + #ifndef IS_MPI
1037 +    if (group1 == group2) {
1038 +      if (unique_id_1 < unique_id_2) return true;
1039 +    }
1040 + #endif
1041 +    
1042 +    return false;
1043 +  }
1044 +
1045 +  /**
1046 +   * We need to handle the interactions for atoms who are involved in
1047 +   * the same rigid body as well as some short range interactions
1048 +   * (bonds, bends, torsions) differently from other interactions.
1049 +   * We'll still visit the pairwise routines, but with a flag that
1050 +   * tells those routines to exclude the pair from direct long range
1051 +   * interactions.  Some indirect interactions (notably reaction
1052 +   * field) must still be handled for these pairs.
1053 +   */
1054 +  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
1055 +
1056 +    // excludesForAtom was constructed to use row/column indices in the MPI
1057 +    // version, and to use local IDs in the non-MPI version:
1058 +    
1059 +    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
1060 +         i != excludesForAtom[atom1].end(); ++i) {
1061 +      if ( (*i) == atom2 ) return true;
1062 +    }
1063 +
1064 +    return false;
1065 +  }
1066 +
1067 +
1068    void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
1069   #ifdef IS_MPI
1070      atomRowData.force[atom1] += fg;
# Line 312 | Line 1079 | namespace OpenMD {
1079   #else
1080      snap_->atomData.force[atom2] += fg;
1081   #endif
315
1082    }
1083  
1084      // filling interaction blocks with pointers
1085 <  InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) {    
1085 >  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1086 >                                                     int atom1, int atom2) {
1087  
1088 <    InteractionData idat;
1088 >    idat.excluded = excludeAtomPair(atom1, atom2);
1089 >  
1090   #ifdef IS_MPI
1091 +    idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
1092 +    //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
1093 +    //                         ff_->getAtomType(identsCol[atom2]) );
1094 +    
1095      if (storageLayout_ & DataStorage::dslAmat) {
1096        idat.A1 = &(atomRowData.aMat[atom1]);
1097        idat.A2 = &(atomColData.aMat[atom2]);
1098      }
1099 <
1099 >    
1100      if (storageLayout_ & DataStorage::dslElectroFrame) {
1101        idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
1102        idat.eFrame2 = &(atomColData.electroFrame[atom2]);
# Line 340 | Line 1112 | namespace OpenMD {
1112        idat.rho2 = &(atomColData.density[atom2]);
1113      }
1114  
1115 +    if (storageLayout_ & DataStorage::dslFunctional) {
1116 +      idat.frho1 = &(atomRowData.functional[atom1]);
1117 +      idat.frho2 = &(atomColData.functional[atom2]);
1118 +    }
1119 +
1120      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1121        idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1122        idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1123      }
1124 +
1125 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1126 +      idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1127 +      idat.particlePot2 = &(atomColData.particlePot[atom2]);
1128 +    }
1129 +
1130 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1131 +      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1132 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1133 +    }
1134 +
1135 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1136 +      idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1137 +      idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1138 +    }
1139 +
1140   #else
1141 +    
1142 +    idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
1143 +
1144      if (storageLayout_ & DataStorage::dslAmat) {
1145        idat.A1 = &(snap_->atomData.aMat[atom1]);
1146        idat.A2 = &(snap_->atomData.aMat[atom2]);
# Line 360 | Line 1156 | namespace OpenMD {
1156        idat.t2 = &(snap_->atomData.torque[atom2]);
1157      }
1158  
1159 <    if (storageLayout_ & DataStorage::dslDensity) {
1159 >    if (storageLayout_ & DataStorage::dslDensity) {    
1160        idat.rho1 = &(snap_->atomData.density[atom1]);
1161        idat.rho2 = &(snap_->atomData.density[atom2]);
1162      }
1163  
1164 +    if (storageLayout_ & DataStorage::dslFunctional) {
1165 +      idat.frho1 = &(snap_->atomData.functional[atom1]);
1166 +      idat.frho2 = &(snap_->atomData.functional[atom2]);
1167 +    }
1168 +
1169      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1170        idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1171        idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1172      }
1173 +
1174 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1175 +      idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1176 +      idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1177 +    }
1178 +
1179 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
1180 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1181 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1182 +    }
1183 +
1184 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1185 +      idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1186 +      idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1187 +    }
1188 +
1189   #endif
373    
1190    }
1191 <  InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){
1192 <    InteractionData idat;
1193 <    skippedCharge1
378 <      skippedCharge2
379 <      rij
380 <      d
381 <    electroMult
382 <    sw
383 <    f
1191 >
1192 >  
1193 >  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
1194   #ifdef IS_MPI
1195 +    pot_row[atom1] += RealType(0.5) *  *(idat.pot);
1196 +    pot_col[atom2] += RealType(0.5) *  *(idat.pot);
1197  
1198 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
1199 <      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
1200 <      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
1198 >    atomRowData.force[atom1] += *(idat.f1);
1199 >    atomColData.force[atom2] -= *(idat.f1);
1200 >
1201 >    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1202 >      atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1203 >      atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1204      }
1205 <    if (storageLayout_ & DataStorage::dslTorque) {
1206 <      idat.t1 = &(atomRowData.torque[atom1]);
1207 <      idat.t2 = &(atomColData.torque[atom2]);
1205 >
1206 >    if (storageLayout_ & DataStorage::dslElectricField) {              
1207 >      atomRowData.electricField[atom1] += *(idat.eField1);
1208 >      atomColData.electricField[atom2] += *(idat.eField2);
1209      }
1210  
1211 + #else
1212 +    pairwisePot += *(idat.pot);
1213 +
1214 +    snap_->atomData.force[atom1] += *(idat.f1);
1215 +    snap_->atomData.force[atom2] -= *(idat.f1);
1216 +
1217 +    if (idat.doParticlePot) {
1218 +      // This is the pairwise contribution to the particle pot.  The
1219 +      // embedding contribution is added in each of the low level
1220 +      // non-bonded routines.  In parallel, this calculation is done
1221 +      // in collectData, not in unpackInteractionData.
1222 +      snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1223 +      snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1224 +    }
1225      
1226 <  }
1227 <  SelfData ForceMatrixDecomposition::fillSelfData(int atom1) {
1228 <  }
1226 >    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1227 >      snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1228 >      snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1229 >    }
1230  
1231 +    if (storageLayout_ & DataStorage::dslElectricField) {              
1232 +      snap_->atomData.electricField[atom1] += *(idat.eField1);
1233 +      snap_->atomData.electricField[atom2] += *(idat.eField2);
1234 +    }
1235  
1236 + #endif
1237 +    
1238 +  }
1239 +
1240    /*
1241     * buildNeighborList
1242     *
1243     * first element of pair is row-indexed CutoffGroup
1244     * second element of pair is column-indexed CutoffGroup
1245     */
1246 <  vector<pair<int, int> >  buildNeighborList() {
1247 <    Vector3d dr, invWid, rs, shift;
1248 <    Vector3i cc, m1v, m2s;
1249 <    RealType rrNebr;
1250 <    int c, j1, j2, m1, m1x, m1y, m1z, m2, n, offset;
1246 >  vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1247 >      
1248 >    vector<pair<int, int> > neighborList;
1249 >    groupCutoffs cuts;
1250 >    bool doAllPairs = false;
1251  
1252 + #ifdef IS_MPI
1253 +    cellListRow_.clear();
1254 +    cellListCol_.clear();
1255 + #else
1256 +    cellList_.clear();
1257 + #endif
1258  
1259 <    vector<pair<int, int> > neighborList;  
1260 <    Vector3i nCells;
1261 <    Vector3d invWid, r;
417 <
418 <    rList_ = (rCut_ + skinThickness_);
419 <    rl2 = rList_ * rList_;
420 <
421 <    snap_ = sman_->getCurrentSnapshot();
1259 >    RealType rList_ = (largestRcut_ + skinThickness_);
1260 >    RealType rl2 = rList_ * rList_;
1261 >    Snapshot* snap_ = sman_->getCurrentSnapshot();
1262      Mat3x3d Hmat = snap_->getHmat();
1263      Vector3d Hx = Hmat.getColumn(0);
1264      Vector3d Hy = Hmat.getColumn(1);
1265      Vector3d Hz = Hmat.getColumn(2);
1266  
1267 <    nCells.x() = (int) ( Hx.length() )/ rList_;
1268 <    nCells.y() = (int) ( Hy.length() )/ rList_;
1269 <    nCells.z() = (int) ( Hz.length() )/ rList_;
1267 >    nCells_.x() = (int) ( Hx.length() )/ rList_;
1268 >    nCells_.y() = (int) ( Hy.length() )/ rList_;
1269 >    nCells_.z() = (int) ( Hz.length() )/ rList_;
1270  
1271 <    for (i = 0; i < nGroupsInRow; i++) {
432 <      rs = cgRowData.position[i];
433 <      snap_->scaleVector(rs);    
434 <    }
1271 >    // handle small boxes where the cell offsets can end up repeating cells
1272      
1273 +    if (nCells_.x() < 3) doAllPairs = true;
1274 +    if (nCells_.y() < 3) doAllPairs = true;
1275 +    if (nCells_.z() < 3) doAllPairs = true;
1276  
1277 <    VDiv (invWid, cells, region);
1278 <    for (n = nMol; n < nMol + cells.componentProduct(); n ++) cellList[n] = -1;
1279 <    for (n = 0; n < nMol; n ++) {
1280 <      VSAdd (rs, mol[n].r, 0.5, region);
1281 <      VMul (cc, rs, invWid);
442 <      c = VLinear (cc, cells) + nMol;
443 <      cellList[n] = cellList[c];
444 <      cellList[c] = n;
445 <    }
446 <    nebrTabLen = 0;
447 <    for (m1z = 0; m1z < cells.z(); m1z++) {
448 <      for (m1y = 0; m1y < cells.y(); m1y++) {
449 <        for (m1x = 0; m1x < cells.x(); m1x++) {
450 <          Vector3i m1v(m1x, m1y, m1z);
451 <          m1 = VLinear(m1v, cells) + nMol;
452 <          for (offset = 0; offset < nOffset_; offset++) {
453 <            m2v = m1v + cellOffsets_[offset];
454 <            shift = V3Zero();
1277 >    Mat3x3d invHmat = snap_->getInvHmat();
1278 >    Vector3d rs, scaled, dr;
1279 >    Vector3i whichCell;
1280 >    int cellIndex;
1281 >    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1282  
1283 <            if (m2v.x() >= cells.x) {
1284 <              m2v.x() = 0;          
1285 <              shift.x() = region.x();  
1286 <            } else if (m2v.x() < 0) {
1287 <              m2v.x() = cells.x() - 1;
1288 <              shift.x() = - region.x();
462 <            }
1283 > #ifdef IS_MPI
1284 >    cellListRow_.resize(nCtot);
1285 >    cellListCol_.resize(nCtot);
1286 > #else
1287 >    cellList_.resize(nCtot);
1288 > #endif
1289  
1290 <            if (m2v.y() >= cells.y()) {
1291 <              m2v.y() = 0;          
466 <              shift.y() = region.y();  
467 <            } else if (m2v.y() < 0) {
468 <              m2v.y() = cells.y() - 1;
469 <              shift.y() = - region.y();
470 <            }
1290 >    if (!doAllPairs) {
1291 > #ifdef IS_MPI
1292  
1293 <            m2 = VLinear (m2v, cells) + nMol;
1294 <            for (j1 = cellList[m1]; j1 >= 0; j1 = cellList[j1]) {
1295 <              for (j2 = cellList[m2]; j2 >= 0; j2 = cellList[j2]) {
1296 <                if (m1 != m2 || j2 < j1) {
1297 <                  dr = mol[j1].r - mol[j2].r;
1298 <                  VSub (dr, mol[j1].r, mol[j2].r);
1299 <                  VVSub (dr, shift);
1300 <                  if (VLenSq (dr) < rrNebr) {
1301 <                    neighborList.push_back(make_pair(j1, j2));
1293 >      for (int i = 0; i < nGroupsInRow_; i++) {
1294 >        rs = cgRowData.position[i];
1295 >        
1296 >        // scaled positions relative to the box vectors
1297 >        scaled = invHmat * rs;
1298 >        
1299 >        // wrap the vector back into the unit box by subtracting integer box
1300 >        // numbers
1301 >        for (int j = 0; j < 3; j++) {
1302 >          scaled[j] -= roundMe(scaled[j]);
1303 >          scaled[j] += 0.5;
1304 >        }
1305 >        
1306 >        // find xyz-indices of cell that cutoffGroup is in.
1307 >        whichCell.x() = nCells_.x() * scaled.x();
1308 >        whichCell.y() = nCells_.y() * scaled.y();
1309 >        whichCell.z() = nCells_.z() * scaled.z();
1310 >        
1311 >        // find single index of this cell:
1312 >        cellIndex = Vlinear(whichCell, nCells_);
1313 >        
1314 >        // add this cutoff group to the list of groups in this cell;
1315 >        cellListRow_[cellIndex].push_back(i);
1316 >      }
1317 >      for (int i = 0; i < nGroupsInCol_; i++) {
1318 >        rs = cgColData.position[i];
1319 >        
1320 >        // scaled positions relative to the box vectors
1321 >        scaled = invHmat * rs;
1322 >        
1323 >        // wrap the vector back into the unit box by subtracting integer box
1324 >        // numbers
1325 >        for (int j = 0; j < 3; j++) {
1326 >          scaled[j] -= roundMe(scaled[j]);
1327 >          scaled[j] += 0.5;
1328 >        }
1329 >        
1330 >        // find xyz-indices of cell that cutoffGroup is in.
1331 >        whichCell.x() = nCells_.x() * scaled.x();
1332 >        whichCell.y() = nCells_.y() * scaled.y();
1333 >        whichCell.z() = nCells_.z() * scaled.z();
1334 >        
1335 >        // find single index of this cell:
1336 >        cellIndex = Vlinear(whichCell, nCells_);
1337 >        
1338 >        // add this cutoff group to the list of groups in this cell;
1339 >        cellListCol_[cellIndex].push_back(i);
1340 >      }
1341 >    
1342 > #else
1343 >      for (int i = 0; i < nGroups_; i++) {
1344 >        rs = snap_->cgData.position[i];
1345 >        
1346 >        // scaled positions relative to the box vectors
1347 >        scaled = invHmat * rs;
1348 >        
1349 >        // wrap the vector back into the unit box by subtracting integer box
1350 >        // numbers
1351 >        for (int j = 0; j < 3; j++) {
1352 >          scaled[j] -= roundMe(scaled[j]);
1353 >          scaled[j] += 0.5;
1354 >        }
1355 >        
1356 >        // find xyz-indices of cell that cutoffGroup is in.
1357 >        whichCell.x() = nCells_.x() * scaled.x();
1358 >        whichCell.y() = nCells_.y() * scaled.y();
1359 >        whichCell.z() = nCells_.z() * scaled.z();
1360 >        
1361 >        // find single index of this cell:
1362 >        cellIndex = Vlinear(whichCell, nCells_);
1363 >        
1364 >        // add this cutoff group to the list of groups in this cell;
1365 >        cellList_[cellIndex].push_back(i);
1366 >      }
1367 >
1368 > #endif
1369 >
1370 >      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1371 >        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1372 >          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1373 >            Vector3i m1v(m1x, m1y, m1z);
1374 >            int m1 = Vlinear(m1v, nCells_);
1375 >            
1376 >            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1377 >                 os != cellOffsets_.end(); ++os) {
1378 >              
1379 >              Vector3i m2v = m1v + (*os);
1380 >            
1381 >
1382 >              if (m2v.x() >= nCells_.x()) {
1383 >                m2v.x() = 0;          
1384 >              } else if (m2v.x() < 0) {
1385 >                m2v.x() = nCells_.x() - 1;
1386 >              }
1387 >              
1388 >              if (m2v.y() >= nCells_.y()) {
1389 >                m2v.y() = 0;          
1390 >              } else if (m2v.y() < 0) {
1391 >                m2v.y() = nCells_.y() - 1;
1392 >              }
1393 >              
1394 >              if (m2v.z() >= nCells_.z()) {
1395 >                m2v.z() = 0;          
1396 >              } else if (m2v.z() < 0) {
1397 >                m2v.z() = nCells_.z() - 1;
1398 >              }
1399 >
1400 >              int m2 = Vlinear (m2v, nCells_);
1401 >              
1402 > #ifdef IS_MPI
1403 >              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1404 >                   j1 != cellListRow_[m1].end(); ++j1) {
1405 >                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1406 >                     j2 != cellListCol_[m2].end(); ++j2) {
1407 >                  
1408 >                  // In parallel, we need to visit *all* pairs of row
1409 >                  // & column indicies and will divide labor in the
1410 >                  // force evaluation later.
1411 >                  dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1412 >                  snap_->wrapVector(dr);
1413 >                  cuts = getGroupCutoffs( (*j1), (*j2) );
1414 >                  if (dr.lengthSquare() < cuts.third) {
1415 >                    neighborList.push_back(make_pair((*j1), (*j2)));
1416 >                  }                  
1417 >                }
1418 >              }
1419 > #else
1420 >              for (vector<int>::iterator j1 = cellList_[m1].begin();
1421 >                   j1 != cellList_[m1].end(); ++j1) {
1422 >                for (vector<int>::iterator j2 = cellList_[m2].begin();
1423 >                     j2 != cellList_[m2].end(); ++j2) {
1424 >    
1425 >                  // Always do this if we're in different cells or if
1426 >                  // we're in the same cell and the global index of
1427 >                  // the j2 cutoff group is greater than or equal to
1428 >                  // the j1 cutoff group.  Note that Rappaport's code
1429 >                  // has a "less than" conditional here, but that
1430 >                  // deals with atom-by-atom computation.  OpenMD
1431 >                  // allows atoms within a single cutoff group to
1432 >                  // interact with each other.
1433 >
1434 >
1435 >
1436 >                  if (m2 != m1 || (*j2) >= (*j1) ) {
1437 >
1438 >                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1439 >                    snap_->wrapVector(dr);
1440 >                    cuts = getGroupCutoffs( (*j1), (*j2) );
1441 >                    if (dr.lengthSquare() < cuts.third) {
1442 >                      neighborList.push_back(make_pair((*j1), (*j2)));
1443 >                    }
1444                    }
1445                  }
1446                }
1447 + #endif
1448              }
1449            }
1450          }
1451        }
1452 +    } else {
1453 +      // branch to do all cutoff group pairs
1454 + #ifdef IS_MPI
1455 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1456 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {    
1457 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1458 +          snap_->wrapVector(dr);
1459 +          cuts = getGroupCutoffs( j1, j2 );
1460 +          if (dr.lengthSquare() < cuts.third) {
1461 +            neighborList.push_back(make_pair(j1, j2));
1462 +          }
1463 +        }
1464 +      }      
1465 + #else
1466 +      // include all groups here.
1467 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1468 +        // include self group interactions j2 == j1
1469 +        for (int j2 = j1; j2 < nGroups_; j2++) {
1470 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1471 +          snap_->wrapVector(dr);
1472 +          cuts = getGroupCutoffs( j1, j2 );
1473 +          if (dr.lengthSquare() < cuts.third) {
1474 +            neighborList.push_back(make_pair(j1, j2));
1475 +          }
1476 +        }    
1477 +      }
1478 + #endif
1479      }
1480 +      
1481 +    // save the local cutoff group positions for the check that is
1482 +    // done on each loop:
1483 +    saved_CG_positions_.clear();
1484 +    for (int i = 0; i < nGroups_; i++)
1485 +      saved_CG_positions_.push_back(snap_->cgData.position[i]);
1486 +    
1487 +    return neighborList;
1488    }
490
491  
1489   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines