36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
#include "parallel/ForceMatrixDecomposition.hpp" |
43 |
|
#include "math/SquareMatrix3.hpp" |
54 |
|
// surrounding cells (not just the 14 upper triangular blocks that |
55 |
|
// are used when the processor can see all pairs) |
56 |
|
#ifdef IS_MPI |
57 |
< |
cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
57 |
< |
cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
58 |
< |
cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
59 |
< |
cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
60 |
< |
cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
61 |
< |
cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
57 |
> |
cellOffsets_.clear(); |
58 |
|
cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
59 |
|
cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
60 |
< |
cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
60 |
> |
cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
61 |
> |
cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
62 |
> |
cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
63 |
|
cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
66 |
– |
cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 |
– |
cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
64 |
|
cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
65 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
66 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
68 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
69 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
70 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
71 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
72 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
73 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
74 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
75 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
76 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
77 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
78 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
79 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
80 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
81 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
82 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
83 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
84 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
85 |
|
#endif |
86 |
|
} |
87 |
|
|
95 |
|
storageLayout_ = sman_->getStorageLayout(); |
96 |
|
ff_ = info_->getForceField(); |
97 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
98 |
< |
|
98 |
> |
|
99 |
|
nGroups_ = info_->getNLocalCutoffGroups(); |
100 |
|
// gather the information for atomtype IDs (atids): |
101 |
|
idents = info_->getIdentArray(); |
109 |
|
PairList* oneTwo = info_->getOneTwoInteractions(); |
110 |
|
PairList* oneThree = info_->getOneThreeInteractions(); |
111 |
|
PairList* oneFour = info_->getOneFourInteractions(); |
112 |
< |
|
112 |
> |
|
113 |
> |
if (needVelocities_) |
114 |
> |
snap_->cgData.setStorageLayout(DataStorage::dslPosition | |
115 |
> |
DataStorage::dslVelocity); |
116 |
> |
else |
117 |
> |
snap_->cgData.setStorageLayout(DataStorage::dslPosition); |
118 |
> |
|
119 |
|
#ifdef IS_MPI |
120 |
|
|
121 |
|
MPI::Intracomm row = rowComm.getComm(); |
151 |
|
cgRowData.resize(nGroupsInRow_); |
152 |
|
cgRowData.setStorageLayout(DataStorage::dslPosition); |
153 |
|
cgColData.resize(nGroupsInCol_); |
154 |
< |
cgColData.setStorageLayout(DataStorage::dslPosition); |
155 |
< |
|
154 |
> |
if (needVelocities_) |
155 |
> |
// we only need column velocities if we need them. |
156 |
> |
cgColData.setStorageLayout(DataStorage::dslPosition | |
157 |
> |
DataStorage::dslVelocity); |
158 |
> |
else |
159 |
> |
cgColData.setStorageLayout(DataStorage::dslPosition); |
160 |
> |
|
161 |
|
identsRow.resize(nAtomsInRow_); |
162 |
|
identsCol.resize(nAtomsInCol_); |
163 |
|
|
176 |
|
pot_row.resize(nAtomsInRow_); |
177 |
|
pot_col.resize(nAtomsInCol_); |
178 |
|
|
179 |
+ |
expot_row.resize(nAtomsInRow_); |
180 |
+ |
expot_col.resize(nAtomsInCol_); |
181 |
+ |
|
182 |
|
AtomRowToGlobal.resize(nAtomsInRow_); |
183 |
|
AtomColToGlobal.resize(nAtomsInCol_); |
184 |
|
AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
185 |
|
AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
156 |
– |
|
157 |
– |
cerr << "Atoms in Local:\n"; |
158 |
– |
for (int i = 0; i < AtomLocalToGlobal.size(); i++) { |
159 |
– |
cerr << "i =\t" << i << "\t localAt =\t" << AtomLocalToGlobal[i] << "\n"; |
160 |
– |
} |
161 |
– |
cerr << "Atoms in Row:\n"; |
162 |
– |
for (int i = 0; i < AtomRowToGlobal.size(); i++) { |
163 |
– |
cerr << "i =\t" << i << "\t rowAt =\t" << AtomRowToGlobal[i] << "\n"; |
164 |
– |
} |
165 |
– |
cerr << "Atoms in Col:\n"; |
166 |
– |
for (int i = 0; i < AtomColToGlobal.size(); i++) { |
167 |
– |
cerr << "i =\t" << i << "\t colAt =\t" << AtomColToGlobal[i] << "\n"; |
168 |
– |
} |
186 |
|
|
187 |
|
cgRowToGlobal.resize(nGroupsInRow_); |
188 |
|
cgColToGlobal.resize(nGroupsInCol_); |
189 |
|
cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
190 |
|
cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
191 |
|
|
175 |
– |
cerr << "Gruops in Local:\n"; |
176 |
– |
for (int i = 0; i < cgLocalToGlobal.size(); i++) { |
177 |
– |
cerr << "i =\t" << i << "\t localCG =\t" << cgLocalToGlobal[i] << "\n"; |
178 |
– |
} |
179 |
– |
cerr << "Groups in Row:\n"; |
180 |
– |
for (int i = 0; i < cgRowToGlobal.size(); i++) { |
181 |
– |
cerr << "i =\t" << i << "\t rowCG =\t" << cgRowToGlobal[i] << "\n"; |
182 |
– |
} |
183 |
– |
cerr << "Groups in Col:\n"; |
184 |
– |
for (int i = 0; i < cgColToGlobal.size(); i++) { |
185 |
– |
cerr << "i =\t" << i << "\t colCG =\t" << cgColToGlobal[i] << "\n"; |
186 |
– |
} |
187 |
– |
|
188 |
– |
|
192 |
|
massFactorsRow.resize(nAtomsInRow_); |
193 |
|
massFactorsCol.resize(nAtomsInCol_); |
194 |
|
AtomPlanRealRow->gather(massFactors, massFactorsRow); |
248 |
|
} |
249 |
|
} |
250 |
|
|
251 |
< |
#endif |
249 |
< |
|
250 |
< |
// allocate memory for the parallel objects |
251 |
< |
atypesLocal.resize(nLocal_); |
252 |
< |
|
253 |
< |
for (int i = 0; i < nLocal_; i++) |
254 |
< |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
255 |
< |
|
256 |
< |
groupList_.clear(); |
257 |
< |
groupList_.resize(nGroups_); |
258 |
< |
for (int i = 0; i < nGroups_; i++) { |
259 |
< |
int gid = cgLocalToGlobal[i]; |
260 |
< |
for (int j = 0; j < nLocal_; j++) { |
261 |
< |
int aid = AtomLocalToGlobal[j]; |
262 |
< |
if (globalGroupMembership[aid] == gid) { |
263 |
< |
groupList_[i].push_back(j); |
264 |
< |
} |
265 |
< |
} |
266 |
< |
} |
267 |
< |
|
251 |
> |
#else |
252 |
|
excludesForAtom.clear(); |
253 |
|
excludesForAtom.resize(nLocal_); |
254 |
|
toposForAtom.clear(); |
281 |
|
} |
282 |
|
} |
283 |
|
} |
284 |
< |
|
284 |
> |
#endif |
285 |
> |
|
286 |
> |
// allocate memory for the parallel objects |
287 |
> |
atypesLocal.resize(nLocal_); |
288 |
> |
|
289 |
> |
for (int i = 0; i < nLocal_; i++) |
290 |
> |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
291 |
> |
|
292 |
> |
groupList_.clear(); |
293 |
> |
groupList_.resize(nGroups_); |
294 |
> |
for (int i = 0; i < nGroups_; i++) { |
295 |
> |
int gid = cgLocalToGlobal[i]; |
296 |
> |
for (int j = 0; j < nLocal_; j++) { |
297 |
> |
int aid = AtomLocalToGlobal[j]; |
298 |
> |
if (globalGroupMembership[aid] == gid) { |
299 |
> |
groupList_[i].push_back(j); |
300 |
> |
} |
301 |
> |
} |
302 |
> |
} |
303 |
> |
|
304 |
> |
|
305 |
|
createGtypeCutoffMap(); |
306 |
|
|
307 |
|
} |
310 |
|
|
311 |
|
RealType tol = 1e-6; |
312 |
|
largestRcut_ = 0.0; |
309 |
– |
RealType rc; |
313 |
|
int atid; |
314 |
|
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
315 |
|
|
394 |
|
} |
395 |
|
|
396 |
|
bool gTypeFound = false; |
397 |
< |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
397 |
> |
for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
398 |
|
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
399 |
|
groupToGtype[cg1] = gt; |
400 |
|
gTypeFound = true; |
419 |
|
|
420 |
|
RealType tradRcut = groupMax; |
421 |
|
|
422 |
< |
for (int i = 0; i < gTypeCutoffs.size(); i++) { |
423 |
< |
for (int j = 0; j < gTypeCutoffs.size(); j++) { |
422 |
> |
for (unsigned int i = 0; i < gTypeCutoffs.size(); i++) { |
423 |
> |
for (unsigned int j = 0; j < gTypeCutoffs.size(); j++) { |
424 |
|
RealType thisRcut; |
425 |
|
switch(cutoffPolicy_) { |
426 |
|
case TRADITIONAL: |
463 |
|
} |
464 |
|
} |
465 |
|
|
463 |
– |
|
466 |
|
groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
467 |
|
int i, j; |
468 |
|
#ifdef IS_MPI |
476 |
|
} |
477 |
|
|
478 |
|
int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
479 |
< |
for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
479 |
> |
for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { |
480 |
|
if (toposForAtom[atom1][j] == atom2) |
481 |
|
return topoDist[atom1][j]; |
482 |
|
} |
486 |
|
void ForceMatrixDecomposition::zeroWorkArrays() { |
487 |
|
pairwisePot = 0.0; |
488 |
|
embeddingPot = 0.0; |
489 |
+ |
excludedPot = 0.0; |
490 |
+ |
excludedSelfPot = 0.0; |
491 |
|
|
492 |
|
#ifdef IS_MPI |
493 |
|
if (storageLayout_ & DataStorage::dslForce) { |
506 |
|
fill(pot_col.begin(), pot_col.end(), |
507 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
508 |
|
|
509 |
+ |
fill(expot_row.begin(), expot_row.end(), |
510 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
511 |
+ |
|
512 |
+ |
fill(expot_col.begin(), expot_col.end(), |
513 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
514 |
+ |
|
515 |
|
if (storageLayout_ & DataStorage::dslParticlePot) { |
516 |
|
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
517 |
|
0.0); |
545 |
|
atomColData.skippedCharge.end(), 0.0); |
546 |
|
} |
547 |
|
|
548 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
549 |
+ |
fill(atomRowData.flucQFrc.begin(), |
550 |
+ |
atomRowData.flucQFrc.end(), 0.0); |
551 |
+ |
fill(atomColData.flucQFrc.begin(), |
552 |
+ |
atomColData.flucQFrc.end(), 0.0); |
553 |
+ |
} |
554 |
+ |
|
555 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
556 |
+ |
fill(atomRowData.electricField.begin(), |
557 |
+ |
atomRowData.electricField.end(), V3Zero); |
558 |
+ |
fill(atomColData.electricField.begin(), |
559 |
+ |
atomColData.electricField.end(), V3Zero); |
560 |
+ |
} |
561 |
+ |
|
562 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
563 |
+ |
fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), |
564 |
+ |
0.0); |
565 |
+ |
fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), |
566 |
+ |
0.0); |
567 |
+ |
} |
568 |
+ |
|
569 |
|
#endif |
570 |
|
// even in parallel, we need to zero out the local arrays: |
571 |
|
|
578 |
|
fill(snap_->atomData.density.begin(), |
579 |
|
snap_->atomData.density.end(), 0.0); |
580 |
|
} |
581 |
+ |
|
582 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
583 |
|
fill(snap_->atomData.functional.begin(), |
584 |
|
snap_->atomData.functional.end(), 0.0); |
585 |
|
} |
586 |
+ |
|
587 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
588 |
|
fill(snap_->atomData.functionalDerivative.begin(), |
589 |
|
snap_->atomData.functionalDerivative.end(), 0.0); |
590 |
|
} |
591 |
+ |
|
592 |
|
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
593 |
|
fill(snap_->atomData.skippedCharge.begin(), |
594 |
|
snap_->atomData.skippedCharge.end(), 0.0); |
595 |
|
} |
596 |
< |
|
596 |
> |
|
597 |
> |
if (storageLayout_ & DataStorage::dslElectricField) { |
598 |
> |
fill(snap_->atomData.electricField.begin(), |
599 |
> |
snap_->atomData.electricField.end(), V3Zero); |
600 |
> |
} |
601 |
|
} |
602 |
|
|
603 |
|
|
614 |
|
|
615 |
|
// gather up the cutoff group positions |
616 |
|
|
579 |
– |
cerr << "before gather\n"; |
580 |
– |
for (int i = 0; i < snap_->cgData.position.size(); i++) { |
581 |
– |
cerr << "cgpos = " << snap_->cgData.position[i] << "\n"; |
582 |
– |
} |
583 |
– |
|
617 |
|
cgPlanVectorRow->gather(snap_->cgData.position, |
618 |
|
cgRowData.position); |
619 |
|
|
587 |
– |
cerr << "after gather\n"; |
588 |
– |
for (int i = 0; i < cgRowData.position.size(); i++) { |
589 |
– |
cerr << "cgRpos = " << cgRowData.position[i] << "\n"; |
590 |
– |
} |
591 |
– |
|
620 |
|
cgPlanVectorColumn->gather(snap_->cgData.position, |
621 |
|
cgColData.position); |
622 |
< |
for (int i = 0; i < cgColData.position.size(); i++) { |
623 |
< |
cerr << "cgCpos = " << cgColData.position[i] << "\n"; |
622 |
> |
|
623 |
> |
|
624 |
> |
|
625 |
> |
if (needVelocities_) { |
626 |
> |
// gather up the atomic velocities |
627 |
> |
AtomPlanVectorColumn->gather(snap_->atomData.velocity, |
628 |
> |
atomColData.velocity); |
629 |
> |
|
630 |
> |
cgPlanVectorColumn->gather(snap_->cgData.velocity, |
631 |
> |
cgColData.velocity); |
632 |
|
} |
633 |
|
|
634 |
|
|
648 |
|
atomColData.electroFrame); |
649 |
|
} |
650 |
|
|
651 |
+ |
// if needed, gather the atomic fluctuating charge values |
652 |
+ |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
653 |
+ |
AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
654 |
+ |
atomRowData.flucQPos); |
655 |
+ |
AtomPlanRealColumn->gather(snap_->atomData.flucQPos, |
656 |
+ |
atomColData.flucQPos); |
657 |
+ |
} |
658 |
+ |
|
659 |
|
#endif |
660 |
|
} |
661 |
|
|
678 |
|
for (int i = 0; i < n; i++) |
679 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
680 |
|
} |
681 |
+ |
|
682 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
683 |
+ |
|
684 |
+ |
AtomPlanVectorRow->scatter(atomRowData.electricField, |
685 |
+ |
snap_->atomData.electricField); |
686 |
+ |
|
687 |
+ |
int n = snap_->atomData.electricField.size(); |
688 |
+ |
vector<Vector3d> field_tmp(n, V3Zero); |
689 |
+ |
AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); |
690 |
+ |
for (int i = 0; i < n; i++) |
691 |
+ |
snap_->atomData.electricField[i] += field_tmp[i]; |
692 |
+ |
} |
693 |
|
#endif |
694 |
|
} |
695 |
|
|
764 |
|
} |
765 |
|
|
766 |
|
AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
767 |
< |
for (int i = 0; i < ns; i++) |
767 |
> |
for (int i = 0; i < ns; i++) |
768 |
|
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
769 |
+ |
|
770 |
|
} |
771 |
|
|
772 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
773 |
+ |
|
774 |
+ |
int nq = snap_->atomData.flucQFrc.size(); |
775 |
+ |
vector<RealType> fqfrc_tmp(nq, 0.0); |
776 |
+ |
|
777 |
+ |
AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); |
778 |
+ |
for (int i = 0; i < nq; i++) { |
779 |
+ |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
780 |
+ |
fqfrc_tmp[i] = 0.0; |
781 |
+ |
} |
782 |
+ |
|
783 |
+ |
AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); |
784 |
+ |
for (int i = 0; i < nq; i++) |
785 |
+ |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
786 |
+ |
|
787 |
+ |
} |
788 |
+ |
|
789 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
790 |
|
|
791 |
|
vector<potVec> pot_temp(nLocal_, |
792 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
793 |
+ |
vector<potVec> expot_temp(nLocal_, |
794 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
795 |
|
|
796 |
|
// scatter/gather pot_row into the members of my column |
797 |
|
|
798 |
|
AtomPlanPotRow->scatter(pot_row, pot_temp); |
799 |
+ |
AtomPlanPotRow->scatter(expot_row, expot_temp); |
800 |
|
|
801 |
< |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
801 |
> |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
802 |
|
pairwisePot += pot_temp[ii]; |
803 |
< |
|
803 |
> |
|
804 |
> |
for (int ii = 0; ii < expot_temp.size(); ii++ ) |
805 |
> |
excludedPot += expot_temp[ii]; |
806 |
> |
|
807 |
> |
if (storageLayout_ & DataStorage::dslParticlePot) { |
808 |
> |
// This is the pairwise contribution to the particle pot. The |
809 |
> |
// embedding contribution is added in each of the low level |
810 |
> |
// non-bonded routines. In single processor, this is done in |
811 |
> |
// unpackInteractionData, not in collectData. |
812 |
> |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
813 |
> |
for (int i = 0; i < nLocal_; i++) { |
814 |
> |
// factor of two is because the total potential terms are divided |
815 |
> |
// by 2 in parallel due to row/ column scatter |
816 |
> |
snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
817 |
> |
} |
818 |
> |
} |
819 |
> |
} |
820 |
> |
|
821 |
|
fill(pot_temp.begin(), pot_temp.end(), |
822 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
823 |
+ |
fill(expot_temp.begin(), expot_temp.end(), |
824 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
825 |
|
|
826 |
|
AtomPlanPotColumn->scatter(pot_col, pot_temp); |
827 |
+ |
AtomPlanPotColumn->scatter(expot_col, expot_temp); |
828 |
|
|
829 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
830 |
|
pairwisePot += pot_temp[ii]; |
734 |
– |
#endif |
831 |
|
|
832 |
< |
cerr << "pairwisePot = " << pairwisePot << "\n"; |
832 |
> |
for (int ii = 0; ii < expot_temp.size(); ii++ ) |
833 |
> |
excludedPot += expot_temp[ii]; |
834 |
> |
|
835 |
> |
if (storageLayout_ & DataStorage::dslParticlePot) { |
836 |
> |
// This is the pairwise contribution to the particle pot. The |
837 |
> |
// embedding contribution is added in each of the low level |
838 |
> |
// non-bonded routines. In single processor, this is done in |
839 |
> |
// unpackInteractionData, not in collectData. |
840 |
> |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
841 |
> |
for (int i = 0; i < nLocal_; i++) { |
842 |
> |
// factor of two is because the total potential terms are divided |
843 |
> |
// by 2 in parallel due to row/ column scatter |
844 |
> |
snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
845 |
> |
} |
846 |
> |
} |
847 |
> |
} |
848 |
> |
|
849 |
> |
if (storageLayout_ & DataStorage::dslParticlePot) { |
850 |
> |
int npp = snap_->atomData.particlePot.size(); |
851 |
> |
vector<RealType> ppot_temp(npp, 0.0); |
852 |
> |
|
853 |
> |
// This is the direct or embedding contribution to the particle |
854 |
> |
// pot. |
855 |
> |
|
856 |
> |
AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); |
857 |
> |
for (int i = 0; i < npp; i++) { |
858 |
> |
snap_->atomData.particlePot[i] += ppot_temp[i]; |
859 |
> |
} |
860 |
> |
|
861 |
> |
fill(ppot_temp.begin(), ppot_temp.end(), 0.0); |
862 |
> |
|
863 |
> |
AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); |
864 |
> |
for (int i = 0; i < npp; i++) { |
865 |
> |
snap_->atomData.particlePot[i] += ppot_temp[i]; |
866 |
> |
} |
867 |
> |
} |
868 |
> |
|
869 |
> |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
870 |
> |
RealType ploc1 = pairwisePot[ii]; |
871 |
> |
RealType ploc2 = 0.0; |
872 |
> |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
873 |
> |
pairwisePot[ii] = ploc2; |
874 |
> |
} |
875 |
> |
|
876 |
> |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
877 |
> |
RealType ploc1 = excludedPot[ii]; |
878 |
> |
RealType ploc2 = 0.0; |
879 |
> |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
880 |
> |
excludedPot[ii] = ploc2; |
881 |
> |
} |
882 |
> |
|
883 |
> |
// Here be dragons. |
884 |
> |
MPI::Intracomm col = colComm.getComm(); |
885 |
> |
|
886 |
> |
col.Allreduce(MPI::IN_PLACE, |
887 |
> |
&snap_->frameData.conductiveHeatFlux[0], 3, |
888 |
> |
MPI::REALTYPE, MPI::SUM); |
889 |
> |
|
890 |
> |
|
891 |
> |
#endif |
892 |
> |
|
893 |
|
} |
894 |
|
|
895 |
+ |
/** |
896 |
+ |
* Collects information obtained during the post-pair (and embedding |
897 |
+ |
* functional) loops onto local data structures. |
898 |
+ |
*/ |
899 |
+ |
void ForceMatrixDecomposition::collectSelfData() { |
900 |
+ |
snap_ = sman_->getCurrentSnapshot(); |
901 |
+ |
storageLayout_ = sman_->getStorageLayout(); |
902 |
+ |
|
903 |
+ |
#ifdef IS_MPI |
904 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
905 |
+ |
RealType ploc1 = embeddingPot[ii]; |
906 |
+ |
RealType ploc2 = 0.0; |
907 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
908 |
+ |
embeddingPot[ii] = ploc2; |
909 |
+ |
} |
910 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
911 |
+ |
RealType ploc1 = excludedSelfPot[ii]; |
912 |
+ |
RealType ploc2 = 0.0; |
913 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
914 |
+ |
excludedSelfPot[ii] = ploc2; |
915 |
+ |
} |
916 |
+ |
#endif |
917 |
+ |
|
918 |
+ |
} |
919 |
+ |
|
920 |
+ |
|
921 |
+ |
|
922 |
|
int ForceMatrixDecomposition::getNAtomsInRow() { |
923 |
|
#ifdef IS_MPI |
924 |
|
return nAtomsInRow_; |
951 |
|
|
952 |
|
#ifdef IS_MPI |
953 |
|
d = cgColData.position[cg2] - cgRowData.position[cg1]; |
771 |
– |
cerr << "cg1 = " << cg1 << "\tcg1p = " << cgRowData.position[cg1] << "\n"; |
772 |
– |
cerr << "cg2 = " << cg2 << "\tcg2p = " << cgColData.position[cg2] << "\n"; |
954 |
|
#else |
955 |
|
d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; |
775 |
– |
cerr << "cg1 = " << cg1 << "\tcg1p = " << snap_->cgData.position[cg1] << "\n"; |
776 |
– |
cerr << "cg2 = " << cg2 << "\tcg2p = " << snap_->cgData.position[cg2] << "\n"; |
956 |
|
#endif |
957 |
|
|
958 |
|
snap_->wrapVector(d); |
959 |
|
return d; |
960 |
|
} |
961 |
|
|
962 |
+ |
Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
963 |
+ |
#ifdef IS_MPI |
964 |
+ |
return cgColData.velocity[cg2]; |
965 |
+ |
#else |
966 |
+ |
return snap_->cgData.velocity[cg2]; |
967 |
+ |
#endif |
968 |
+ |
} |
969 |
|
|
970 |
+ |
Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
971 |
+ |
#ifdef IS_MPI |
972 |
+ |
return atomColData.velocity[atom2]; |
973 |
+ |
#else |
974 |
+ |
return snap_->atomData.velocity[atom2]; |
975 |
+ |
#endif |
976 |
+ |
} |
977 |
+ |
|
978 |
+ |
|
979 |
|
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ |
980 |
|
|
981 |
|
Vector3d d; |
1041 |
|
* We need to exclude some overcounted interactions that result from |
1042 |
|
* the parallel decomposition. |
1043 |
|
*/ |
1044 |
< |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
1045 |
< |
int unique_id_1, unique_id_2; |
1046 |
< |
|
852 |
< |
|
853 |
< |
cerr << "sap with atom1, atom2 =\t" << atom1 << "\t" << atom2 << "\n"; |
1044 |
> |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { |
1045 |
> |
int unique_id_1, unique_id_2, group1, group2; |
1046 |
> |
|
1047 |
|
#ifdef IS_MPI |
1048 |
|
// in MPI, we have to look up the unique IDs for each atom |
1049 |
|
unique_id_1 = AtomRowToGlobal[atom1]; |
1050 |
|
unique_id_2 = AtomColToGlobal[atom2]; |
1051 |
+ |
group1 = cgRowToGlobal[cg1]; |
1052 |
+ |
group2 = cgColToGlobal[cg2]; |
1053 |
+ |
#else |
1054 |
+ |
unique_id_1 = AtomLocalToGlobal[atom1]; |
1055 |
+ |
unique_id_2 = AtomLocalToGlobal[atom2]; |
1056 |
+ |
group1 = cgLocalToGlobal[cg1]; |
1057 |
+ |
group2 = cgLocalToGlobal[cg2]; |
1058 |
+ |
#endif |
1059 |
|
|
859 |
– |
cerr << "sap with uid1, uid2 =\t" << unique_id_1 << "\t" << unique_id_2 << "\n"; |
860 |
– |
// this situation should only arise in MPI simulations |
1060 |
|
if (unique_id_1 == unique_id_2) return true; |
1061 |
< |
|
1061 |
> |
|
1062 |
> |
#ifdef IS_MPI |
1063 |
|
// this prevents us from doing the pair on multiple processors |
1064 |
|
if (unique_id_1 < unique_id_2) { |
1065 |
|
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
1066 |
|
} else { |
1067 |
< |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1067 |
> |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1068 |
> |
} |
1069 |
> |
#endif |
1070 |
> |
|
1071 |
> |
#ifndef IS_MPI |
1072 |
> |
if (group1 == group2) { |
1073 |
> |
if (unique_id_1 < unique_id_2) return true; |
1074 |
|
} |
1075 |
|
#endif |
1076 |
+ |
|
1077 |
|
return false; |
1078 |
|
} |
1079 |
|
|
1087 |
|
* field) must still be handled for these pairs. |
1088 |
|
*/ |
1089 |
|
bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
1090 |
< |
int unique_id_2; |
1091 |
< |
#ifdef IS_MPI |
1092 |
< |
// in MPI, we have to look up the unique IDs for the row atom. |
886 |
< |
unique_id_2 = AtomColToGlobal[atom2]; |
887 |
< |
#else |
888 |
< |
// in the normal loop, the atom numbers are unique |
889 |
< |
unique_id_2 = atom2; |
890 |
< |
#endif |
1090 |
> |
|
1091 |
> |
// excludesForAtom was constructed to use row/column indices in the MPI |
1092 |
> |
// version, and to use local IDs in the non-MPI version: |
1093 |
|
|
1094 |
|
for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
1095 |
|
i != excludesForAtom[atom1].end(); ++i) { |
1096 |
< |
if ( (*i) == unique_id_2 ) return true; |
1096 |
> |
if ( (*i) == atom2 ) return true; |
1097 |
|
} |
1098 |
|
|
1099 |
|
return false; |
1167 |
|
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
1168 |
|
} |
1169 |
|
|
1170 |
< |
#else |
1170 |
> |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1171 |
> |
idat.flucQ1 = &(atomRowData.flucQPos[atom1]); |
1172 |
> |
idat.flucQ2 = &(atomColData.flucQPos[atom2]); |
1173 |
> |
} |
1174 |
|
|
1175 |
+ |
#else |
1176 |
+ |
|
1177 |
|
idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
971 |
– |
//idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
972 |
– |
// ff_->getAtomType(idents[atom2]) ); |
1178 |
|
|
1179 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
1180 |
|
idat.A1 = &(snap_->atomData.aMat[atom1]); |
1215 |
|
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
1216 |
|
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
1217 |
|
} |
1218 |
+ |
|
1219 |
+ |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1220 |
+ |
idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); |
1221 |
+ |
idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); |
1222 |
+ |
} |
1223 |
+ |
|
1224 |
|
#endif |
1225 |
|
} |
1226 |
|
|
1227 |
|
|
1228 |
|
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
1229 |
|
#ifdef IS_MPI |
1230 |
< |
pot_row[atom1] += 0.5 * *(idat.pot); |
1231 |
< |
pot_col[atom2] += 0.5 * *(idat.pot); |
1230 |
> |
pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1231 |
> |
pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1232 |
> |
expot_row[atom1] += RealType(0.5) * *(idat.excludedPot); |
1233 |
> |
expot_col[atom2] += RealType(0.5) * *(idat.excludedPot); |
1234 |
|
|
1235 |
|
atomRowData.force[atom1] += *(idat.f1); |
1236 |
|
atomColData.force[atom2] -= *(idat.f1); |
1237 |
+ |
|
1238 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
1239 |
+ |
atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1240 |
+ |
atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1241 |
+ |
} |
1242 |
+ |
|
1243 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
1244 |
+ |
atomRowData.electricField[atom1] += *(idat.eField1); |
1245 |
+ |
atomColData.electricField[atom2] += *(idat.eField2); |
1246 |
+ |
} |
1247 |
+ |
|
1248 |
|
#else |
1249 |
|
pairwisePot += *(idat.pot); |
1250 |
+ |
excludedPot += *(idat.excludedPot); |
1251 |
|
|
1252 |
|
snap_->atomData.force[atom1] += *(idat.f1); |
1253 |
|
snap_->atomData.force[atom2] -= *(idat.f1); |
1254 |
+ |
|
1255 |
+ |
if (idat.doParticlePot) { |
1256 |
+ |
// This is the pairwise contribution to the particle pot. The |
1257 |
+ |
// embedding contribution is added in each of the low level |
1258 |
+ |
// non-bonded routines. In parallel, this calculation is done |
1259 |
+ |
// in collectData, not in unpackInteractionData. |
1260 |
+ |
snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
1261 |
+ |
snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); |
1262 |
+ |
} |
1263 |
+ |
|
1264 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
1265 |
+ |
snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1266 |
+ |
snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1267 |
+ |
} |
1268 |
+ |
|
1269 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
1270 |
+ |
snap_->atomData.electricField[atom1] += *(idat.eField1); |
1271 |
+ |
snap_->atomData.electricField[atom2] += *(idat.eField2); |
1272 |
+ |
} |
1273 |
+ |
|
1274 |
|
#endif |
1275 |
|
|
1276 |
|
} |
1339 |
|
for (int j = 0; j < 3; j++) { |
1340 |
|
scaled[j] -= roundMe(scaled[j]); |
1341 |
|
scaled[j] += 0.5; |
1342 |
+ |
// Handle the special case when an object is exactly on the |
1343 |
+ |
// boundary (a scaled coordinate of 1.0 is the same as |
1344 |
+ |
// scaled coordinate of 0.0) |
1345 |
+ |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1346 |
|
} |
1347 |
|
|
1348 |
|
// find xyz-indices of cell that cutoffGroup is in. |
1367 |
|
for (int j = 0; j < 3; j++) { |
1368 |
|
scaled[j] -= roundMe(scaled[j]); |
1369 |
|
scaled[j] += 0.5; |
1370 |
+ |
// Handle the special case when an object is exactly on the |
1371 |
+ |
// boundary (a scaled coordinate of 1.0 is the same as |
1372 |
+ |
// scaled coordinate of 0.0) |
1373 |
+ |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1374 |
|
} |
1375 |
|
|
1376 |
|
// find xyz-indices of cell that cutoffGroup is in. |
1384 |
|
// add this cutoff group to the list of groups in this cell; |
1385 |
|
cellListCol_[cellIndex].push_back(i); |
1386 |
|
} |
1387 |
+ |
|
1388 |
|
#else |
1389 |
|
for (int i = 0; i < nGroups_; i++) { |
1390 |
|
rs = snap_->cgData.position[i]; |
1397 |
|
for (int j = 0; j < 3; j++) { |
1398 |
|
scaled[j] -= roundMe(scaled[j]); |
1399 |
|
scaled[j] += 0.5; |
1400 |
+ |
// Handle the special case when an object is exactly on the |
1401 |
+ |
// boundary (a scaled coordinate of 1.0 is the same as |
1402 |
+ |
// scaled coordinate of 0.0) |
1403 |
+ |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1404 |
|
} |
1405 |
|
|
1406 |
|
// find xyz-indices of cell that cutoffGroup is in. |
1414 |
|
// add this cutoff group to the list of groups in this cell; |
1415 |
|
cellList_[cellIndex].push_back(i); |
1416 |
|
} |
1417 |
+ |
|
1418 |
|
#endif |
1419 |
|
|
1420 |
|
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1427 |
|
os != cellOffsets_.end(); ++os) { |
1428 |
|
|
1429 |
|
Vector3i m2v = m1v + (*os); |
1430 |
< |
|
1430 |
> |
|
1431 |
> |
|
1432 |
|
if (m2v.x() >= nCells_.x()) { |
1433 |
|
m2v.x() = 0; |
1434 |
|
} else if (m2v.x() < 0) { |
1446 |
|
} else if (m2v.z() < 0) { |
1447 |
|
m2v.z() = nCells_.z() - 1; |
1448 |
|
} |
1449 |
< |
|
1449 |
> |
|
1450 |
|
int m2 = Vlinear (m2v, nCells_); |
1451 |
|
|
1452 |
|
#ifdef IS_MPI |
1455 |
|
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1456 |
|
j2 != cellListCol_[m2].end(); ++j2) { |
1457 |
|
|
1458 |
< |
// In parallel, we need to visit *all* pairs of row & |
1459 |
< |
// column indicies and will truncate later on. |
1458 |
> |
// In parallel, we need to visit *all* pairs of row |
1459 |
> |
// & column indicies and will divide labor in the |
1460 |
> |
// force evaluation later. |
1461 |
|
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1462 |
|
snap_->wrapVector(dr); |
1463 |
|
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1467 |
|
} |
1468 |
|
} |
1469 |
|
#else |
1209 |
– |
|
1470 |
|
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1471 |
|
j1 != cellList_[m1].end(); ++j1) { |
1472 |
|
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1473 |
|
j2 != cellList_[m2].end(); ++j2) { |
1474 |
< |
|
1474 |
> |
|
1475 |
|
// Always do this if we're in different cells or if |
1476 |
< |
// we're in the same cell and the global index of the |
1477 |
< |
// j2 cutoff group is less than the j1 cutoff group |
1478 |
< |
|
1479 |
< |
if (m2 != m1 || (*j2) < (*j1)) { |
1476 |
> |
// we're in the same cell and the global index of |
1477 |
> |
// the j2 cutoff group is greater than or equal to |
1478 |
> |
// the j1 cutoff group. Note that Rappaport's code |
1479 |
> |
// has a "less than" conditional here, but that |
1480 |
> |
// deals with atom-by-atom computation. OpenMD |
1481 |
> |
// allows atoms within a single cutoff group to |
1482 |
> |
// interact with each other. |
1483 |
> |
|
1484 |
> |
|
1485 |
> |
|
1486 |
> |
if (m2 != m1 || (*j2) >= (*j1) ) { |
1487 |
> |
|
1488 |
|
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1489 |
|
snap_->wrapVector(dr); |
1490 |
|
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1503 |
|
// branch to do all cutoff group pairs |
1504 |
|
#ifdef IS_MPI |
1505 |
|
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1506 |
< |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1506 |
> |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1507 |
|
dr = cgColData.position[j2] - cgRowData.position[j1]; |
1508 |
|
snap_->wrapVector(dr); |
1509 |
|
cuts = getGroupCutoffs( j1, j2 ); |
1511 |
|
neighborList.push_back(make_pair(j1, j2)); |
1512 |
|
} |
1513 |
|
} |
1514 |
< |
} |
1514 |
> |
} |
1515 |
|
#else |
1516 |
< |
for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1517 |
< |
for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1516 |
> |
// include all groups here. |
1517 |
> |
for (int j1 = 0; j1 < nGroups_; j1++) { |
1518 |
> |
// include self group interactions j2 == j1 |
1519 |
> |
for (int j2 = j1; j2 < nGroups_; j2++) { |
1520 |
|
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1521 |
|
snap_->wrapVector(dr); |
1522 |
|
cuts = getGroupCutoffs( j1, j2 ); |
1523 |
|
if (dr.lengthSquare() < cuts.third) { |
1524 |
|
neighborList.push_back(make_pair(j1, j2)); |
1525 |
|
} |
1526 |
< |
} |
1527 |
< |
} |
1526 |
> |
} |
1527 |
> |
} |
1528 |
|
#endif |
1529 |
|
} |
1530 |
|
|